List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7618238/publications.pdf Version: 2024-02-01



DAVEL MATOLISEK

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers. Optics Communications, 1997, 144, 125-133.                                                                                | 1.0  | 566       |
| 2  | Subsurface Probing in Diffusely Scattering Media Using Spatially Offset Raman Spectroscopy. Applied Spectroscopy, 2005, 59, 393-400.                                                                                                             | 1.2  | 469       |
| 3  | Analysis and optimization of optical parametric chirped pulse amplification. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 2945.                                                                                       | 0.9  | 243       |
| 4  | Ultrafast Measurements of Excited State Intramolecular Proton Transfer (ESIPT) in Room Temperature<br>Solutions of 3-Hydroxyflavone and Derivatives. Journal of Physical Chemistry A, 2001, 105, 3709-3718.                                      | 1.1  | 229       |
| 5  | Efficient Rejection of Fluorescence from Raman Spectra Using Picosecond Kerr Gating. Applied Spectroscopy, 1999, 53, 1485-1489.                                                                                                                  | 1.2  | 220       |
| 6  | Femtosecond time-resolved UV-visible absorption spectroscopy of trans-azobenzene: dependence on excitation wavelength. Chemical Physics Letters, 1998, 290, 68-74.                                                                               | 1.2  | 217       |
| 7  | Noninvasive Raman Spectroscopy of Human Tissue in vivo. Applied Spectroscopy, 2006, 60, 758-763.                                                                                                                                                 | 1.2  | 210       |
| 8  | Observation of Excited-State Proton Transfer in Green Fluorescent Protein using Ultrafast<br>Vibrational Spectroscopy. Journal of the American Chemical Society, 2005, 127, 2864-2865.                                                           | 6.6  | 189       |
| 9  | Numerical Simulations of Subsurface Probing in Diffusely Scattering Media Using Spatially Offset<br>Raman Spectroscopy. Applied Spectroscopy, 2005, 59, 1485-1492.                                                                               | 1.2  | 189       |
| 10 | Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer. Analyst, The, 2007, 132, 899.                                                                     | 1.7  | 180       |
| 11 | Noninvasive Authentication of Pharmaceutical Products through Packaging Using Spatially Offset<br>Raman Spectroscopy. Analytical Chemistry, 2007, 79, 1696-1701.                                                                                 | 3.2  | 173       |
| 12 | Ultra: A Unique Instrument for Time-Resolved Spectroscopy. Applied Spectroscopy, 2010, 64, 1311-1319.                                                                                                                                            | 1.2  | 173       |
| 13 | Surface enhanced spatially offset Raman spectroscopic (SESORS) imaging – the next dimension.<br>Chemical Science, 2011, 2, 776.                                                                                                                  | 3.7  | 163       |
| 14 | Deep non-invasive Raman spectroscopy of living tissue and powders. Chemical Society Reviews, 2007, 36, 1292.                                                                                                                                     | 18.7 | 159       |
| 15 | Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond<br>Kerr gate. Journal of Raman Spectroscopy, 2001, 32, 983-988.                                                                                     | 1.2  | 158       |
| 16 | Inverse Spatially Offset Raman Spectroscopy for Deep Noninvasive Probing of Turbid Media. Applied<br>Spectroscopy, 2006, 60, 1341-1347.                                                                                                          | 1.2  | 150       |
| 17 | Advanced Transmission Raman Spectroscopy: A Promising Tool for Breast Disease Diagnosis. Cancer Research, 2008, 68, 4424-4430.                                                                                                                   | 0.4  | 148       |
| 18 | Development of a Broadband Picosecond Infrared Spectrometer and its Incorporation into an Existing<br>Ultrafast Time-Resolved Resonance Raman, UV/Visible, and Fluorescence Spectroscopic Apparatus.<br>Applied Spectroscopy, 2003, 57, 367-380. | 1.2  | 147       |

| #  | Article                                                                                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Bulk Raman Analysis of Pharmaceutical Tablets. Applied Spectroscopy, 2006, 60, 1353-1357.                                                                                                                                                                                                                                           | 1.2  | 147       |
| 20 | Noninvasive Detection of Concealed Liquid Explosives Using Raman Spectroscopy. Analytical Chemistry, 2007, 79, 8185-8189.                                                                                                                                                                                                           | 3.2  | 141       |
| 21 | Development of deep subsurface Raman spectroscopy for medical diagnosis and disease monitoring.<br>Chemical Society Reviews, 2016, 45, 1794-1802.                                                                                                                                                                                   | 18.7 | 141       |
| 22 | Recent advances in the development of Raman spectroscopy for deep nonâ€invasive medical diagnosis.<br>Journal of Biophotonics, 2013, 6, 7-19.                                                                                                                                                                                       | 1.1  | 140       |
| 23 | Generation of terawatt pulses by use of optical parametric chirped pulse amplification. Applied Optics, 2000, 39, 2422.                                                                                                                                                                                                             | 2.1  | 138       |
| 24 | 35 J broadband femtosecond optical parametric chirped pulse amplification system. Optics Letters, 2006, 31, 3665.                                                                                                                                                                                                                   | 1.7  | 131       |
| 25 | Probing the Reactivity of Photoinitiators for Free Radical Polymerization:Â Time-Resolved Infrared<br>Spectroscopic Study of Benzoyl Radicals. Journal of the American Chemical Society, 2002, 124,<br>14952-14958.                                                                                                                 | 6.6  | 128       |
| 26 | Prospects of Deep Raman Spectroscopy for Noninvasive Detection of Conjugated Surface Enhanced<br>Resonance Raman Scattering Nanoparticles Buried within 25 mm of Mammalian Tissue. Analytical<br>Chemistry, 2010, 82, 3969-3973.                                                                                                    | 3.2  | 121       |
| 27 | Smart Gold Nanostructures for Light Mediated Cancer Theranostics: Combining Optical Diagnostics with Photothermal Therapy. Advanced Science, 2020, 7, 1903441.                                                                                                                                                                      | 5.6  | 117       |
| 28 | Picosecond Time-Resolved Raman Spectroscopy of Solids: Capabilities and Limitations for<br>Fluorescence Rejection and the Influence of Diffuse Reflectance. Applied Spectroscopy, 2001, 55,<br>1701-1708.                                                                                                                           | 1.2  | 113       |
| 29 | Novel Assessment of Bone Using Time-Resolved Transcutaneous Raman Spectroscopy. Journal of Bone<br>and Mineral Research, 2005, 20, 1968-1972.                                                                                                                                                                                       | 3.1  | 110       |
| 30 | Characterization of genuine and fake artesunate anti-malarial tablets using Fourier transform<br>infrared imaging and spatially offset Raman spectroscopy through blister packs. Analytical and<br>Bioanalytical Chemistry, 2007, 389, 1525-1532.                                                                                   | 1.9  | 107       |
| 31 | Recent advances in the application of transmission Raman spectroscopy to pharmaceutical analysis.<br>Journal of Pharmaceutical and Biomedical Analysis, 2011, 55, 645-652.                                                                                                                                                          | 1.4  | 107       |
| 32 | Picosecond Time-Resolved Resonance Raman Probing of the Light-Switch States of [Ru(Phen)2dppz]2+.<br>Journal of Physical Chemistry B, 2001, 105, 12653-12664.                                                                                                                                                                       | 1.2  | 106       |
| 33 | Fluorescence background suppression in Raman spectroscopy using combined Kerr gated and shifted excitation Raman difference techniques. Journal of Raman Spectroscopy, 2002, 33, 238-242.                                                                                                                                           | 1.2  | 102       |
| 34 | The photophysics of fac-[Re(CO)3(dppz)(py)]+ in CH3CN: a comparative picosecond flash photolysis,<br>transient infrared, transient resonance Raman and density functional theoretical studyDedicated to<br>the memory of Nobel Laureate, Lord George Porter FRSC FRS OM Photochemical and Photobiological<br>Sciences, 2003, 2, 542 | 1.6  | 95        |
| 35 | Photooxidation of Guanine by a Ruthenium Dipyridophenazine Complex Intercalated in a<br>Double‣tranded Polynucleotide Monitored Directly by Picosecond Visible and Infrared Transient<br>Absorption Spectroscopy. Chemistry - A European Journal, 2008, 14, 369-375.                                                                | 1.7  | 95        |
