List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7618347/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An overview of the application of Fenton oxidation to industrial wastewaters treatment. Journal of Chemical Technology and Biotechnology, 2008, 83, 1323-1338.	3.2	546
2	Chemical Pathway and Kinetics of Phenol Oxidation by Fenton's Reagent. Environmental Science & Technology, 2005, 39, 9295-9302.	10.0	545
3	Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst. Applied Catalysis B: Environmental, 2006, 65, 261-268.	20.2	290
4	Application of Fenton oxidation to cosmetic wastewaters treatment. Journal of Hazardous Materials, 2007, 143, 128-134.	12.4	233
5	Viscosity of guar gum and xanthan/guar gum mixture solutions. Journal of the Science of Food and Agriculture, 2000, 80, 1722-1727.	3.5	163
6	Activated carbons from sewage sludge. Desalination, 2011, 277, 377-382.	8.2	124
7	Kinetics of the Hydrodechlorination of 4-Chlorophenol in Water Using Pd, Pt, and Rh/Al ₂ O ₃ Catalysts. Industrial & Engineering Chemistry Research, 2008, 47, 3840-3846.	3.7	113
8	Catalytic behavior of size-controlled palladium nanoparticles in the hydrodechlorination of 4-chlorophenol in aqueous phase. Journal of Catalysis, 2012, 293, 85-93.	6.2	107
9	Hydrodechlorination of 4-chlorophenol in aqueous phase using Pd/AC catalysts prepared with modified active carbon supports. Applied Catalysis B: Environmental, 2006, 67, 68-76.	20.2	105
10	Techno-economic and life cycle assessment of an integrated hydrothermal carbonization system for sewage sludge. Journal of Cleaner Production, 2020, 277, 122930.	9.3	99
11	Treatment of chlorophenols-bearing wastewaters through hydrodechlorination using Pd/activated carbon catalysts. Carbon, 2004, 42, 1377-1381.	10.3	98
12	Hydrogenation of phenol in aqueous phase with palladium on activated carbon catalysts. Chemical Engineering Journal, 2007, 131, 65-71.	12.7	95
13	Energy and phosphorous recovery through hydrothermal carbonization of digested sewage sludge. Waste Management, 2020, 105, 566-574.	7.4	93
14	Compared activity and stability of Pd/Al2O3 and Pd/AC catalysts in 4-chlorophenol hydrodechlorination in different pH media. Applied Catalysis B: Environmental, 2011, 103, 128-135.	20.2	89
15	Cometabolic biodegradation of 4-chlorophenol by sequencing batch reactors at different temperatures. Bioresource Technology, 2009, 100, 4572-4578.	9.6	83
16	Catalytic wet peroxide oxidation of cosmetic wastewaters with Fe-bearing catalysts. Catalysis Today, 2010, 151, 148-152.	4.4	81
17	Comparison of activated carbon-supported Pd and Rh catalysts for aqueous-phase hydrodechlorination. Applied Catalysis B: Environmental, 2011, 106, 469-475.	20.2	81
18	Energy valorization of cow manure by hydrothermal carbonization and anaerobic digestion. Renewable Energy, 2020, 160, 623-632.	8.9	76

#	Article	IF	CITATIONS
19	Enhancement of cometabolic biodegradation of 4-chlorophenol induced with phenol and glucose as carbon sources by Comamonas testosteroni. Journal of Environmental Management, 2012, 95, S116-S121.	7.8	75
20	Semicontinuous Fenton oxidation of phenol in aqueous solution. A kinetic study. Water Research, 2009, 43, 4063-4069.	11.3	74
21	Cation and anion effect on the biodegradability and toxicity of imidazolium– and choline–based ionic liquids. Chemosphere, 2020, 240, 124947.	8.2	73
22	Iron catalysts by chemical activation of sewage sludge with FeCl 3 for CWPO. Chemical Engineering Journal, 2017, 318, 224-230.	12.7	72
