Bruce R Hamaker

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/761796/bruce-r-hamaker-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

8,357 81 251 49 h-index g-index citations papers 6.6 10,098 267 5.7 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
251	Activation of gastrointestinal ileal brake response with dietary slowly digestible carbohydrates, with no observed effect on subjective appetite, in an acute randomized, double-blind, crossover trial European Journal of Nutrition, 2022, 1	5.2	O
250	Structural requirements of flavonoids for the selective inhibition of ⊞mylase versus ⊞glucosidase. <i>Food Chemistry</i> , 2022 , 370, 130981	8.5	6
249	Mechanistic insights into consumption of the food additive xanthan gum by the human gut microbiota <i>Nature Microbiology</i> , 2022 , 7, 556-569	26.6	3
248	Corn arabinoxylan has a repeating structure of subunits of high branch complexity with slow gut microbiota fermentation <i>Carbohydrate Polymers</i> , 2022 , 289, 119435	10.3	O
247	Peruvian Andean grains: Nutritional, functional properties and industrial uses <i>Critical Reviews in Food Science and Nutrition</i> , 2022 , 1-14	11.5	
246	Microwave-assisted synthesis of NaMnF particles with tuneable morphologies. <i>Chemical Communications</i> , 2021 , 57, 11799-11802	5.8	О
245	Deciphering molecular interaction and digestibility in retrogradation of amylopectin gel networks. <i>Food and Function</i> , 2021 , 12, 11460-11468	6.1	1
244	Malian Thick Porridges (t) of Pearl Millet Are Made Thinner in Urban Than Rural Areas and Decrease Satiety. <i>Food and Nutrition Bulletin</i> , 2021 , 3795721211047435	1.8	
243	Some pearl millet-based foods promote satiety or reduce glycaemic response in a crossover trial. <i>British Journal of Nutrition</i> , 2021 , 126, 1168-1178	3.6	2
242	Food Matrix Effects for Modulating Starch Bioavailability. <i>Annual Review of Food Science and Technology</i> , 2021 , 12, 169-191	14.7	17
241	A Unique Gut Microbiome-Physical Function Axis Exists in Older People with HIV: An Exploratory Study. <i>AIDS Research and Human Retroviruses</i> , 2021 , 37, 542-550	1.6	2
240	Atomistic Modeling of Peptide Aggregation and Esheet Structuring in Corn Zein for Viscoelasticity. <i>Biomacromolecules</i> , 2021 , 22, 1856-1866	6.9	O
239	High arabinoxylan fine structure specificity to gut bacteria driven by corn genotypes but not environment. <i>Carbohydrate Polymers</i> , 2021 , 257, 117667	10.3	3
238	Potential of moringa leaf and baobab fruit food-to-food fortification of wholegrain maize porridge to improve iron and zinc bioaccessibility. <i>International Journal of Food Sciences and Nutrition</i> , 2021 , 1-13	3.7	3
237	Whole grain Carbohydrates 2021 , 55-69		O
236	Microwave treatment enhances human gut microbiota fermentability of isolated insoluble dietary fibers. <i>Food Research International</i> , 2021 , 143, 110293	7	4
235	Dietary Fiber Hierarchical Specificity: the Missing Link for Predictable and Strong Shifts in Gut Bacterial Communities. <i>MBio</i> , 2021 , 12, e0102821	7.8	4

(2020-2021)