| 36 | Emerging concepts in deep Raman spectroscopy of biological tissue. Analyst, The, 2009, 134, 1058.                                                                                                                                                                                                                                   | 1.7  | 95        |

| #  | Article                                                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A Determination of the Structure of the Intramolecular Charge Transfer State of<br>4-Dimethylaminobenzonitrile (DMABN) by Time-Resolved Resonance Raman Spectroscopy. Journal of<br>Physical Chemistry A, 2001, 105, 984-990.                                                                           | 1.1  | 94        |
| 38 | Picosecond Relaxation of3MLCT Excited States of [Re(Etpy)(CO)3(dmb)]+and [Re(Cl)(CO)3(bpy)] as<br>Revealed by Time-Resolved Resonance Raman, UVâ~'vis, and IR Absorption Spectroscopy. Journal of<br>Physical Chemistry A, 2004, 108, 2363-2369.                                                        | 1.1  | 94        |
| 39 | Photon Migration in Raman Spectroscopy. Applied Spectroscopy, 2004, 58, 591-597.                                                                                                                                                                                                                        | 1.2  | 94        |
| 40 | Non-invasive quantitative assessment of the content of pharmaceutical capsules using transmission Raman spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 2008, 47, 221-229.                                                                                                             | 1.4  | 94        |
| 41 | The Early Picosecond Photophysics of Ru(II) Polypyridyl Complexes: A Tale of Two Timescales. Journal of Physical Chemistry A, 2008, 112, 4537-4544.                                                                                                                                                     | 1.1  | 90        |
| 42 | Non-invasive probing of pharmaceutical capsules using transmission Raman spectroscopy. Journal of Raman Spectroscopy, 2007, 38, 563-567.                                                                                                                                                                | 1.2  | 87        |
| 43 | Ultrafast Excited-State Dynamics Preceding a Ligand Transâ^'Cis Isomerization<br>offac-[Re(Cl)(CO)3(t-4-styrylpyridine)2] andfac-[Re(t-4-styrylpyridine)(CO)3(2,2â€~-bipyridine)]+. Journal of<br>Physical Chemistry A, 2005, 109, 3000-3008.                                                           | 1.1  | 86        |
| 44 | Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy. Journal of Biomedical Optics, 2007, 12, 024008.                                                                                                                            | 1.4  | 85        |
| 45 | Tetracycline and derivatives—assignment of IR and Raman spectra via DFT calculations. Physical Chemistry Chemical Physics, 2003, 5, 1149-1157.                                                                                                                                                          | 1.3  | 82        |
| 46 | Spatially offset Raman spectroscopy for biomedical applications. Chemical Society Reviews, 2021, 50, 556-568.                                                                                                                                                                                           | 18.7 | 82        |
| 47 | Direct Observation of a Hydrogen-Bonded Charge-Transfer State of 4-Dimethylaminobenzonitrile in<br>Methanol by Time-Resolved IR Spectroscopy. Angewandte Chemie - International Edition, 2003, 42,<br>1826-1830.                                                                                        | 7.2  | 81        |
| 48 | Depth profiling of calcifications in breast tissue using picosecond Kerr-gated Raman spectroscopy.<br>Analyst, The, 2007, 132, 48-53.                                                                                                                                                                   | 1.7  | 81        |
| 49 | Spatially offset Raman spectroscopy. Nature Reviews Methods Primers, 2021, 1, .                                                                                                                                                                                                                         | 11.8 | 80        |
| 50 | Picosecond Time-Resolved Study of 4-Dimethylaminobenzonitrile in Polar and Nonpolar Solvents.<br>Journal of Physical Chemistry A, 2000, 104, 4188-4197.                                                                                                                                                 | 1.1  | 79        |
| 51 | Excited States of 4-Aminobenzonitrile (ABN) and 4-Dimethylaminobenzonitrile (DMABN):  Time-resolved<br>Resonance Raman, Transient Absorption, Fluorescence, and ab Initio Calculations. Journal of Physical<br>Chemistry A, 2002, 106, 3294-3305.                                                       | 1.1  | 75        |
| 52 | Depth Profiling in Diffusely Scattering Media Using Raman Spectroscopy and Picosecond Kerr Gating.<br>Applied Spectroscopy, 2005, 59, 200-205.                                                                                                                                                          | 1.2  | 74        |
| 53 | Picosecond time-resolved spectroscopy of the photocolouration reaction of photochromic naphthoxazine-spiro-indolines. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 1331.                                                                                                            | 1.7  | 73        |
| 54 | Using picosecond and nanosecond time-resolved infrared spectroscopy for the investigation of excited states and reaction intermediates of inorganic systemsBased on the presentation given at Dalton Discussion No. 6, 9?11th September 2003, University of York, UK Dalton Transactions, 2003, , 3996. | 1.6  | 73        |

| #  | Article                                                                                                                                                                                                                                                                                                          | IF                | CITATIONS                        |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------|
| 55 | The Vulcan 10 PW project. Journal of Physics: Conference Series, 2010, 244, 032006.                                                                                                                                                                                                                              | 0.3               | 73                               |
| 56 | Non-invasive analysis of turbid samples using deep Raman spectroscopy. Analyst, The, 2011, 136, 3039-3050.                                                                                                                                                                                                       | 1.7               | 70                               |
| 57 | Subsurface Raman Analysis of Thin Painted Layers. Applied Spectroscopy, 2014, 68, 686-691.                                                                                                                                                                                                                       | 1.2               | 70                               |
| 58 | Subsurface analysis of painted sculptures and plasters using micrometreâ€scale spatially offset Raman spectroscopy (micro‣ORS). Journal of Raman Spectroscopy, 2015, 46, 476-482.                                                                                                                                | 1.2               | 70                               |
| 59 | Methodological evolutions of Raman spectroscopy in art and archaeology. Analytical Methods, 2016,<br>8, 8395-8409.                                                                                                                                                                                               | 1.3               | 70                               |
| 60 | Tunable picosecond optical parametric generator-amplifier system for time resolved Raman spectroscopy. Measurement Science and Technology, 1998, 9, 816-823.                                                                                                                                                     | 1.4               | 69                               |
| 61 | Excited-State Dynamics of Structurally Characterized [Re I (CO) 3 (phen)(HisX)] + (X = 83, 109)<br>Pseudomonas a eruginosa Azurins in Aqueous Solution. Journal of the American Chemical Society,<br>2006, 128, 4365-4370.                                                                                       | 6.6               | 69                               |
| 62 | Studies of the S1 state in a prototypical molecular wire using picosecond time-resolved spectroscopiesElectronic supplementary information (ESI) available: time-resolved emission spectra, and transient absorption spectra. See http://www.rsc.org/suppdata/cc/b3/b307005k/. Chemical Communications 2003 2406 | 2.2               | 68                               |
| 63 | Ligand-to-Diimine/Metal-to-Diimine Charge-Transfer Excited States of [Re(NCS)(CO)3(α-diimine)] (α-diimine)<br>Physical Chemistry A, 2005, 109, 5016-5025.                                                                                                                                                        | ij ETQq1 1<br>1.1 | 0.784314 rg <mark>8</mark><br>68 |
| 64 | Vibrational mode-selective effects in the picosecond time-resolved resonance Raman spectrum of singlet excited trans-stilbene. Chemical Physics Letters, 1993, 208, 471-478.                                                                                                                                     | 1.2               | 67                               |
| 65 | Unraveling the Photochemistry of Fe(CO)5in Solution:Â Observation of Fe(CO)3and the Conversion between3Fe(CO)4and1Fe(CO)4(Solvent). Journal of the American Chemical Society, 2004, 126, 10713-10720.                                                                                                            | 6.6               | 65                               |
| 66 | Monitoring the direct and indirect damage of DNA bases and polynucleotides by using time-resolved infrared spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2150-2153.                                                                                  | 3.3               | 64                               |