23	Mesophilic anaerobic co-digestion of the organic fraction of municipal solid waste with the liquid fraction from hydrothermal carbonization of sewage sludge. Waste Management, 2018, 76, 315-322.	7.4	72
24	Effect of inoculum source and initial concentration on the anaerobic digestion of the liquid fraction from hydrothermal carbonisation of sewage sludge. Renewable Energy, 2018, 127, 697-704.	8.9	69
25	Valorization of microalgal biomass by hydrothermal carbonization and anaerobic digestion. Bioresource Technology, 2019, 274, 395-402.	9.6	66
26	Effects of Support Surface Composition on the Activity and Selectivity of Pd/C Catalysts in Aqueous-Phase Hydrodechlorination Reactions. Industrial & Engineering Chemistry Research, 2005, 44, 6661-6667.	3.7	65
27	Kinetics of 4-Chlorophenol Hydrodechlorination with Alumina and Activated Carbon-Supported Pd and Rh Catalysts. Industrial & Engineering Chemistry Research, 2009, 48, 3351-3358.	3.7	64
28	Highly stable Fe/γâ€Al ₂ O ₃ catalyst for catalytic wet peroxide oxidation. Journal of Chemical Technology and Biotechnology, 2011, 86, 497-504.	3.2	63
29	Wet air oxidation of phenol at mild conditions with a Fe/activated carbon catalyst. Applied Catalysis B: Environmental, 2006, 62, 115-120.	20.2	62
30	Reaction pathway of the catalytic wet air oxidation of phenol with a Fe/activated carbon catalyst. Applied Catalysis B: Environmental, 2006, 67, 206-216.	20.2	62
31	Application of Fenton-like oxidation as pre-treatment for carbamazepine biodegradation. Chemical Engineering Journal, 2015, 264, 856-862.	12.7	60
32	Valorisation of the liquid fraction from hydrothermal carbonisation of sewage sludge by anaerobic digestion. Journal of Chemical Technology and Biotechnology, 2018, 93, 450-456.	3.2	59
33	Comparison of UASB and EGSB performance on the anaerobic biodegradation of 2,4-dichlorophenol. Chemosphere, 2009, 76, 1192-1198.	8.2	58
34	Adsorption of 4-chlorophenol by inexpensive sewage sludge-based adsorbents. Chemical Engineering Research and Design, 2012, 90, 1807-1814.	5.6	58
35	Degradation of chlorophenoxy herbicides by coupled Fenton and biological oxidation. Chemosphere, 2013, 93, 115-122.	8.2	53
36	Integration of Hydrothermal Carbonization and Anaerobic Digestion for Energy Recovery of Biomass Waste: An Overview. Energy & Fuels, 2021, 35, 17032-17050.	5.1	53

#	Article	IF	CITATIONS
37	Hydrodechlorination of 4-chlorophenol in water with formic acid using a Pd/activated carbon catalyst. Journal of Hazardous Materials, 2009, 161, 842-847.	12.4	52
38	Denitrification of Water with Activated Carbon-Supported Metallic Catalysts. Industrial & Engineering Chemistry Research, 2010, 49, 5603-5609.	3.7	51
39	Comparison of experimental methods for determination of toxicity and biodegradability of xenobiotic compounds. Biodegradation, 2011, 22, 751-761.	3.0	49
40	Anaerobic co-digestion of the aqueous phase from hydrothermally treated waste activated sludge with primary sewage sludge. A kinetic study. Journal of Environmental Management, 2019, 231, 726-733.	7.8	48
41	Cosmetic wastewater treatment by upflow anaerobic sludge blanket reactor. Journal of Hazardous Materials, 2011, 185, 1059-1065.	12.4	46
42	Hydrodechlorination of alachlor in water using Pd, Ni and Cu catalysts supported on activated carbon. Applied Catalysis B: Environmental, 2008, 78, 259-266.	20.2	45