234	Heavy metal contamination and health risk assessment in grains and grain-based processed food in Arequipa region of Peru. <i>Chemosphere</i> , 2021 , 274, 129792	8.4	10
233	Storage of biofortified maize in Purdue Improved Crop Storage (PICS) bags reduces disulfide linkage-driven decrease in porridge viscosity. <i>LWT - Food Science and Technology</i> , 2021 , 136, 110262	5.4	O
232	Isomaltodextrin strengthens model starch gels and moderately promotes starch retrogradation. <i>International Journal of Food Science and Technology</i> , 2021 , 56, 1631-1640	3.8	0
231	Boosting the value of insoluble dietary fiber to increase gut fermentability through food processing. <i>Food and Function</i> , 2021 , 12, 10658-10666	6.1	3
230	Structure and binding ability of self-assembled <code>Hactalbumin</code> protein nanotubular gels. <i>Biotechnology Progress</i> , 2021 , 37, e3127	2.8	1
229	Effects of different storage temperatures on the intra- and intermolecular retrogradation and digestibility of sago starch. <i>International Journal of Biological Macromolecules</i> , 2021 , 182, 65-71	7.9	5
228	Protein matrix retains most starch granules within corn fiber from corn wet-milling process. <i>Industrial Crops and Products</i> , 2021 , 165, 113429	5.9	2
227	Current and future challenges in starch research. Current Opinion in Food Science, 2021, 40, 46-50	9.8	8
226	Descriptive sensory analysis of instant porridge from stored wholegrain and decorticated pearl millet flour cooked, stabilized and improved by using a low-cost extruder. <i>Journal of Food Science</i> , 2021 , 86, 3824-3838	3.4	4
225	Enzyme treatments on corn fiber from wet-milling process for increased starch and protein extraction. <i>Industrial Crops and Products</i> , 2021 , 168, 113622	5.9	4
224	Rheological and water binding properties of xanthan, guar and ultra-finely milled oatmeal in white birch sap: Influence of sap minor constituents. <i>Food Research International</i> , 2021 , 147, 110478	7	1
223	Physicochemical and rheological properties of cooked extruded reformed rice with added protein or fiber. <i>LWT - Food Science and Technology</i> , 2021 , 151, 112196	5.4	2
222	Influence of polysaccharide concentration on polyphenol-polysaccharide interactions. <i>Carbohydrate Polymers</i> , 2021 , 274, 118670	10.3	3
221	Rice starch and Co-proteins improve the rheological properties of zein dough. <i>Journal of Cereal Science</i> , 2021 , 102, 103334	3.8	2
220	Dietary starch is weight reducing when distally digested in the small intestine. <i>Carbohydrate Polymers</i> , 2021 , 273, 118599	10.3	2
219	An exercise intervention alters stool microbiota and metabolites among older, sedentary adults. <i>Therapeutic Advances in Infectious Disease</i> , 2021 , 8, 20499361211027067	2.8	1
218	Development of a novel starch-based dietary fiber using glucanotransferase. <i>Food and Function</i> , 2021 , 12, 5745-5754	6.1	3
217	Sleep Health Should be Included as a Therapeutic Target in the Treatment of HIV. <i>AIDS Research and Human Retroviruses</i> , 2020 , 36, 631	1.6	1

216	Subtle Variations in Dietary-Fiber Fine Structure Differentially Influence the Composition and Metabolic Function of Gut Microbiota. <i>MSphere</i> , 2020 , 5,	5	19
215	Corn zein undergoes conformational changes to higher Bheet content during its self-assembly in an increasingly hydrophilic solvent. <i>International Journal of Biological Macromolecules</i> , 2020 , 157, 232-2	3 3 .9	12
214	Conditioning with slowly digestible starch diets in mice reduces jejunal lglucosidase activity and glucogenesis from a digestible starch feeding. <i>Nutrition</i> , 2020 , 78, 110857	4.8	3
213	Fecal microbiota responses to rice RS3 are specific to amylose molecular structure. <i>Carbohydrate Polymers</i> , 2020 , 243, 116475	10.3	26
212	On the role of the internal chain length distribution of amylopectins during retrogradation: Double helix lateral aggregation and slow digestibility. <i>Carbohydrate Polymers</i> , 2020 , 246, 116633	10.3	13
211	Maize Bran Particle Size Governs the Community Composition and Metabolic Output of Human Gut Microbiota in Fermentations. <i>Frontiers in Microbiology</i> , 2020 , 11, 1009	5.7	4
210	Stored Gelatinized Waxy Potato Starch Forms a Strong Retrograded Gel at Low pH with the Formation of Intermolecular Double Helices. <i>Journal of Agricultural and Food Chemistry</i> , 2020 , 68, 4036-	-450741	14
209	Carbohydrates designed with different digestion rates modulate gastric emptying response in rats. <i>International Journal of Food Sciences and Nutrition</i> , 2020 , 71, 839-844	3.7	8
208	Effect of edible plant materials on provitamin A stability and bioaccessibility from extruded whole pearl millet (P. typhoides) composite blends. <i>LWT - Food Science and Technology</i> , 2020 , 123, 109109	5.4	5
207	Pine Bark Phenolic Extracts, Current Uses, and Potential Food Applications: A Review. <i>Current Pharmaceutical Design</i> , 2020 , 26, 1866-1879	3.3	1
206	Dietary Fibers in Foods [Formulating and Processing for Nutritional Benefits. <i>Food Engineering Series</i> , 2020 , 437-457	0.5	1
205	Discrete Fiber Structures Dictate Human Gut Bacteria Outcomes. <i>Trends in Endocrinology and Metabolism</i> , 2020 , 31, 803-805	8.8	1
204	Development of Slowly Digestible Starch Derived Educans with 4,6-Educanotransferase and Branching Sucrase Enzymes. <i>Journal of Agricultural and Food Chemistry</i> , 2020 , 68, 6664-6671	5.7	12
203	Abnormal Eating Patterns Cause Circadian Disruption and Promote Alcohol-Associated Colon Carcinogenesis. <i>Cellular and Molecular Gastroenterology and Hepatology</i> , 2020 , 9, 219-237	7.9	25
202	A Ribose-Scavenging System Confers Colonization Fitness on the Human Gut Symbiont Bacteroides thetaiotaomicron in a Diet-Specific Manner. <i>Cell Host and Microbe</i> , 2020 , 27, 79-92.e9	23.4	13
201	Pearl millet (Pennisetum glaucum) couscous breaks down faster than wheat couscous in the Human Gastric Simulator, though has slower starch hydrolysis. <i>Food and Function</i> , 2020 , 11, 111-122	6.1	12
200	African fruit pulp (baobab) modifies provitamin A carotenoid bioaccessibility from composite pearl millet porridges. <i>Journal of Food Science and Technology</i> , 2020 , 57, 1382-1392	3.3	10
199	Long-term low shear-induced highly viscous waxy potato starch gel formed through intermolecular double helices. <i>Carbohydrate Polymers</i> , 2020 , 232, 115815	10.3	11