| 67 | Raman Signal Enhancement in Deep Spectroscopy of Turbid Media. Applied Spectroscopy, 2007, 61, 845-854.                                                                                                                                                                                                          | 1.2               | 64                               |
| 68 | Emerging Non-invasive Raman Methods in Process Control and Forensic Applications. Pharmaceutical Research, 2008, 25, 2205-15.                                                                                                                                                                                    | 1.7               | 64                               |
| 69 | Fluorescence kinetics of aqueous solutions of tetracycline and its complexes with Mg2+ and Ca2+This paper is dedicated to Professor Fred Lewis on the event of his 60th birthday Photochemical and Photobiological Sciences, 2003, 2, 1107.                                                                      | 1.6               | 61                               |
| 70 | Characterization of New Cocrystals by Raman Spectroscopy, Powder X-ray Diffraction, Differential<br>Scanning Calorimetry, and Transmission Raman Spectroscopy. Crystal Growth and Design, 2010, 10,<br>2360-2371.                                                                                                | 1.4               | 61                               |
| 71 | Transmission Raman spectroscopy as a tool for quantifying polymorphic content of pharmaceutical formulations. Analyst, The, 2010, 135, 2328.                                                                                                                                                                     | 1.7               | 60                               |
| 72 | Through-container, extremely low concentration detection of multiple chemical markers of counterfeit alcohol using a handheld SORS device. Scientific Reports, 2017, 7, 12082.                                                                                                                                   | 1.6               | 60                               |

| #  | Article                                                                                                                                                                                                                                                                      | IF                 | CITATIONS       |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|
| 73 | Picosecond time-resolved resonance Raman observation of the iso-CH2l–I photoproduct from the<br>"photoisomerization―reaction of diiodomethane in the solution phase. Journal of Chemical Physics,<br>2000, 113, 7471-7478.                                                   | 1.2                | 59              |
| 74 | Deep Noninvasive Raman Spectroscopy of Turbid Media. Applied Spectroscopy, 2008, 62, 291A-304A.                                                                                                                                                                              | 1.2                | 58              |
| 75 | Evaluation of an ultrabroadband high-gain amplification technique for chirped pulse amplification facilities. Applied Optics, 1999, 38, 7486.                                                                                                                                | 2.1                | 57              |
| 76 | Probing the Solvent Dependent Photophysics of                                                                                                                                                                                                                                | 1.9                | 57              |
| 77 | Early photochemical dynamics of organometallic compounds studied by ultrafast time-resolved spectroscopic techniquesBased on the presentation given at Dalton Discussion No. 4, 10–13th January 2002, Kloster Banz, Germany Dalton Transactions RSC, 2002, , 701-712.        | 2.3                | 56              |
| 78 | A Novel Approach for Subsurface Through-Skin Analysis of Salmon Using Spatially Offset Raman<br>Spectroscopy (SORS). Applied Spectroscopy, 2014, 68, 255-262.                                                                                                                | 1.2                | 56              |
| 79 | Monitoring the effect of ultrafast deactivation of the electronic excited states of DNA bases and polynucleotides following 267 nm laser excitation using picosecond time-resolved infrared spectroscopy. Chemical Communications, 2005, , 1182.                             | 2.2                | 54              |
| 80 | Non-invasive detection of cocaine dissolved in beverages using displaced Raman spectroscopy.<br>Analytica Chimica Acta, 2008, 607, 50-53.                                                                                                                                    | 2.6                | 54              |
| 81 | Non-invasive identification of incoming raw pharmaceutical materials using Spatially Offset Raman Spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 2013, 76, 65-69.                                                                                          | 1.4                | 53              |
| 82 | Towards the <i>in vivo</i> prediction of fragility fractures with Raman spectroscopy. Journal of Raman Spectroscopy, 2015, 46, 610-618.                                                                                                                                      | 1.2                | 53              |
| 83 | Ultrafast Photochemical Dissociation of an Equatorial CO Ligand fromtrans(X,X)-[Ru(X)2(CO)2(bpy)]<br>(X = Cl, Br, I):Â A Picosecond Time-Resolved Infrared Spectroscopic and DFT Computational Study.<br>Inorganic Chemistry, 2004, 43, 7380-7388.                           | 1.9                | 52              |
| 84 | Excited States of Nitro-Polypyridine Metal Complexes and Their Ultrafast Decay. Time-Resolved IR<br>Absorption, Spectroelectrochemistry, and TD-DFT Calculations<br>offac-[Re(Cl)(CO)3(5-Nitro-1,10-phenanthroline)]. Journal of Physical Chemistry A, 2005, 109, 6147-6153. | 1.1                | 52              |
| 85 | Photoelectron angular distributions as a probe of alignment evolution in a polyatomic molecule:<br>Picosecond time- and angle-resolved photoelectron spectroscopy of S1 para-difluorobenzene. Journal<br>of Chemical Physics, 1999, 111, 1438-1445.                          | 1.2                | 51              |
| 86 | Mechanism and Dynamics of Interligand Electron Transfer in fac-[Re(MQ+)(CO)3(dmb)]2+. An Ultrafast<br>Time-Resolved Visible and IR Absorption, Resonance Raman, and Emission Study (dmb =) Tj ETQq0 0 0 rgBT /Ov<br>108, 556-567                                             | erlock 10 7<br>I.1 | Tf 50 222 Td (• |
| 87 | Optical parametric chirped-pulse amplification source suitable for seeding high-energy systems. Optics<br>Letters, 2008, 33, 2386.                                                                                                                                           | 1.7                | 51              |
| 88 | A measurement of the 1S–2S transition frequency in muonium. Physics Letters, Section A: General,<br>Atomic and Solid State Physics, 1994, 187, 247-254.                                                                                                                      | 0.9                | 50              |
| 89 | Kerr-gated time-resolved Raman spectroscopy of equine cortical bone tissue. Journal of Biomedical Optics, 2005, 10, 014014.                                                                                                                                                  | 1.4                | 50              |
| 90 | Structural Analysis of Lignin by Resonance Raman Spectroscopy. Macromolecular Bioscience, 2005, 5, 743-752.                                                                                                                                                                  | 2.1                | 47              |

| #   | Article                                                                                                                                                                                                                                                                      | IF              | CITATIONS          |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|
| 91  | Simple Reconstruction Algorithm for Shifted Excitation Raman Difference Spectroscopy. Applied Spectroscopy, 2005, 59, 848-851.                                                                                                                                               | 1.2             | 47                 |
| 92  | Micro-scale spatially offset Raman spectroscopy for non-invasive subsurface analysis of turbid materials. Analyst, The, 2016, 141, 731-739.                                                                                                                                  | 1.7             | 46                 |
| 93  | Comparison of key modalities of micro-scale spatially offset Raman spectroscopy. Analyst, The, 2015, 140, 8127-8133.                                                                                                                                                         | 1.7             | 44                 |
| 94  | Femtosecond Spectroscopic Study of MLCT Excited-State Dynamics of Cr(CO)4(bpy):<br>Excitation-Energy-Dependent Branching between CO Dissociation and Relaxation. Journal of the<br>American Chemical Society, 1999, 121, 5296-5301.                                          | 6.6             | 43                 |
| 95  | Direct Observation of Competitive Ultrafast CO Dissociation and Relaxation of an MLCT Excited State:<br>Picosecond Time-Resolved Infrared Spectroscopic Study of [Cr(CO)4(2,2â€~-bipyridine)]. Inorganic<br>Chemistry, 2002, 41, 4318-4323.                                  | 1.9             | 43                 |
| 96  | Rhenium-to-Benzoylpyridine and Rhenium-to-Bipyridine MLCT Excited States<br>offac-[Re(Cl)(4-benzoylpyridine)2(CO)3] andfac-[Re(4-benzoylpyridine)(CO)3(bpy)]+:Â A Time-Resolved<br>Spectroscopic and Spectroelectrochemical Study. Inorganic Chemistry, 2004, 43, 4523-4530. | 1.9             | 43                 |
| 97  | Design of a multi-petawatt optical parametric chirped pulse amplifier for the iodine laser ASTERIX IV.<br>IEEE Journal of Quantum Electronics, 2000, 36, 158-163.                                                                                                            | 1.0             | 42                 |