43	Anaerobic co-digestion of the process water from waste activated sludge hydrothermally treated with primary sewage sludge. A new approach for sewage sludge management. Renewable Energy, 2020, 146, 435-443.	8.9	45
44	Coupling Fenton and biological oxidation for the removal of nitrochlorinated herbicides from water. Water Research, 2014, 49, 197-206.	11.3	43
45	Improved energy recovery from food waste through hydrothermal carbonization and anaerobic digestion. Waste Management, 2022, 142, 9-18.	7.4	39
46	Factors Affecting Solubilization of Phosphorus and Nitrogen through Hydrothermal Carbonization of Animal Manure. ACS Sustainable Chemistry and Engineering, 2020, 8, 12462-12470.	6.7	36
47	Integration of hydrothermal carbonization and aqueous phase reforming for energy recovery from sewage sludge. Chemical Engineering Journal, 2022, 442, 136301.	12.7	36
48	Assessment of toxicity and biodegradability on activated sludge of priority and emerging pollutants. Environmental Technology (United Kingdom), 2016, 37, 713-721.	2.2	35
49	Xanthan Precipitation from Solutions and Fermentation Broths. Separation Science and Technology, 1993, 28, 1303-1313.	2.5	34
50	Energy recovery from food waste and garden and park waste: Anaerobic co-digestion versus hydrothermal treatment and anaerobic co-digestion. Chemosphere, 2022, 297, 134223.	8.2	34
51	Removal of imidazolium- and pyridinium-based ionic liquids by Fenton oxidation. Environmental Science and Pollution Research, 2018, 25, 34930-34937.	5.3	33
52	Low-Cost Activated Grape Seed-Derived Hydrochar through Hydrothermal Carbonization and Chemical Activation for Sulfamethoxazole Adsorption. Applied Sciences (Switzerland), 2019, 9, 5127.	2.5	33
53	Analysis of the deactivation of Pd, Pt and Rh on activated carbon catalysts in the hydrodechlorination of the MCPA herbicide. Applied Catalysis B: Environmental, 2016, 181, 429-435.	20.2	31
54	Assessment the ecotoxicity and inhibition of imidazolium ionic liquids by respiration inhibition assays. Ecotoxicology and Environmental Safety, 2018, 162, 29-34.	6.0	31

#	Article	IF	CITATIONS
55	Oxidation of cosmetic wastewaters with H2O2 using a Fe/γ-Al2O3 catalyst. Water Science and Technology, 2010, 61, 1631-1636.	2.5	30
56	Highly stable iron catalysts from sewage sludge for CWPO. Journal of Environmental Chemical Engineering, 2014, 2, 2359-2364.	6.7	30
57	Deactivation of a Pd/AC catalyst in the hydrodechlorination of chlorinated herbicides. Catalysis Today, 2015, 241, 86-91.	4.4	30
58	Enhanced anaerobic degradability of highly polluted pesticides-bearing wastewater under thermophilic conditions. Journal of Hazardous Materials, 2017, 339, 320-329.	12.4	30
59	Fate of nutrients during hydrothermal treatment of food waste. Bioresource Technology, 2021, 342, 125954.	9.6	29
60	Strategies to evaluate biodegradability: application to chlorinated herbicides. Environmental Science and Pollution Research, 2014, 21, 9445-9452.	5.3	28
61	Removal of imidazolium-based ionic liquid by coupling Fenton and biological oxidation. Journal of Hazardous Materials, 2019, 365, 289-296.	12.4	28
62	Inhibition of methanogenesis by chlorophenols: a kinetic approach. New Biotechnology, 2012, 30, 51-61.	4.4	27
63	Effect of 2,4,6-trichlorophenol on the microbial activity of adapted anaerobic granular sludge bioaugmented with Desulfitobacterium strains. New Biotechnology, 2011, 29, 79-89.	4.4	26