(2019-2020)

198	Single-Arm, Non-randomized, Time Series, Single-Subject Study of Fecal Microbiota Transplantation in Multiple Sclerosis. <i>Frontiers in Neurology</i> , 2020 , 11, 978	4.1	15
197	Investigating the potential of slow-retrograding starches to reduce staling in soft savory bread and sweet cake model systems. <i>Food Research International</i> , 2020 , 138, 109745	7	3
196	Whole grain cereal fibers and their support of the gut commensal Clostridia for health. <i>Bioactive Carbohydrates and Dietary Fibre</i> , 2020 , 24, 100245	3.4	6
195	Quantitative approach to study secondary structure of proteins by FT-IR spectroscopy, using a model wheat gluten system. <i>International Journal of Biological Macromolecules</i> , 2020 , 164, 2753-2760	7.9	20
194	Quantitative characterization of the digestive viscosity profile of cereal soluble dietary fibers using in vitro digestion in Rapid ViscoAnalyzer. <i>Carbohydrate Polymers</i> , 2020 , 248, 116807	10.3	1
193	Emerging science on benefits of whole grain oat and barley and their soluble dietary fibers for heart health, glycemic response, and gut microbiota. <i>Nutrition Reviews</i> , 2020 , 78, 13-20	6.4	28
192	Formulation of Orange Juice with Dietary Fibers Enhances Bioaccessibility of Orange Flavonoids in Juice but Limits Their Ability to Inhibit Glucose Transport. <i>Journal of Agricultural and Food Chemistry</i> , 2020 , 68, 9387-9397	5.7	5
191	Evaluation of the Prebiotic Potential of a Commercial Synbiotic Food Ingredient on Gut Microbiota in an Ex Vivo Model of the Human Colon. <i>Nutrients</i> , 2020 , 12,	6.7	4
190	Gut microbiota modulation with long-chain corn bran arabinoxylan in adults with overweight and obesity is linked to an individualized temporal increase in fecal propionate. <i>Microbiome</i> , 2020 , 8, 118	16.6	30
189	Synthesis of novel glucans with potential health benefits through controlled glucose release in the human gastrointestinal tract. <i>Critical Reviews in Food Science and Nutrition</i> , 2020 , 60, 123-146	11.5	19
188	Phenolic compounds are less degraded in presence of starch than in presence of proteins through processing in model porridges. <i>Food Chemistry</i> , 2020 , 309, 125769	8.5	14
187	Neutral hydrocolloids promote shear-induced elasticity and gel strength of gelatinized waxy potato starch. <i>Food Hydrocolloids</i> , 2020 , 107, 105923	10.6	21
186	New View on Dietary Fiber Selection for Predictable Shifts in Gut Microbiota. MBio, 2020, 11,	7.8	35
185	Strong Adhesives from Corn Protein and Tannic Acid. <i>Advanced Sustainable Systems</i> , 2019 , 3, 1900077	5.9	8
184	Among older adults, age-related changes in the stool microbiome differ by HIV-1 serostatus. <i>EBioMedicine</i> , 2019 , 40, 583-594	8.8	16
183	Physical Inaccessibility of a Resistant Starch Shifts Mouse Gut Microbiota to Butyrogenic Firmicutes. <i>Molecular Nutrition and Food Research</i> , 2019 , 63, e1801012	5.9	32
182	Fabrication of a soluble crosslinked corn bran arabinoxylan matrix supports a shift to butyrogenic gut bacteria. <i>Food and Function</i> , 2019 , 10, 4497-4504	6.1	17
181	Complexation process of amylose under different concentrations of linoleic acid using molecular dynamics simulation. <i>Carbohydrate Polymers</i> , 2019 , 216, 157-166	10.3	14