| 98  | Raman spectroscopy reveals differences in collagen secondary structure which relate to the levels of mineralisation in bones that have evolved for different functions. Journal of Raman Spectroscopy, 2012, 43, 1237-1243.                                                  | 1.2             | 42                 |
| 99  | Isotope Effects on the Picosecond Time-Resolved Emission Spectroscopy of<br>Tris(2,2â€~-bipyridine)ruthenium (II). Journal of the American Chemical Society, 2003, 125, 1706-1707.                                                                                           | 6.6             | 41                 |
| 100 | Characterisation of transmission Raman spectroscopy for rapid quantitative analysis of intact<br>multi-component pharmaceutical capsules. Journal of Pharmaceutical and Biomedical Analysis, 2011,<br>54, 463-468.                                                           | 1.4             | 41                 |
| 101 | Noninvasive Analysis of Thin Turbid Layers Using Microscale Spatially Offset Raman Spectroscopy.<br>Analytical Chemistry, 2015, 87, 5810-5815.                                                                                                                               | 3.2             | 41                 |
| 102 | 5–20 keV laser-induced x-ray generation at 1 kHz from a liquid-jet target. Review of Scientific<br>Instruments, 1998, 69, 3113-3117.                                                                                                                                         | 0.6             | 40                 |
| 103 | Excited-State Dynamics offac-[Rel(L)(CO)3(phen)]+andfac-[Rel(L)(CO)3(5-NO2-phen)]+(L = Imidazole,) Tj ETQq1                                                                                                                                                                  | 1 0,7843<br>1.9 | 14 rgBT /Ove<br>40 |
| 104 | Non-invasive detection of powders concealed within diffusely scattering plastic containers.<br>Vibrational Spectroscopy, 2008, 48, 8-11.                                                                                                                                     | 1.2             | 40                 |
| 105 | Towards a safe non-invasive method for evaluating the carbonate substitution levels of hydroxyapatite (HAP) in micro-calcifications found in breast tissue. Analyst, The, 2010, 135, 3156.                                                                                   | 1.7             | 40                 |
| 106 | Picosecond time-resolved resonance Raman observation of the iso-CH2Cl–I and iso-CH2I–Cl<br>photoproducts from the "photoisomerization―reactions of CH2ICl in the solution phase. Journal of<br>Chemical Physics, 2001, 114, 7536-7543.                                       | 1.2             | 39                 |
| 107 | Lignin Radicals in the Plant Cell Wall Probed by Kerr-Gated Resonance Raman Spectroscopy.<br>Biophysical Journal, 2006, 90, 2978-2986.                                                                                                                                       | 0.2             | 39                 |
| 108 | The anti-Stokes resonance Raman spectrum of photoexcited S1 trans-stilbene. Chemical Physics Letters, 1995, 237, 373-379.                                                                                                                                                    | 1.2             | 38                 |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Time-resolved resonance Raman spectra of the intramolecular charge transfer state of DMABN.<br>Chemical Physics Letters, 2000, 322, 395-400.                                                                                                                                                                                                                                                                | 1.2 | 38        |
| 110 | Deep Subsurface Raman Spectroscopy of Turbid Media by a Defocused Collection System. Applied Spectroscopy, 2007, 61, 1123-1127.                                                                                                                                                                                                                                                                             | 1.2 | 38        |
| 111 | Decomposition of <i>in vivo</i> spatially offset Raman spectroscopy data using multivariate analysis techniques. Journal of Raman Spectroscopy, 2014, 45, 188-192.                                                                                                                                                                                                                                          | 1.2 | 38        |
| 112 | A High-Sensitivity Femtosecond to Microsecond Time-Resolved Infrared Vibrational Spectrometer.<br>Applied Spectroscopy, 2005, 59, 467-473.                                                                                                                                                                                                                                                                  | 1.2 | 36        |
| 113 | Electronic Structure and Excited States of Rhenium(I) Amido and Phosphido Carbonylâ^Bipyridine<br>Complexes Studied by Picosecond Time-Resolved IR Spectroscopy and DFT Calculations. Inorganic<br>Chemistry, 2006, 45, 9789-9797.                                                                                                                                                                          | 1.9 | 36        |
| 114 | Solvent effects on the charge transfer excited states of 4-dimethylaminobenzonitrile (DMABN) and 4-dimethylamino-3,5-dimethylbenzonitrile (TMABN) studied by time-resolved infrared spectroscopy: a direct observation of hydrogen bonding interactions. Photochemical and Photobiological Sciences, 2007, 6, 987-994.                                                                                      | 1.6 | 36        |
| 115 | Dependence of Signal on Depth in Transmission Raman Spectroscopy. Applied Spectroscopy, 2011, 65, 724-733.                                                                                                                                                                                                                                                                                                  | 1.2 | 36        |
| 116 | Rapid quantification of low level polymorph content in a solid dose form using transmission Raman spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 2016, 128, 35-45.                                                                                                                                                                                                                        | 1.4 | 36        |
| 117 | Spatially offset Raman spectroscopy for non-invasive analysis of turbid samples. TrAC - Trends in Analytical Chemistry, 2018, 103, 209-214.                                                                                                                                                                                                                                                                 | 5.8 | 36        |
| 118 | Picosecond Kerr-gated time-resolved resonance Raman spectroscopy of the [Ru(phen)2dppz]2+<br>interaction with DNA. Journal of Inorganic Biochemistry, 2002, 91, 286-297.                                                                                                                                                                                                                                    | 1.5 | 35        |
| 119 | Spatially Offset Raman Spectroscopy—How Deep?. Analytical Chemistry, 2021, 93, 6755-6762.                                                                                                                                                                                                                                                                                                                   | 3.2 | 35        |
| 120 | Further time-resolved spectroscopic investigations on the intramolecular charge transfer state of<br>4-dimethylaminobenzonitrile (DMABN) and its derivatives, 4-diethylaminobenzonitrile (DEABN) and<br>4-dimethylamino-3,5-dimethylbenzonitrile (TMABN)Dedicated to Professor Dr Z. R. Grabowski and<br>Professor Dr J. Wirz on the occasions of their 75th and 60th birthdays Physical Chemistry Chemical | 1.3 | 34        |
| 121 | Raman spectroscopy of street samples of cocaine obtained using Kerr gated fluorescence rejection.<br>Analyst, The, 2004, 129, 505.                                                                                                                                                                                                                                                                          | 1.7 | 34        |
| 122 | Two independently tunable and synchronised femtosecond pulses generated in the visible at the repetition rate 40 kHz using optical parametric amplifiers. Optics Communications, 1996, 127, 307-312.                                                                                                                                                                                                        | 1.0 | 33        |
| 123 | Studying the distribution of deep Raman spectroscopy signals using liquid tissue phantoms with varying optical properties. Analyst, The, 2015, 140, 5112-5119.                                                                                                                                                                                                                                              | 1.7 | 33        |
| 124 | Spatially Offset and Transmission Raman Spectroscopy for Determination of Depth of Inclusion in<br>Turbid Matrix. Analytical Chemistry, 2019, 91, 8994-9000.                                                                                                                                                                                                                                                | 3.2 | 33        |
| 125 | Optical characterization of porcine tissues from various organs in the 650–1100 nm range using time-domain diffuse spectroscopy. Biomedical Optics Express, 2020, 11, 1697.                                                                                                                                                                                                                                 | 1.5 | 33        |