64	Harmonization of the quantitative determination of volatile fatty acids profile in aqueous matrix samples by direct injection using gas chromatography and high-performance liquid chromatography techniques: Multi-laboratory validation study. Journal of Chromatography A, 2015, 1413, 94-106.	3.7	25
65	Comparison of bioaugmented ECSB and GAC–FBB reactors and their combination with aerobic SBR for the abatement of chlorophenols. Chemical Engineering Journal, 2015, 259, 277-285.	12.7	25
66	CWPO of bisphenol A with iron catalysts supported on microporous carbons from grape seeds activation. Chemical Engineering Journal, 2017, 318, 153-160.	12.7	25
67	Toxicity and inhibition assessment of ionic liquids by activated sludge. Ecotoxicology and Environmental Safety, 2020, 187, 109836.	6.0	25
68	Energy recovery from garden and park waste by hydrothermal carbonisation and anaerobic digestion. Waste Management, 2022, 140, 100-109.	7.4	25
69	Purification and characterization of an extracellular cysteine proteinase produced by <i>Micrococcus</i> sp. INIA 528. Journal of Applied Bacteriology, 1996, 81, 27-34.	1.1	24
70	Hydrodechlorination of diuron in aqueous solution with Pd, Cu and Ni on activated carbon catalysts. Chemical Engineering Journal, 2010, 163, 212-218.	12.7	24
71	Low-temperature anaerobic treatment of low-strength pentachlorophenol-bearing wastewater. Bioresource Technology, 2013, 140, 349-356.	9.6	24
72	Integrated CWPO and Biological Treatment for the Removal of 4-Chlorophenol From Water. Separation Science and Technology, 2010, 45, 1595-1602.	2.5	23

#	Article	IF	CITATIONS
73	Degradation of organochlorinated pollutants in water by catalytic hydrodechlorination and photocatalysis. Catalysis Today, 2016, 266, 168-174.	4.4	23
74	Nitrate reduction with bimetallic catalysts. A stability-addressed overview. Separation and Purification Technology, 2022, 290, 120750.	7.9	23
75	Intensification of sequencing batch reactors by cometabolism and bioaugmentation with <i>Pseudomonas putida</i> for the biodegradation of 4â€chlorophenol. Journal of Chemical Technology and Biotechnology, 2012, 87, 1270-1275.	3.2	22
76	A kinetic study of reuterin production by Lactobacillus reuteri PRO 137 in resting cells. Biochemical Engineering Journal, 2007, 35, 218-225.	3.6	21
77	Contamination of N-poor wastewater with emerging pollutants does not affect the performance of purple phototrophic bacteria and the subsequent resource recovery potential. Journal of Hazardous Materials, 2020, 385, 121617.	12.4	21
78	Co-application of activated carbon and compost to contaminated soils: toxic elements mobility and PAH degradation and availability. International Journal of Environmental Science and Technology, 2019, 16, 1057-1068.	3.5	20
79	Potential Use of Waste Activated Sludge Hydrothermally Treated as a Renewable Fuel or Activated Carbon Precursor. Molecules, 2020, 25, 3534.	3.8	20
80	Volatile Fraction of Ewe's Milk Semi-Hard Cheese Manufactured with and without the Addition of a Cysteine Proteinase. Food Science and Technology International, 2001, 7, 131-139.	2.2	19
81	Catalytic hydrodechlorination of p-chloro-m-cresol and 2,4,6-trichlorophenol with Pd and Rh supported on Al-pillared clays. Chemical Engineering Journal, 2015, 273, 363-370.	12.7	19
82	On the performance of Pd and Rh catalysts over different supports in the hydrodechlorination of the MCPA herbicide. Applied Catalysis B: Environmental, 2016, 186, 151-156.	20.2	19
83	Anaerobic treatment of wastewater from used industrial oil recovery. Journal of Chemical Technology and Biotechnology, 2012, 87, 1320-1328.	3.2	18