180	Starch digested product analysis by HPAEC reveals structural specificity of flavonoids in the inhibition of mammalian \(\text{\text{\text{B}}}\) mylase and \(\text{\tex	8.5	26
179	Impact of molecular interactions with phenolic compounds on food polysaccharides functionality. <i>Advances in Food and Nutrition Research</i> , 2019 , 90, 135-181	6	14
178	Potato product form impacts in vitro starch digestibility and glucose transport but only modestly impacts 24 h blood glucose response in humans. <i>Food and Function</i> , 2019 , 10, 1846-1855	6.1	7
177	In Vitro Fecal Fermentation of High Pressure-Treated Fruit Peels Used as Dietary Fiber Sources. <i>Molecules</i> , 2019 , 24,	4.8	11
176	The Effect of Acute Continuous Hypoxia on Triglyceride Levels in Constantly Fed Healthy Men. <i>Frontiers in Physiology</i> , 2019 , 10, 752	4.6	4
175	Phenolic compounds mediate aggregation of water-soluble polysaccharides and change their rheological properties: Effect of different phenolic compounds. <i>Food Hydrocolloids</i> , 2019 , 97, 105193	10.6	18
174	Potential of Prebiotic Butyrogenic Fibers in Parkinson's Disease. Frontiers in Neurology, 2019, 10, 663	4.1	31
173	Starch digestion kinetics of extruded reformed rice is changed in different ways with added protein or fiber. <i>Food and Function</i> , 2019 , 10, 4577-4583	6.1	6
172	Different inhibition properties of catechins on the individual subunits of mucosal Eglucosidases as measured by partially-purified rat intestinal extract. <i>Food and Function</i> , 2019 , 10, 4407-4413	6.1	13
171	Banana starch and molecular shear fragmentation dramatically increase structurally driven slowly digestible starch in fully gelatinized bread crumb. <i>Food Chemistry</i> , 2019 , 274, 664-671	8.5	36
170	Soluble xyloglucan generates bigger bacterial community shifts than pectic polymers during in vitro fecal fermentation. <i>Carbohydrate Polymers</i> , 2019 , 206, 389-395	10.3	29
169	Carbohydrates of the Kernel 2019 , 305-318		8
168	Acid gelation of soluble laccase-crosslinked corn bran arabinoxylan and possible gel formation mechanism. <i>Food Hydrocolloids</i> , 2019 , 92, 1-9	10.6	37
167	Shear-thickening behavior of gelatinized waxy starch dispersions promoted by the starch molecular characteristics. <i>International Journal of Biological Macromolecules</i> , 2019 , 121, 120-126	7.9	17
166	Potato phenolics impact starch digestion and glucose transport in model systems but translation to phenolic rich potato chips results in only modest modification of glycemic response in humans. <i>Nutrition Research</i> , 2018 , 52, 57-70	4	22
165	High Strength Adhesives from Catechol Cross-Linking of Zein Protein and Plant Phenolics. <i>Advanced Sustainable Systems</i> , 2018 , 2, 1700159	5.9	30
164	In vitro fermentation of Cookeina speciosa glucans stimulates the growth of the butyrogenic Clostridium cluster XIVa in a targeted way. <i>Carbohydrate Polymers</i> , 2018 , 183, 219-229	10.3	31
163	Alterations in the amounts of microbial metabolites in different regions of the mouse large intestine using variably fermentable fibres. <i>Bioactive Carbohydrates and Dietary Fibre</i> , 2018 , 13, 7-13	3.4	10