| 126 | Picosecond time-resolved resonance Raman observation of Iso-CH2Br–I following A-band photodissociation of CH2BrI in the solution phase. Chemical Physics Letters, 2001, 341, 292-298.                                                                                                                                                                                                                       | 1.2 | 32        |

| #   | Article                                                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Application of UV-Vis and resonance Raman spectroscopy to study bleaching and photoyellowing of thermomechanical pulps. Holzforschung, 2006, 60, 231-238.                                                                                                                                               | 0.9 | 32        |
| 128 | Excited-State Characters and Dynamics of [W(CO)5(4-cyanopyridine)] and [W(CO)5(piperidine)] Studied<br>by Picosecond Time-Resolved IR and Resonance Raman Spectroscopy and DFT Calculations: Roles of W →<br>L and W → CO MLCT and LF Excited States Revised. Inorganic Chemistry, 2004, 43, 1723-1734. | 1.9 | 31        |
| 129 | Solvent dependent photophysics of fac-[Re(CO)3(11,12-X2dppz)(py)]+ (X = H, F or Me). Photochemical and Photobiological Sciences, 2007, 6, 741.                                                                                                                                                          | 1.6 | 31        |
| 130 | Ultrafast Excited State Dynamics Controlling Photochemical Isomerization of<br><i>N</i> â€Methylâ€4â€{ <i>trans</i> â€2â€(4â€pyridyl)ethenyl]pyridinium Coordinated to a<br>{Re <sup>I</sup> (CO) <sub>3</sub> (2,2′â€bipyridine)} Chromophore. Chemistry - A European Journal, 2008,<br>14, 6912-6923. | 1.7 | 31        |
| 131 | Evidence from Raman Spectroscopy of a Putative Link Between Inherent Bone Matrix Chemistry and Degenerative Joint Disease. Arthritis and Rheumatology, 2014, 66, 1237-1246.                                                                                                                             | 2.9 | 31        |
| 132 | A picosecond time-resolved resonance Raman study of S1 cis-stilbene. Chemical Physics Letters, 1997, 278, 56-62.                                                                                                                                                                                        | 1.2 | 30        |
| 133 | PtllDiimine Chromophores with Perfluorinated Thiolate Ligands:Â Nature and Dynamics of the Charge-Transfer-to-Diimine Lowest Excited State. Inorganic Chemistry, 2003, 42, 7077-7085.                                                                                                                   | 1.9 | 30        |
| 134 | Measurement of abnormal bone composition in vivo using noninvasive Raman spectroscopy. IBMS<br>BoneKEy, 2014, 11, 602.                                                                                                                                                                                  | 0.1 | 30        |
| 135 | Ultrafast excited-state dynamics of photoisomerizing complexes fac-[Re(Cl)(CO)3(papy)2] and<br>fac-[Re(papy)(CO)3(bpy)]+ (papy=trans-4-phenylazopyridine). Inorganica Chimica Acta, 2007, 360, 885-896.                                                                                                 | 1.2 | 29        |
| 136 | Temporal and Spatial Resolution in Transmission Raman Spectroscopy. Applied Spectroscopy, 2010, 64, 52-60.                                                                                                                                                                                              | 1.2 | 29        |
| 137 | Development of a full micro-scale spatially offset Raman spectroscopy prototype as a portable analytical tool. Analyst, The, 2017, 142, 351-355.                                                                                                                                                        | 1.7 | 29        |
| 138 | High sensitivity nonâ€invasive detection of calcifications deep inside biological tissue using<br>Transmission Raman Spectroscopy. Journal of Biophotonics, 2018, 11, e201600260.                                                                                                                       | 1.1 | 29        |
| 139 | Time-Resolved Study of the Triplet State of 4-dimethylaminobenzonitrile (DMABN). Journal of Physical Chemistry A, 2001, 105, 4648-4652.                                                                                                                                                                 | 1.1 | 28        |
| 140 | Detailed Picosecond Kerr-Gated Time-Resolved Resonance Raman Spectroscopy and Time-Resolved<br>Emission Studies of Merocyanine 540 in Various Solvents. Journal of Physical Chemistry A, 2003, 107,<br>4347-4353.                                                                                       | 1.1 | 28        |
| 141 | Prediction of Sublayer Depth in Turbid Media Using Spatially Offset Raman Spectroscopy. Analytical<br>Chemistry, 2008, 80, 8146-8152.                                                                                                                                                                   | 3.2 | 28        |
| 142 | Comprehensive quantification of tablets with multiple active pharmaceutical ingredients using transmission Raman spectroscopy—A proof of concept study. Journal of Pharmaceutical and Biomedical Analysis, 2015, 115, 277-282.                                                                          | 1.4 | 28        |
| 143 | Resonance Raman spectroscopy of highly fluorescing lignin containing chemical pulps: Suppression of fluorescence with an optical Kerr gate. Holzforschung, 2004, 58, 82-90.                                                                                                                             | 0.9 | 27        |
| 144 | Use of picosecond Kerr-gated Raman spectroscopy to suppress signals from both surface and deep layers in bladder and prostate tissue. Journal of Biomedical Optics, 2005, 10, 044006.                                                                                                                   | 1.4 | 27        |

| #   | Article                                                                                                                                                                                                                                            | IF               | CITATIONS            |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|
| 145 | Application of portable Raman spectroscopy and benchtop spatially offset Raman spectroscopy to interrogate concealed biomaterials. Journal of Raman Spectroscopy, 2009, 40, 1875-1880.                                                             | 1.2              | 27                   |
| 146 | Probing intraligand and charge transfer excited states of fac-[Re(R)(CO)3(CO2Et-dppz)]+ (R = py,) Tj ETQqO 0 0<br>infrared spectroscopy. Photochemical and Photobiological Sciences, 2007, 6, 1158.                                                | rgBT /Ove<br>1.6 | rlock 10 Tf 50<br>26 |
| 147 | The picosecond timescale relaxation of photoexcited quaterphenyl in solution. Journal of Chemical Physics, 1997, 107, 9807-9817.                                                                                                                   | 1.2              | 25                   |
| 148 | Development of portable defocusing micro-scale spatially offset Raman spectroscopy. Analyst, The, 2016, 141, 3012-3019.                                                                                                                            | 1.7              | 25                   |
| 149 | Discovering Hidden Painted Images: Subsurface Imaging Using Microscale Spatially Offset Raman<br>Spectroscopy. Analytical Chemistry, 2017, 89, 792-798.                                                                                            | 3.2              | 25                   |
| 150 | Pharmaceutical polymorphs quantified with transmission Raman spectroscopy. Journal of Raman Spectroscopy, 2012, 43, 280-285.                                                                                                                       | 1.2              | 24                   |
| 151 | Monte Carlo Simulations of Subsurface Analysis of Painted Layers in Micro-Scale Spatially Offset<br>Raman Spectroscopy. Applied Spectroscopy, 2015, 69, 1091-1095.                                                                                 | 1.2              | 23                   |
| 152 | Solvent effects on the photophysical and photochemical properties of<br>(E,E,E )-1,6-bis(4-nitrophenyl)hexa-1,3,5-triene. Perkin Transactions II RSC, 2001, , 308-314.                                                                             | 1.1              | 22                   |
| 153 | Picosecond time-resolved infrared investigation into the nature of the lowest excited state of fac-[Re(Cl)(CO)3(CO2Et-dppz)] (CO2Et-dppz = dipyrido[3,2a:2′,3′c]phenazine-11-carboxylic ethyl ester). Vibrational Spectroscopy, 2004, 35, 219-223. | 1.2              | 22                   |
| 154 | Non-invasive chemically specific measurement of subsurface temperature in biological tissues using surface-enhanced spatially offset Raman spectroscopy. Faraday Discussions, 2016, 187, 329-339.                                                  | 1.6              | 22                   |
| 155 | Determination of inclusion depth in ex vivo animal tissues using surface enhanced deep Raman spectroscopy. Journal of Biophotonics, 2020, 13, e201960092.                                                                                          | 1.1              | 22                   |
| 156 | Picosecond time-resolved infrared spectroscopic investigation of excited state dynamics in a Ptii diimine chromophore. Chemical Communications, 2002, , 382-383.                                                                                   | 2.2              | 21                   |
| 157 | Time-resolved resonance Raman study of S1cis-stilbene and its deuterated isotopomers. Journal of Raman Spectroscopy, 2003, 34, 886-891.                                                                                                            | 1.2              | 21                   |
| 158 | Fluorescence suppression using micro-scale spatially offset Raman spectroscopy. Analyst, The, 2016, 141, 5374-5381.                                                                                                                                | 1.7              | 21                   |
| 159 | Prospects for a multi-PW source using optical parametric chirped pulse amplifiers. Laser and Particle Beams, 1999, 17, 331-340.                                                                                                                    | 0.4              | 20                   |
