
Thomas Biederer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7618057/publications.pdf Version: 2024-02-01

THOMAS RIEDEDED

#	Article	IF	CITATIONS
1	A synaptomic analysis reveals dopamine hub synapses in the mouse striatum. Nature Communications, 2022, 13, .	5.8	14
2	Synaptic recognition molecules in development and disease. Current Topics in Developmental Biology, 2021, 142, 319-370.	1.0	12
3	Three-dimensional adaptive optical nanoscopy for thick specimen imaging at sub-50-nm resolution. Nature Methods, 2021, 18, 688-693.	9.0	39
4	Subsynaptic positioning of AMPARs by LRRTM2 controls synaptic strength. Science Advances, 2021, 7, .	4.7	43
5	Synaptic Connectivity and Cortical Maturation Are Promoted by the ω-3 Fatty Acid Docosahexaenoic Acid. Cerebral Cortex, 2020, 30, 226-240.	1.6	15
6	FARPâ€1 deletion is associated with lack of response to autism treatment by early start denver model in a multiplex family. Molecular Genetics & Genomic Medicine, 2020, 8, e1373.	0.6	10
7	Emerging Roles of Synapse Organizers in the Regulation of Critical Periods. Neural Plasticity, 2019, 2019, 1-9.	1.0	27
8	SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse. Neuron, 2019, 103, 217-234.e4.	3.8	518
9	Synapse-Selective Control of Cortical Maturation and Plasticity by Parvalbumin-Autonomous Action of SynCAM 1. Cell Reports, 2019, 26, 381-393.e6.	2.9	38
10	Open Up to Make New Contacts: Caldendrin Senses Postsynaptic Calcium Influx to Dynamically Organize Dendritic Spines. Neuron, 2018, 97, 994-996.	3.8	1
11	Mapping the Proteome of the Synaptic Cleft through Proximity Labeling Reveals New Cleft Proteins. Proteomes, 2018, 6, 48.	1.7	62
12	Social Stimulus Causes Aberrant Activation of the Medial Prefrontal Cortex in a Mouse Model With Autism-Like Behaviors. Frontiers in Synaptic Neuroscience, 2018, 10, 35.	1.3	23
13	Structural analyses of FERM domain-mediated membrane localization of FARP1. Scientific Reports, 2018, 8, 10477.	1.6	12
14	Transcellular Nanoalignment of Synaptic Function. Neuron, 2017, 96, 680-696.	3.8	258
15	Reduced Insulin/Insulin-Like Growth Factor Receptor Signaling Mitigates Defective Dendrite Morphogenesis in Mutants of the ER Stress Sensor IRE-1. PLoS Genetics, 2017, 13, e1006579.	1.5	22
16	Excitatory Synaptic Drive and Feedforward Inhibition in the Hippocampal CA3 Circuit Are Regulated by SynCAM 1. Journal of Neuroscience, 2016, 36, 7464-7475.	1.7	32
17	How a Piggyback Synapse Listens in to Tune Excitatory Terminals. Neuron, 2016, 90, 1143-1145.	3.8	0
18	Topographic Mapping of the Synaptic Cleft into Adhesive Nanodomains. Neuron, 2015, 88, 1165-1172.	3.8	102

THOMAS BIEDERER

#	Article	IF	CITATIONS
19	A short N-terminal domain of HDAC4 preserves photoreceptors and restores visual function in retinitis pigmentosa. Nature Communications, 2015, 6, 8005.	5.8	23
20	Structural organization and function of mouse photoreceptor ribbon synapses involve the immunoglobulin protein synaptic cell adhesion molecule 1. Journal of Comparative Neurology, 2014, 522, 900-920.	0.9	41
21	Activity-Dependent Regulation of Dendritic Complexity by Semaphorin 3A through Farp1. Journal of Neuroscience, 2014, 34, 7999-8009.	1.7	43
22	Synaptic uSIRPation: the active neuron reigns over presynaptic partners. Nature Neuroscience, 2013, 16, 1361-1362.	7.1	0
23	The Synaptic Adhesion Molecule SynCAM 1 Contributes to Cocaine Effects on Synapse Structure and Psychostimulant Behavior. Neuropsychopharmacology, 2013, 38, 628-638.	2.8	30
24	Neuronal adhesion and synapse organization in recovery after brain injury. Future Neurology, 2013, 8, 555-567.	0.9	34
25	The novel synaptogenic protein Farp1 links postsynaptic cytoskeletal dynamics and transsynaptic organization. Journal of Cell Biology, 2012, 199, 985-1001.	2.3	89
26	Synaptic Cell Adhesion. Cold Spring Harbor Perspectives in Biology, 2012, 4, a005694-a005694.	2.3	198
27	NeuroD2 regulates the development of hippocampal mossy fiber synapses. Neural Development, 2012, 7, 9.	1.1	36
28	Specific Nâ€glycans on SynCAM Ig proteins regulate synaptic adhesion and synapse development. FASEB Journal, 2012, 26, 232.2.	0.2	0
29	Lateral assembly of the immunoglobulin protein SynCAM 1 controls its adhesive function and instructs synapse formation. EMBO Journal, 2011, 30, 4728-4738.	3.5	59
30	SynCAM1, a Synaptic Adhesion Molecule, Is Expressed in Astrocytes and Contributes to erbB4 Receptor-Mediated Control of Female Sexual Development. Endocrinology, 2011, 152, 2364-2376.	1.4	38
31	The Synaptic Cell Adhesion Molecule, SynCAM1, Mediates Astrocyte-to-Astrocyte and Astrocyte-to-GnRH Neuron Adhesiveness in the Mouse Hypothalamus. Endocrinology, 2011, 152, 2353-2363.	1.4	44
32	L-Histidine Decarboxylase and Tourette's Syndrome. New England Journal of Medicine, 2010, 362, 1901-1908.	13.9	304
33	Polysialic acid: A veteran sugar with a new site of action in the brain. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10335-10336.	3.3	9
34	SynCAM 1 participates in axo-dendritic contact assembly and shapes neuronal growth cones. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7568-7573.	3.3	72
35	N-Glycosylation at the SynCAM (Synaptic Cell Adhesion Molecule) Immunoglobulin Interface Modulates Synaptic Adhesion. Journal of Biological Chemistry, 2010, 285, 34864-34874.	1.6	58
36	SynCAM 1 Adhesion Dynamically Regulates Synapse Number and Impacts Plasticity and Learning. Neuron, 2010, 68, 894-906.	3.8	149