(2018-2018)

162	Brown rice compared to white rice slows gastric emptying in humans. <i>European Journal of Clinical Nutrition</i> , 2018 , 72, 367-373	5.2	40
161	Dietary starch breakdown product sensing mobilizes and apically activates Eglucosidases in small intestinal enterocytes. <i>FASEB Journal</i> , 2018 , 32, 3903-3911	0.9	9
160	Overview of Functional Foods 2018 , 1-14		О
159	The In vivo Foundations for In vitro Testing of Functional Foods 2018 , 15-51		1
158	In vivo Foundations of Sensory In vitro Testing Systems 2018 , 53-85		
157	In vitro Models of HostMicrobial Interactions Within the Gastrointestinal Tract 2018 , 87-136		
156	Macronutrient Nutritional Functionality of Carbohydrates, Proteins and Lipids 2018, 137-170		
155	In vitro Approaches for Investigating the Bioaccessibility and Bioavailability of Dietary Nutrients and Bioactive Metabolites 2018 , 171-199		О
154	In vitro Models for Testing Toxicity in the Gastrointestinal Tract 2018 , 201-218		
153	Challenges of Linking In vitro Analysis to Flavor Perception 2018 , 263-303		
152	In vitro assessment of oat Eglucans nutritional properties: An inter-laboratory methodology evaluation. <i>Carbohydrate Polymers</i> , 2018 , 200, 271-277	10.3	2
151	Dietary Fiber Treatment Corrects the Composition of Gut Microbiota, Promotes SCFA Production, and Suppresses Colon Carcinogenesis. <i>Genes</i> , 2018 , 9,	4.2	101
150	Traditional Malian Solid Foods Made from Sorghum and Millet Have Markedly Slower Gastric Emptying than Rice, Potato, or Pasta. <i>Nutrients</i> , 2018 , 10,	6.7	25
149	A molecular dynamics simulation study on the conformational stability of amylose-linoleic acid complex in water. <i>Carbohydrate Polymers</i> , 2018 , 196, 56-65	10.3	38
148	Slowly digestible starch in fully gelatinized material is structurally driven by molecular size and A and B1 chain lengths. <i>Carbohydrate Polymers</i> , 2018 , 197, 531-539	10.3	87
147	Pregelatinized starches enriched in slowly digestible and resistant fractions. <i>LWT - Food Science and Technology</i> , 2018 , 97, 187-192	5.4	7
146	Dietary Slowly Digestible Starch Triggers the Gut-Brain Axis in Obese Rats with Accompanied Reduced Food Intake. <i>Molecular Nutrition and Food Research</i> , 2018 , 62, 1700117	5.9	32
145	Divergent short-chain fatty acid production and succession of colonic microbiota arise in fermentation of variously-sized wheat bran fractions. <i>Scientific Reports</i> , 2018 , 8, 16655	4.9	34