| 160 | Passive signal enhancement in spatially offset Raman spectroscopy. Journal of Raman Spectroscopy, 2008, 39, 633-637.                                                                                                                               | 1.2              | 20                   |
| 161 | Transmission Raman spectroscopy for quality control in model cocrystal tablets. Analyst, The, 2012, 137, 3052.                                                                                                                                     | 1.7              | 20                   |
| 162 | Vibrational studies of ground state 4-dimethylaminobenzonitrile (DMABN) and its ring deuterated isotopomer DMABN-d4. Physical Chemistry Chemical Physics, 2001, 3, 2424-2432.                                                                      | 1.3              | 19                   |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                                                         | IF               | CITATIONS         |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|
| 163 | Revealing the photophysics of fac-[(dppz-12-NO2)Re(CO)3(4-Me2Npy)]+: a picosecond time-resolved IR studyElectronic supplementary information (ESI) available: synthetic procedures, product characterization and brief descripion of ps-TSIR experiments. See <a href="http://www.rsc.org/suppdata/cc/b2/b200586g/">http://www.rsc.org/suppdata/cc/b2/b200586g/</a> . Chemical Communications, 2002, , 872-873. | 2.2              | 19                |
| 164 | Picosecond Time-Resolved Resonance Raman Study of CH2lâ^'l Produced after Ultraviolet Photolysis of CH2l2 in CH3OH, CH3CN/H2O and CH3OH/H2O Solutions. Journal of Physical Chemistry A, 2003, 107, 2624-2628.                                                                                                                                                                                                   | 1.1              | 19                |
| 165 | Temperature Spatially Offset Raman Spectroscopy (T-SORS): Subsurface Chemically Specific<br>Measurement of Temperature in Turbid Media Using Anti-Stokes Spatially Offset Raman Spectroscopy.<br>Analytical Chemistry, 2016, 88, 832-837.                                                                                                                                                                       | 3.2              | 19                |
| 166 | Spatially offset Raman spectroscopy for photon migration studies in bones with different mineralization levels. Analyst, The, 2017, 142, 3219-3226.                                                                                                                                                                                                                                                             | 1.7              | 19                |
| 167 | Nanoparticle-Mediated Photothermal Therapy Limitation in Clinical Applications Regarding Pain<br>Management. Nanomaterials, 2022, 12, 922.                                                                                                                                                                                                                                                                      | 1.9              | 19                |
| 168 | Picosecond pump–probe photoelectron spectroscopy as a probe of intramolecular dynamics in S1<br>para-fluorotoluene. Journal of Chemical Physics, 2002, 117, 9099-9102.                                                                                                                                                                                                                                          | 1.2              | 18                |
| 169 | Redox Control of Light-Induced Charge Separation in a Transition Metal Cluster:Â Photochemistry of a<br>Methyl Viologen-Substituted [Os3(CO)10(α-diimine)] Cluster. Inorganic Chemistry, 2005, 44, 1319-1331.                                                                                                                                                                                                   | 1.9              | 18                |
| 170 | Time-Resolved Emission Spectra of Green Fluorescent Protein. Photochemistry and Photobiology, 2006, 82, 373.                                                                                                                                                                                                                                                                                                    | 1.3              | 18                |
| 171 | Kerr-gated picosecond time-resolved resonance Raman spectroscopic probing of the excited states in<br>?-[Ru(bipy)2dppz](BF4)2 (bipy = 2,2?-bipyridyl, dppz = dipyrido[3,2-a :2?,3?-c ]phenazine). Journal of Raman<br>Spectroscopy, 2000, 31, 503-507.                                                                                                                                                          | 1.2              | 17                |
| 172 | First direct observation of a CO-bridged primary photoproduct of [Ru3(CO)12] by picosecond time-resolved IR spectroscopy. Chemical Communications, 2002, , 1220-1221.                                                                                                                                                                                                                                           | 2.2              | 17                |
| 173 | Functional adaptation of long bone extremities involves the localized "tuning―of the cortical bone composition; evidence from Raman spectroscopy. Journal of Biomedical Optics, 2014, 19, 111602.                                                                                                                                                                                                               | 1.4              | 17                |
| 174 | Exploring the effect of laser excitation wavelength on signal recovery with deep tissue transmission<br>Raman spectroscopy. Analyst, The, 2016, 141, 5738-5746.                                                                                                                                                                                                                                                 | 1.7              | 17                |
| 175 | Development of a Fiber-Optics Microspatially Offset Raman Spectroscopy Sensor for Probing Layered Materials. Analytical Chemistry, 2017, 89, 9218-9223.                                                                                                                                                                                                                                                         | 3.2              | 17                |
| 176 | Picosecond time-resolved photoelectron spectroscopy as a means of elucidating mechanisms of intramolecular vibrational energy redistribution in electronically excited states of small aromatic molecules. Molecular Physics, 2005, 103, 1821-1827.                                                                                                                                                             | 0.8              | 16                |
| 177 | Spectroscopic study of optically induced ultrafast electron dynamics in gold. Physical Review B, 2007, 75, .                                                                                                                                                                                                                                                                                                    | 1.1              | 16                |
| 178 | Development of Transmission Raman Spectroscopy towards the in line, high throughput and non-destructive quantitative analysis of pharmaceutical solid oral dose. Analyst, The, 2015, 140, 107-112.                                                                                                                                                                                                              | 1.7              | 16                |
| 179 | Ultrafast Dynamics of Photochemical Radical Formation from [Re(R)(CO)3(dmb)] (R=Me, Et;) Tj ETQq1 1 0.7843<br>European Journal, 2000, 6, 1386-1394.                                                                                                                                                                                                                                                             | 14 rgBT /<br>1.7 | Overlock 10<br>15 |
| 180 | Resonance Raman study of ring deuterated 4-dimethylaminobenzonitrile (DMABN-d4): the ground, ICT and triplet states. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 142, 177-185.                                                                                                                                                                                                               | 2.0              | 15                |

| #   | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Pt(ii) mono-carbonyl complexes of a cyclometallating 2-(2′-thienyl)-(pyridinato-C,3N′) ligand: nature and dynamics of the lowest excited state of the chloro- and thiolato-complexes. Dalton Transactions, 2005, , 2092.                                  | 1.6 | 15        |
| 182 | Different Mechanisms of Photochemical Reâ^'Me and Reâ^'Et Bond Homolysis in<br>[Re(R)(CO)3(4,4â€~-dimethyl-2,2â€~-bipyridine)]. A Time-Resolved IR Spectroscopic Study Ranging from<br>Picoseconds to Microseconds. Organometallics, 2006, 25, 2148-2156. | 1,1 | 15        |
| 183 | Photon migration of Raman signal in bone as measured with spatially offset Raman spectroscopy.<br>Journal of Raman Spectroscopy, 2016, 47, 240-247.                                                                                                       | 1.2 | 15        |
| 184 | Exploring street art paintings by microspatially offset Raman spectroscopy. Journal of Raman Spectroscopy, 2018, 49, 1652-1659.                                                                                                                           | 1.2 | 15        |
| 185 | Subsurface Chemically Specific Measurement of pH Levels in Biological Tissues Using Combined Surface-Enhanced and Deep Raman. Analytical Chemistry, 2019, 91, 10984-10987.                                                                                | 3.2 | 15        |
| 186 | Direct monitoring of light mediated hyperthermia induced within mammalian tissues using surface enhanced spatially offset Raman spectroscopy (T-SESORS). Analyst, The, 2019, 144, 3552-3555.                                                              | 1.7 | 15        |
