Jacob L Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7618361/publications.pdf Version: 2024-02-01

LACOB L RROWN

#	Article	IF	CITATIONS
1	Moderators of skeletal muscle maintenance are compromised in sarcopenic obese mice. Mechanisms of Ageing and Development, 2021, 194, 111404.	4.6	5
2	Cancerâ€induced cardiac atrophy adversely affects myocardial redox state and mitochondrial oxidative characteristics. JCSM Rapid Communications, 2021, 4, 3-15.	1.6	17
3	Tumor burden negatively impacts protein turnover as a proteostatic process in non-cancerous liver, heart, and muscle, but not brain. Journal of Applied Physiology, 2021, 131, 72-82.	2.5	8
4	Reduced adenosine diphosphate sensitivity in skeletal muscle mitochondria increases reactive oxygen species production in mouse models of aging and oxidative stress but not denervation. JCSM Rapid Communications, 2021, 4, 75-89.	1.6	9
5	Hepatic alterations during the development and progression of cancer cachexia. Applied Physiology, Nutrition and Metabolism, 2020, 45, 500-512.	1.9	31
6	Development and progression of cancer cachexia: Perspectives from bench to bedside. Sports Medicine and Health Science, 2020, 2, 177-185.	2.0	28
7	Neuronâ€specific deletion of CuZnSOD leads to an advanced sarcopenic phenotype in older mice. Aging Cell, 2020, 19, e13225.	6.7	29
8	Cancer cachexia in a mouse model of oxidative stress. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 1688-1704.	7.3	31
9	Targeting cPLA2 derived lipid hydroperoxides as a potential intervention for sarcopenia. Scientific Reports, 2020, 10, 13968.	3.3	24
10	Molecular changes in transcription and metabolic pathways underlying muscle atrophy in the CuZnSOD null mouse model of sarcopenia. GeroScience, 2020, 42, 1101-1118.	4.6	22
11	Protein imbalance in the development of skeletal muscle wasting in tumourâ€bearing mice. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 987-1002.	7.3	81
12	Cancer cachexia-induced muscle atrophy: evidence for alterations in microRNAs important for muscle size. Physiological Genomics, 2017, 49, 253-260.	2.3	55
13	Mitochondrial degeneration precedes the development of muscle atrophy in progression of cancer cachexia in tumourâ€bearing mice. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 926-938. 	7.3	186
14	Mitochondrial quality control, promoted by PGC-1 <i>î±</i> , is dysregulated by Western diet-induced obesity and partially restored by moderate physical activity in mice. Physiological Reports, 2015, 3, e12470.	1.7	68