144	Fecal Microbiota Responses to Bran Particles Are Specific to Cereal Type and In Vitro Digestion Methods That Mimic Upper Gastrointestinal Tract Passage. <i>Journal of Agricultural and Food Chemistry</i> , 2018 , 66, 12580-12593	5.7	11
143	The nutritional property of endosperm starch and its contribution to the health benefits of whole grain foods. <i>Critical Reviews in Food Science and Nutrition</i> , 2017 , 57, 3807-3817	11.5	16
142	Dietary fibre-based SCFA mixtures promote both protection and repair of intestinal epithelial barrier function in a Caco-2 cell model. <i>Food and Function</i> , 2017 , 8, 1166-1173	6.1	72
141	Biophysical features of cereal endosperm that decrease starch digestibility. <i>Carbohydrate Polymers</i> , 2017 , 165, 180-188	10.3	39
140	Characterizations of oil-in-water emulsion stabilized by different hydrophobic maize starches. <i>Carbohydrate Polymers</i> , 2017 , 166, 195-201	10.3	26
139	Elevating the conversation about GE crops. <i>Nature Biotechnology</i> , 2017 , 35, 302-304	44.5	5
138	Phenolic compounds increase the transcription of mouse intestinal maltase-glucoamylase and sucrase-isomaltase. <i>Food and Function</i> , 2017 , 8, 1915-1924	6.1	8
137	A pectic polysaccharide from peach palm fruits (Bactris gasipaes) and its fermentation profile by the human gut microbiota in vitro. <i>Bioactive Carbohydrates and Dietary Fibre</i> , 2017 , 9, 1-6	3.4	18
136	Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota. <i>Scientific Reports</i> , 2017 , 7, 2594	4.9	216
135	Starch-entrapped microsphere fibers improve bowel habit but do not exhibit prebiotic capacity in those with unsatisfactory bowel habits: a phase I, randomized, double-blind, controlled human trial. <i>Nutrition Research</i> , 2017 , 44, 27-37	4	9
134	Delayed utilization of some fast-fermenting soluble dietary fibers by human gut microbiota when presented in a mixture. <i>Journal of Functional Foods</i> , 2017 , 32, 347-357	5.1	65
133	Prebiotics and Inflammatory Bowel Disease. Gastroenterology Clinics of North America, 2017, 46, 783-79	54.4	18
132	Reciprocal Prioritization to Dietary Glycans by Gut Bacteria in a Competitive Environment Promotes Stable Coexistence. <i>MBio</i> , 2017 , 8,	7.8	75
131	Physicochemical characterization, antioxidant activity of polysaccharides from Mesona chinensis Benth and their protective effect on injured NCTC-1469 cells induced by HO. <i>Carbohydrate Polymers</i> , 2017 , 175, 538-546	10.3	48
130	Preload of slowly digestible carbohydrate microspheres decreases gastric emptying rate of subsequent meal in humans. <i>Nutrition Research</i> , 2017 , 45, 46-51	4	13
129	Number of branch points in limit dextrins impact glucose generation rates by mammalian mucosal liglucosidases. <i>Carbohydrate Polymers</i> , 2017 , 157, 207-213	10.3	23
128	Reformulating cereal bars: high resistant starch reduces in vitro digestibility but not in vivo glucose or insulin response; whey protein reduces glucose but disproportionately increases insulin. <i>American Journal of Clinical Nutrition</i> , 2016 , 104, 995-1003	7	9
127	Orange pomace fibre increases a composite scoring of subjective ratings of hunger and fullness in healthy adults. <i>Appetite</i> , 2016 , 107, 478-485	4.5	10

(2015-2016)