84	Fouling control in membrane bioreactors with sewage-sludge based adsorbents. Water Research, 2016, 105, 65-75.	11.3	18
85	Electrolysis with diamond anodes: Eventually, there are refractory species!. Chemosphere, 2018, 195, 771-776.	8.2	18
86	Detoxification of Kraft pulp ECF bleaching effluents by catalytic hydrotreatment. Water Research, 2007, 41, 915-923.	11.3	17
87	Unstructured kinetic model for reuterin and 1,3â€propanediol production by <i>Lactobacillus reuteri</i> from glycerol/glucose cofermentation. Journal of Chemical Technology and Biotechnology, 2009, 84, 675-680.	3.2	17
88	Treatment of cosmetic wastewater by a full-scale membrane bioreactor (MBR). Environmental Science and Pollution Research, 2014, 21, 12662-12670.	5.3	17
89	Influence of the supporting electrolyte on the removal of ionic liquids by electrolysis with diamond anodes. Catalysis Today, 2018, 313, 203-210.	4.4	17
90	Acid-mediated hydrothermal treatment of sewage sludge for nutrient recovery. Science of the Total Environment, 2022, 838, 156494.	8.0	17

#	Article	IF	CITATIONS
91	Purification and properties of two intracellular aminopeptidases produced by Brevibacterium linens SR3. International Dairy Journal, 2000, 10, 241-248.	3.0	16
92	Colloidal and microemulsion synthesis of rhenium nanoparticles in aqueous medium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 469, 202-210.	4.7	16
93	Sono- and photoelectrocatalytic processes for the removal of ionic liquids based on the 1-butyl-3-methylimidazolium cation. Journal of Hazardous Materials, 2019, 372, 77-84.	12.4	16
94	Purification and characterization of an extracellular tributyrin esterase produced by a cheese isolate, Micrococcus sp. INIA 528. International Dairy Journal, 2004, 14, 135-142.	3.0	15
95	Ionic liquids removal by sequential photocatalytic and biological oxidation. Journal of Chemical Technology and Biotechnology, 2020, 95, 1926-1935.	3.2	15
96	The Effect of the Cysteine Proteinase from Micrococcus sp. INIA 528 on the Ripening Process of Manchego Cheese. Enzyme and Microbial Technology, 1998, 22, 391-396.	3.2	14
97	Identification of by-products and toxicity assessment in aqueous-phase hydrodechlorination of diuron with palladium on activated carbon catalysts. Chemosphere, 2013, 91, 1317-1323.	8.2	13
98	Anaerobic biodegradability of mixtures of pesticides in an expanded granular sludge bed reactor. Water Science and Technology, 2014, 69, 532-538.	2.5	13
99	Comparison of Fenton and Fenton-like oxidation for the treatment of cosmetic wastewater. Water Science and Technology, 2014, 70, 472-478.	2.5	13
100	Anaerobic Co-digestion of the Organic Fraction of Municipal Solid Waste and the Liquid Fraction From the Hydrothermal Carbonization of Industrial Sewage Sludge Under Thermophilic Conditions. Frontiers in Sustainable Food Systems, 2018, 2, .	3.9	13
101	Catalytic wet peroxide oxidation of imidazolium-based ionic liquids: Catalyst stability and biodegradability enhancement. Chemical Engineering Journal, 2019, 376, 120431.	12.7	13
102	Effect of water composition on catalytic reduction of nitrate. Separation and Purification Technology, 2021, 255, 117766.	7.9	12
103	Short-term fouling control by cyclic aeration in membrane bioreactors for cosmetic wastewater treatment. Desalination and Water Treatment, 2015, 56, 3599-3606.	1.0	11
104	Thiamethoxam removal by Fenton and biological oxidation. Journal of Chemical Technology and Biotechnology, 2020, 95, 913-921.	3.2	11