THOMAS BIEDERER

#	Article	IF	CITATIONS
37	Expression and adhesion profiles of SynCAM molecules indicate distinct neuronal functions. Journal of Comparative Neurology, 2008, 510, 47-67.	0.9	74
38	Signaling by synaptogenic molecules. Current Opinion in Neurobiology, 2008, 18, 261-269.	2.0	59
39	Molecular Cytogenetic Analysis and Resequencing of Contactin Associated Protein-Like 2 in Autism Spectrum Disorders. American Journal of Human Genetics, 2008, 82, 165-173.	2.6	494
40	SynCAMs Organize Synapses through Heterophilic Adhesion. Journal of Neuroscience, 2007, 27, 12516-12530.	1.7	180
41	Mixed-culture assays for analyzing neuronal synapse formation. Nature Protocols, 2007, 2, 670-676.	5.5	142
42	Bioinformatic characterization of the SynCAM family of immunoglobulin-like domain-containing adhesion molecules. Genomics, 2006, 87, 139-150.	1.3	104
43	Hooking up new synapses. Nature Neuroscience, 2006, 9, 1203-1204.	7.1	12
44	Cell–cell interactions in synaptogenesis. Current Opinion in Neurobiology, 2006, 16, 83-89.	2.0	88
45	SynCAM in Formation and Function of Synaptic Specializations. , 2006, , 125-135.		Ο
46	Selective Capability of SynCAM and Neuroligin for Functional Synapse Assembly. Journal of Neuroscience, 2005, 25, 260-270.	1.7	172
47	Progress from the Postsynaptic Side: Signaling in Synaptic Differentiation. Science Signaling, 2005, 2005, pe9-pe9.	1.6	8
48	Cell Adhesion Molecules in Synapse Formation. Journal of Neuroscience, 2004, 24, 9244-9249.	1.7	164
49	ldentification of Endogenous/transfected Synaptic Proteins in Primary Neuronal Culture by a High-yield Immunogold Labeling. Microscopy and Microanalysis, 2003, 9, 1498-1499.	0.2	Ο
50	A family of RIM-binding proteins regulated by alternative splicing: Implications for the genesis of synaptic active zones. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14464-14469.	3.3	224
51	SynCAM, a Synaptic Adhesion Molecule That Drives Synapse Assembly. Science, 2002, 297, 1525-1531.	6.0	706
52	CASK Participates in Alternative Tripartite Complexes in which Mint 1 Competes for Binding with Caskin 1, a Novel CASK-Binding Protein. Journal of Neuroscience, 2002, 22, 4264-4273.	1.7	118
53	Regulation of APP-Dependent Transcription Complexes by Mint/X11s: Differential Functions of Mint Isoforms. Journal of Neuroscience, 2002, 22, 7340-7351.	1.7	117
54	CASK and Protein 4.1 Support F-actin Nucleation on Neurexins. Journal of Biological Chemistry, 2001, 276, 47869-47876.	1.6	150

#	Article	IF	CITATIONS
55	Mints as Adaptors. Journal of Biological Chemistry, 2000, 275, 39803-39806.	1.6	220
56	Role of Cue1p in Ubiquitination and Degradation at the ER Surface. Science, 1997, 278, 1806-1809.	6.0	356
57	Degradation of subunits of the Sec61p complex, an integral component of the ER membrane, by the ubiquitin-proteasome pathway EMBO Journal, 1996, 15, 2069-2076.	3.5	248