126	Structure of branching enzyme- and amylomaltase modified starch produced from well-defined amylose to amylopectin substrates. <i>Carbohydrate Polymers</i> , 2016 , 152, 51-61	10.3	26
125	Elevated propionate and butyrate in fecal ferments of hydrolysates generated by oxalic acid treatment of corn bran arabinoxylan. <i>Food and Function</i> , 2016 , 7, 4935-4943	6.1	9
124	Milk glucosidase activity enables suckled pup starch digestion. <i>Molecular and Cellular Pediatrics</i> , 2016 , 3, 4	3.3	3
123	Small differences in amylopectin fine structure may explain large functional differences of starch. <i>Carbohydrate Polymers</i> , 2016 , 140, 113-21	10.3	111
122	Prebiotics: why definitions matter. Current Opinion in Biotechnology, 2016, 37, 1-7	11.4	245
121	Concord and Niagara Grape Juice and Their Phenolics Modify Intestinal Glucose Transport in a Coupled in Vitro Digestion/Caco-2 Human Intestinal Model. <i>Nutrients</i> , 2016 , 8,	6.7	25
120	Contribution of the Individual Small Intestinal EGlucosidases to Digestion of Unusual Linked Glycemic Disaccharides. <i>Journal of Agricultural and Food Chemistry</i> , 2016 , 64, 6487-94	5.7	70
119	In Vitro Starch Digestibility of Gluten-Free Spaghetti Based on Maize, Chickpea, and Unripe Plantain Flours. <i>Cereal Chemistry</i> , 2015 , 92, 171-176	2.4	2
118	Enzymatic synthesis of 2-deoxyglucose-containing maltooligosaccharides for tracing the location of glucose absorption from starch digestion. <i>Carbohydrate Polymers</i> , 2015 , 132, 41-9	10.3	8
117	Polysaccharide Modification through Green Technology: Role of Endodextranase in Improving the Physicochemical Properties of (1-B)(1-b)-D-Glucan. <i>Journal of Agricultural and Food Chemistry</i> , 2015 , 63, 6450-6	5.7	4
116	Dietary Modulation of Gut Microbiota Contributes to Alleviation of Both Genetic and Simple Obesity in Children. <i>EBioMedicine</i> , 2015 , 2, 968-84	8.8	198
115	Slow digestion property of octenyl succinic anhydride modified waxy maize starch in the presence of tea polyphenols. <i>Journal of Agricultural and Food Chemistry</i> , 2015 , 63, 2820-9	5.7	23
114	Effects of ripening temperature on starch structure and gelatinization, pasting, and cooking properties in rice (Oryza sativa). <i>Journal of Agricultural and Food Chemistry</i> , 2015 , 63, 3085-93	5.7	58
113	Self-assembled nanoparticle of common food constituents that carries a sparingly soluble small molecule. <i>Journal of Agricultural and Food Chemistry</i> , 2015 , 63, 4312-9	5.7	21
112	Dietary phenolic compounds selectively inhibit the individual subunits of maltase-glucoamylase and sucrase-isomaltase with the potential of modulating glucose release. <i>Journal of Agricultural and Food Chemistry</i> , 2015 , 63, 3873-9	5.7	49
111	Gut feedback mechanisms and food intake: a physiological approach to slow carbohydrate bioavailability. <i>Food and Function</i> , 2015 , 6, 1072-89	6.1	32
110	Influence of annealing flours from raw and pre-cooked plantain fruit on cooked starch digestion rates. <i>Starch/Staerke</i> , 2015 , 67, 139-146	2.3	10
109	Quinoa (Chenopodium quinoa W.) and amaranth (Amaranthus caudatus L.) provide dietary fibres high in pectic substances and xyloglucans. <i>Food Chemistry</i> , 2015 , 167, 490-6	8.5	112

108	Self-assembly of amylose, protein, and lipid as a nanoparticle carrier of hydrophobic small molecules 2015 , 263-271		6
107	Effect of pH on Cleavage of Glycogen by Vaginal Enzymes. <i>PLoS ONE</i> , 2015 , 10, e0132646	3.7	22
106	Structural features of soluble cereal arabinoxylan fibers associated with a slow rate of in vitro fermentation by human fecal microbiota. <i>Carbohydrate Polymers</i> , 2015 , 130, 191-7	10.3	88
105	Effect of dynamic high pressure on technological properties of cashew tree gum (Anacardium occidentale L.). <i>Carbohydrate Polymers</i> , 2015 , 129, 187-93	10.3	33
104	Cellular Response to the high protein digestibility/high-Lysine (hdhl) sorghum mutation. <i>Plant Science</i> , 2015 , 241, 70-7	5.3	13
103	Induction of differentiation of small intestinal enterocyte cells by maltooligosaccharides. <i>FASEB Journal</i> , 2015 , 29, 596.14	0.9	8
102	Understanding Aspects of Carbohydrate Quality in Rice Related to Differences in Gastric Emptying Rate. <i>FASEB Journal</i> , 2015 , 29, 740.5	0.9	
101	Differences in Preference and Preparation of Millet Porridge (TDbetween Urban and Rural Areas in Mali and its Impact on Satiety. <i>FASEB Journal</i> , 2015 , 29, 898.10	0.9	
100	Potato Phenolics Modulate Rate of Glucose Transport in a Caco-2 Human Intestinal Cell Model. <i>FASEB Journal</i> , 2015 , 29, 606.6	0.9	2
99	Influence of glucan structure on the swelling and leaching properties of starch microparticles. <i>Carbohydrate Polymers</i> , 2014 , 103, 234-43	10.3	19
98	Mucosal C-terminal maltase-glucoamylase hydrolyzes large size starch digestion products that may contribute to rapid postprandial glucose generation. <i>Molecular Nutrition and Food Research</i> , 2014 , 58, 1111-21	5.9	28
97	Nature and consequences of non-covalent interactions between flavonoids and macronutrients in foods. <i>Food and Function</i> , 2014 , 5, 18-34	6.1	246
96	A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. <i>Journal of Molecular Biology</i> , 2014 , 426, 3838-50	6.5	300
95	Slow glucose release property of enzyme-synthesized highly branched maltodextrins differs among starch sources. <i>Carbohydrate Polymers</i> , 2014 , 107, 182-91	10.3	54
94	Branch pattern of starch internal structure influences the glucogenesis by mucosal Nt-maltase-glucoamylase. <i>Carbohydrate Polymers</i> , 2014 , 111, 33-40	10.3	18
93	Different sucrose-isomaltase response of Caco-2 cells to glucose and maltose suggests dietary maltose sensing. <i>Journal of Clinical Biochemistry and Nutrition</i> , 2014 , 54, 55-60	3.1	24
92	Human Emylase present in lower-genital-tract mucosal fluid processes glycogen to support vaginal colonization by Lactobacillus. <i>Journal of Infectious Diseases</i> , 2014 , 210, 1019-28	7	124
91	Multifunctional nutrient-binding proteins adapt human symbiotic bacteria for glycan competition in the gut by separately promoting enhanced sensing and catalysis. <i>MBio</i> , 2014 , 5, e01441-14	7.8	51