| 187 | Non-invasive depth determination of inclusion in biological tissues using spatially offset Raman spectroscopy with external calibration. Analyst, The, 2020, 145, 7623-7629.                                                                              | 1.7 | 15        |
| 188 | Photoinduced electron transfer in phenothiazine and pyrene based dyades studied by picosecond time-gated Raman spectroscopy. Chemical Physics Letters, 2001, 348, 277-284.                                                                                | 1.2 | 14        |
| 189 | Determination of thickness of thin turbid painted over-layers using micro-scale spatially offset Raman spectroscopy. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20160049.                          | 1.6 | 14        |
| 190 | Development of defocusing micro-SORS mapping: a study of a 19 <sup>th</sup> century porcelain card.<br>Analytical Methods, 2017, 9, 6435-6442.                                                                                                            | 1.3 | 14        |
| 191 | Quantifying low levels (<0.5% w/w) of warfarin sodium salts in oral solid dose forms using<br>Transmission Raman spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 2018, 155,<br>276-283.                                                  | 1.4 | 14        |
| 192 | Fast Raman spectral mapping of highly fluorescing samples by time-gated spectral multiplexed detection. Optics Letters, 2018, 43, 5733.                                                                                                                   | 1.7 | 14        |
| 193 | Photoelectron spectroscopy of S1 toluene: II. Intramolecular dynamics of selected vibrational levels<br>in S1 toluene studied by nanosecond and picosecond time-resolved photoelectron spectroscopies.<br>Journal of Chemical Physics, 2005, 123, 204317. | 1.2 | 13        |
| 194 | Threat detection of liquid explosive precursor mixtures by Spatially Offset Raman Spectroscopy (SORS). Proceedings of SPIE, 2009, , .                                                                                                                     | 0.8 | 13        |
| 195 | Detection of concealed substances in sealed opaque plastic and coloured glass containers using SORS. , 2010, , .                                                                                                                                          |     | 13        |
| 196 | Contrasting confocal with defocusing microscale spatially offset Raman spectroscopy. Journal of Raman Spectroscopy, 2016, 47, 565-570.                                                                                                                    | 1.2 | 13        |
| 197 | Noninvasive Determination of Depth in Transmission Raman Spectroscopy in Turbid Media Based on<br>Sample Differential Transmittance. Analytical Chemistry, 2017, 89, 9730-9733.                                                                           | 3.2 | 13        |
| 198 | High repetition rate picosecond time-resolved resonance Raman spectroscopy apparatus. Measurement<br>Science and Technology, 1993, 4, 1090-1095.                                                                                                          | 1.4 | 12        |

| #   | Article                                                                                                                                                                                                                          | IF                | CITATIONS     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|
| 199 | Time-resolved spectroscopy study of the triplet state of 4-diethylaminobenzonitrile (DEABN). Physical<br>Chemistry Chemical Physics, 2003, 5, 3643.                                                                              | 1.3               | 12            |
| 200 | Sensitivity of Transmission Raman Spectroscopy Signals to Temperature of Biological Tissues.<br>Scientific Reports, 2018, 8, 8379.                                                                                               | 1.6               | 12            |
| 201 | Adaptive band target entropy minimization: Optimization for the decomposition of spatially offset<br>Raman spectra of bone. Journal of Raman Spectroscopy, 2020, 51, 66-78.                                                      | 1.2               | 12            |
| 202 | Estimating the Reduced Scattering Coefficient of Turbid Media Using Spatially Offset Raman Spectroscopy. Analytical Chemistry, 2021, 93, 3386-3392.                                                                              | 3.2               | 12            |
| 203 | Inner Sphere Reorganization Dynamics Accompanying Charge Transfer in Cyanoterphenyl. Journal of Physical Chemistry A, 1998, 102, 1431-1437.                                                                                      | 1.1               | 11            |
| 204 | Marked influence of the bridging carbonyl ligands on the photo- and electrochemistry of the clusters [Ru3(CO)8(μ-CO)2(α-diimine)] (α-diimine = 2,2′-bipyridine, 4,4′-dimethyl-2,2′-bipyridine and)                               | Tj <b>ı£</b> ₹Qq0 | 0 QirgBT /Ove |
| 205 | Kerr gated resonance Raman spectroscopy in light fastness studies of ink jet prints. Vibrational<br>Spectroscopy, 2005, 37, 123-131.                                                                                             | 1.2               | 11            |
| 206 | Determination of Depth in Transmission Raman Spectroscopy in Turbid Media Using a Beam Enhancing<br>Element. Applied Spectroscopy, 2017, 71, 1849-1855.                                                                          | 1.2               | 11            |
| 207 | Investigation of Heterogeneous Painted Systems by Micro-Spatially Offset Raman Spectroscopy.<br>Analytical Chemistry, 2017, 89, 11476-11483.                                                                                     | 3.2               | 11            |
| 208 | Portable through Bottle SORS for the Authentication of Extra Virgin Olive Oil. Applied Sciences (Switzerland), 2021, 11, 8347.                                                                                                   | 1.3               | 11            |
| 209 | Picosecond time-resolved infrared spectroscopic investigation into electron localisation in the excited states of Re(i) polypyridyl complexes with bridging ligands. Photochemical and Photobiological Sciences, 2006, 5, 82-87. | 1.6               | 10            |
| 210 | Development of petawatt laser amplification systems at the Central Laser Facility. , 2007, , .                                                                                                                                   |                   | 10            |
| 211 | Is the Collagen Primed for Mineralization in Specific Regions of the Turkey Tendon? An Investigation<br>of the Protein–Mineral Interface Using Raman Spectroscopy. Analytical Chemistry, 2016, 88, 1559-1563.                    | 3.2               | 10            |
| 212 | Analytical Capability of Defocused µ-SORS in the Chemical Interrogation of Thin Turbid Painted Layers.<br>Applied Spectroscopy, 2016, 70, 156-161.                                                                               | 1.2               | 10            |
| 213 | Lockâ€in detection in Raman spectroscopy with chargeâ€shifting CCD for suppression of fast varying backgrounds. Journal of Raman Spectroscopy, 2019, 50, 983-995.                                                                | 1.2               | 10            |
| 214 | Nonâ€invasive and <i>in situ</i> investigation of layers sequence in panel paintings by portable<br>microâ€spatially offset Raman spectroscopy. Journal of Raman Spectroscopy, 2020, 51, 2016-2021.                              | 1.2               | 10            |
| 215 | Sub-Surface Molecular Analysis and Imaging in Turbid Media Using Time-Gated Raman Spectral Multiplexing. Applied Spectroscopy, 2021, 75, 156-167.                                                                                | 1.2               | 10            |
| 216 | Title is missing!. Angewandte Chemie, 2003, 115, 1870-1874.                                                                                                                                                                      | 1.6               | 9             |

| #   | Article                                                                                                                                                                                                                             | IF               | CITATIONS         |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|
| 217 | Surface-enhanced resonance Raman scattering using pulsed and continuous-wave laser excitation.<br>Journal of Raman Spectroscopy, 2005, 36, 600-605.                                                                                 | 1.2              | 9                 |
| 218 | Self-absorption corrected non-invasive transmission Raman spectroscopy (of biological tissue).<br>Analyst, The, 2021, 146, 1260-1267.                                                                                               | 1.7              | 9                 |
| 219 | Surface enhanced deep Raman detection of cancer tumour through 71 mm of heterogeneous tissue.<br>Nanotheranostics, 2022, 6, 337-349.                                                                                                | 2.7              | 9                 |
| 220 | The picosecond transient Raman spectra of S1 excited oligophenyls, oxazols and stilbene derivatives.<br>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1995, 51, 2491-2500.                                 | 2.0              | 8                 |
| 221 | Kerr-gated picosecond Raman spectroscopy and Raman photon migration of equine bone tissue with 400-nm excitation. , 2004, 5321, 164.                                                                                                |                  | 8                 |
| 222 | Low-Lying Excited States and Primary Photoproducts of[Os3(CO)10(s-cis-L)] (L=Cyclohexa-1,3-diene,) Tj ETQq0 0<br>Density Functional Theory. Chemistry - A European Journal, 2004, 10, 3451-3460.                                    | 0 rgBT /C<br>1.7 | verlock 10 T<br>8 |
| 223 | Characterisation of signal enhancements achieved when utilizing a photon diode in deep Raman spectroscopy of tissue. Biomedical Optics Express, 2016, 7, 2130.                                                                      | 1.5              | 8                 |