105	Activated Carbons from Hydrothermal Carbonization and Chemical Activation of Olive Stones: Application in Sulfamethoxazole Adsorption. Resources, 2022, 11, 43.	3.5	11
106	Effect of pH, temperature and culture medium composition on the production of an extracellular cysteine proteinase by Micrococcus sp. INIA 528. Journal of Applied Microbiology, 1997, 82, 81-86.	3.1	9
107	Anaerobic biodegradation of 2,4,6-trichlorophenol by methanogenic granular sludge: role of co-substrates and methanogenic inhibition. Water Science and Technology, 2009, 59, 1449-1456.	2.5	9
108	Effect of the cysteine proteinase from Micrococcus sp. INIA 528 on the ripening process of Hispanico cheese. Journal of Dairy Research, 1998, 65, 621-630.	1.4	7

#	Article	IF	CITATIONS
109	Purification and Characterization of Three Extracellular Proteinases Produced by Pseudomonas fluorescens INIA 745, an Isolate from Ewe's Milk. Journal of Food Protection, 1999, 62, 543-546.	1.7	7
110	Anaerobic biodegradation of 2,4,6-trichlorophenol in expanded granular sludge bed and fluidized bed biofilm reactors bioaugmented with Desulfitobacterium spp Water Science and Technology, 2011, 64, 293-299.	2.5	7
111	Stability of carbon-supported iron catalysts for catalytic wet peroxide oxidation of ionic liquids. Journal of Environmental Chemical Engineering, 2018, 6, 6444-6450.	6.7	7
112	Biological oxidation of cholineâ€based ionic liquids in sequencing batch reactors. Journal of Chemical Technology and Biotechnology, 2020, 95, 922-931.	3.2	7
113	An overview of ionic liquid degradation by advanced oxidation processes. Critical Reviews in Environmental Science and Technology, 2022, 52, 2844-2887.	12.8	7
114	ANALYSIS OF THE OPERATING CONDITIONS IN THE TREATMENT OF COSMETIC WASTEWATER BY SEQUENCING BATCH REACTORS. Environmental Engineering and Management Journal, 2014, 13, 2955-2962.	0.6	7
115	On the biodegradability of nitrophenols and their reaction products by catalytic hydrogenation*. Journal of Chemical Technology and Biotechnology, 2012, 87, 1263-1269.	3.2	6
116	Pretreatment of Lignocellulosic Biomass with 1-Ethyl-3-methylimidazolium Acetate for Its Eventual Valorization by Anaerobic Digestion. Resources, 2021, 10, 118.	3.5	5
117	Activity and Stability of Pd Bimetallic Catalysts for Catalytic Nitrate Reduction. Catalysts, 2022, 12, 729.	3.5	3
118	Efficient Treatment of Synthetic Wastewater Contaminated with Emerging Pollutants by Anaerobic Purple Phototrophic Bacteria. Lecture Notes in Civil Engineering, 2017, , 324-330.	0.4	2
119	Technologies for wastewater sludge utilization and energy production: Hydrothermal carbonization of lignocellulosic biomass and sewage sludge. , 2020, , 133-153.		2
120	Anaerobic digestion for methane and hydrogen production. , 2020, , 67-83.		1
121	Modeling the Influence of pH, Temperature and Culture Medium Composition on the Kinetics of Growth and Cysteine Proteinase Production by Micrococcus sp. INIA 528 in Batch Culture. Food Science and Technology International, 2001, 7, 49-57.	2.2	0
122	Modeling the Influence of pH, Temperature and Culture Medium Composition on the Kinetics of Growth and Cysteine Proteinase Production by Micrococcus sp. INIA 528 in Batch Culture. Food Science and Technology International, 2001, 7, 49-57.	2.2	0
123	Volatile Fraction of Ewes Milk Semi-Hard Cheese Manufactured. Food Science and Technology International, 2001, 7, 131-139.	2.2	0