| 224 | Contrasting confocal XRF with micro-SORS: a deep view within micrometric painted stratigraphy.<br>Analytical Methods, 2018, 10, 3837-3844.                                                                                          | 1.3              | 8                 |
| 225 | Shifted Excitation Raman Difference Spectroscopy with Charge-Shifting Charge-Coupled Device (CCD)<br>Lock-In Detection. Applied Spectroscopy, 2019, 73, 000370281985935.                                                            | 1.2              | 8                 |
| 226 | Noninvasive simultaneous monitoring of pH and depth using surfaceâ€enhanced deep Raman<br>spectroscopy. Journal of Raman Spectroscopy, 2020, 51, 1078-1082.                                                                         | 1.2              | 8                 |
| 227 | Detection of Age-Related Changes in Tendon Molecular Composition by Raman<br>Spectroscopy—Potential for Rapid, Non-Invasive Assessment of Susceptibility to Injury. International<br>Journal of Molecular Sciences, 2020, 21, 2150. | 1.8              | 8                 |
| 228 | Structural features of two distinct molecular complexes of copper(II) cationic porphyrin and deoxyribonucleotides. Biopolymers, 2002, 67, 278-281.                                                                                  | 1.2              | 7                 |
| 229 | Chemical and explosives point detection through opaque containers using spatially offset Raman spectroscopy (SORS). Proceedings of SPIE, 2011, , .                                                                                  | 0.8              | 7                 |
| 230 | Quantification of pharmaceuticals via transmission Raman spectroscopy: data sub-selection. Analyst,<br>The, 2014, 139, 74-78.                                                                                                       | 1.7              | 7                 |
| 231 | The use of laser spectroscopy to investigate bone disease in King Henry VIII's sailors. Journal of Archaeological Science, 2015, 53, 516-520.                                                                                       | 1.2              | 7                 |
| 232 | Title is missing!. , 0, , .                                                                                                                                                                                                         |                  | 7                 |
| 233 | Time-resolved study of the photochemical reaction of 4-dimethylaminobenzonitrile with carbon tetrachloride. Journal of Raman Spectroscopy, 2001, 32, 115-123.                                                                       | 1.2              | 6                 |
| 234 | Picosecond time-gated Raman spectroscopy for transcutaneous evaluation of bone composition. , 2005, , .                                                                                                                             |                  | 6                 |

| #   | Article                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Enhancement of laser radiation coupled into turbid media by using a unidirectional mirror. Journal of the Optical Society of America B: Optical Physics, 2008, 25, 1223. | 0.9 | 6         |
| 236 | Technique for Enhancing Signal in Conventional Backscattering Fluorescence and Raman<br>Spectroscopy of Turbid Media. Analytical Chemistry, 2008, 80, 6006-6009.         | 3.2 | 6         |
| 237 | Variation in the Transmission Near-Infrared Signal with Depth in Turbid Media. Applied Spectroscopy, 2014, 68, 383-387.                                                  | 1.2 | 6         |
| 238 | Clinical Spectroscopy: general discussion. Faraday Discussions, 2016, 187, 429-460.                                                                                      | 1.6 | 6         |
| 239 | Noninvasive Detection of Differential Water Content Inside Biological Samples Using Deep Raman<br>Spectroscopy. Analytical Chemistry, 2020, 92, 9449-9453.               | 3.2 | 6         |
| 240 | Spectroscopy of the 1S-2S energy splitting in muonium. IEEE Transactions on Instrumentation and Measurement, 1995, 44, 505-509.                                          | 2.4 | 5         |
| 241 | The photolysis of 3-cyclopentenone adsorbed on an MgF2 surface. Chemical Physics Letters, 1995, 246, 269-274.                                                            | 1.2 | 5         |
| 242 | Picosecond transient absorption studies of dipyridophenazine. , 2003, , .                                                                                                |     | 4         |
| 243 | Picosecond time-resolved infrared study of 2-aminopurine ionisation in solution. Photochemical and Photobiological Sciences, 2007, 6, 949.                               | 1.6 | 4         |
| 244 | Spatially offset Raman spectroscopy (SORS) for liquid screening. Proceedings of SPIE, 2011, , .                                                                          | 0.8 | 4         |
| 245 | Millimeter-Scale Mapping of Cortical Bone Reveals Organ-Scale Heterogeneity. Applied Spectroscopy, 2014, 68, 510-514.                                                    | 1.2 | 4         |
| 246 | Single cell analysis/data handling: general discussion. Faraday Discussions, 2016, 187, 299-327.                                                                         | 1.6 | 4         |
| 247 | Tunable Picosecond Optical Parametric Amplifiers for Time Resolved Resonance Raman Spectroscopy.<br>Laser Chemistry, 1999, 19, 153-159.                                  | 0.5 | 3         |
| 248 | Ultrafast transient absorption studies of ruthenium and rhenium dipyridophenazine complexes bound to DNA and polynucleotides. , 2003, , .                                |     | 3         |
| 249 | Novel Raman signal recovery from deeply buried tissue components. Proceedings of SPIE, 2008, , .                                                                         | 0.8 | 3         |
| 250 | Spatially offset Raman spectroscopy for photon migration investigations in long bone. Proceedings of SPIE, 2015, , .                                                     | 0.8 | 3         |
| 251 | PS-TR3 Spectroscopy of S1Cis-Stilbene in Solution. Laser Chemistry, 1999, 19, 97-100.                                                                                    | 0.5 | 2         |
| 252 | The performance of spatially offset Raman spectroscopy for liquid explosive detection. , 2016, , .                                                                       |     | 2         |

| #   | Article                                                                                                                                                                                     | IF       | CITATIONS      |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|
| 253 | Grating Spectrometry and Spatial Heterodyne Fourier Transform Spectrometry: Comparative Noise<br>Analysis for Raman Measurements. Applied Spectroscopy, 2021, 75, 241-249.                  | 1.2      | 2              |
| 254 | Model-Based Optimization of Laser Excitation and Detection Improves Spectral Contrast in Non-Invasive Diffuse Raman Spectroscopy. Applied Spectroscopy, 2022, , 000370282110729.            | 1.2      | 2              |
| 255 | Non-destructive Monitoring of Dye Depth Profile in Mesoporous TiO <sub>2</sub> Electrodes of Solar Cells with Micro-SORS. Analytical Chemistry, 2022, 94, 2966-2972.                        | 3.2      | 2              |
| 256 | Preionization of TEA CO2 laser by sliding discharge. European Physical Journal D, 1988, 38, 1375-1382.                                                                                      | 0.4      | 1              |
| 257 | Picosecond Raman Excitation Profile and Transient Absorption Spectrum of S1 Quaterphenyl in Solution. Laser Chemistry, 1999, 19, 79-82.                                                     | 0.5      | 1              |
| 258 | Surface enhanced resonance Raman scattering detection by fluorimeter. Analyst, The, 2005, 130, 472.                                                                                         | 1.7      | 1              |
| 259 | Design of the 10 PW OPCPA Facility for the Vulcan Laser. , 2010, , .                                                                                                                        |          | 1              |
| 260 | Spatially Offset Raman Spectroscopyâ $\in$ "Emerging Concepts and Applications. , 2010, , .                                                                                                 |          | 1              |
| 261 | Assessment of photon migration for subsurface probing in selected types of bone using spatially offset Raman spectroscopy. , 2016, , .                                                      |          | 1              |
| 262 | Ultrafast Dynamics of Photochemical Radical Formation from [Re(R)(CO)3(dmb)] (R=Me, Et;) Tj ETQq0 0 0 rgBT                                                                                  | Overlock | 2 10 Tf 50 382 |
| 263 | Nonâ€destructive analysis of concentration profiles in turbid media using microâ€spatially offset Raman spectroscopy: A physical model. Journal of Raman Spectroscopy, 2022, 53, 1592-1603. | 1.2      | 1              |
| 264 | A photophysical study of substituted arylethynylenes. Proceedings of SPIE, 2008, , .                                                                                                        | 0.8      | 0              |
| 265 | Editorial Board profiles. Analyst, The, 2012, 137, 21-23.                                                                                                                                   | 1.7      | 0              |
| 266 | Ultrafast Photoreactions in the Green Fluorescent Protein Studied Through Time Resolved Vibrational Spectroscopy. , 2006, , .                                                               |          | 0              |
| 267 | Spatially Offset Raman Spectroscopy for photon migration investigations in long bone. , 2015, , .                                                                                           |          | Ο              |
| 268 | Characterisation of a novel transmission Raman spectroscopy platform for non-invasive detection of breast micro-calcifications. , 2018, , .                                                 |          | 0              |
| 269 | Spatially Offset Raman Spectroscopy for estimating the depth of inclusion in diffusely scattering samples. , 2022, , .                                                                      |          | 0              |
|     |                                                                                                                                                                                             |          |                |