(2012-2014)

90	Modulating state transition and mechanical properties of viscoelastic resins from maize zein through interactions with plasticizers and co-proteins. <i>Journal of Cereal Science</i> , 2014 , 60, 576-583	3.8	28	
89	Alkaline extraction conditions determine gelling properties of corn bran arabinoxylans. <i>Food Hydrocolloids</i> , 2013 , 31, 121-126	10.6	36	
88	Iodine binding to explore the conformational state of internal chains of amylopectin. <i>Carbohydrate Polymers</i> , 2013 , 98, 778-83	10.3	53	
87	Importance of Location of Digestion and Colonic Fermentation of Starch Related to Its Quality. <i>Cereal Chemistry</i> , 2013 , 90, 335-343	2.4	52	
86	Maltase-glucoamylase modulates gluconeogenesis and sucrase-isomaltase dominates starch digestion glucogenesis. <i>Journal of Pediatric Gastroenterology and Nutrition</i> , 2013 , 57, 704-12	2.8	33	
85	Slowly Digestible Starch and Health Benefits 2013 , 111-130		0	
84	Slowly Digestible Starch and Health Benefits 2013 , 111-130		1	
83	Enzyme-synthesized highly branched maltodextrins have slow glucose generation at the mucosal Eglucosidase level and are slowly digestible in vivo. <i>PLoS ONE</i> , 2013 , 8, e59745	3.7	69	
82	Enzyme-synthesized highly branched maltodextrins have slow glucogenesis at the mucosal Eglucosidase level and are slowly digestible in vivo. <i>FASEB Journal</i> , 2013 , 27, 1074.13	0.9		
81	Long-term feeding of dietary slow release glucose reduces daily caloric food intake in vivo. <i>FASEB Journal</i> , 2013 , 27, 237.6	0.9		
80	Gliadin and zein show similar and improved rheological behavior when mixed with high molecular weight glutenin. <i>Journal of Cereal Science</i> , 2012 , 55, 265-271	3.8	26	
79	Nutraceutical and Health Properties of Sorghum and Millet 2012 , 165-186		3	
78	Modulation of starch digestion for slow glucose release through "toggling" of activities of mucosal Eglucosidases. <i>Journal of Biological Chemistry</i> , 2012 , 287, 31929-38	5.4	49	
77	Increasing and stabilizing Esheet structure of maize zein causes improvement in its rheological properties. <i>Journal of Agricultural and Food Chemistry</i> , 2012 , 60, 2316-21	5.7	29	
76	Functionalizing maize zein in viscoelastic dough systems through fibrous, Esheet-rich protein networks: An lalternative, physicochemical approach to gluten-free breadmaking. <i>Trends in Food Science and Technology</i> , 2012 , 24, 74-81	15.3	48	
75	Grain of high digestible, high lysine (HDHL) sorghum contains kafirins which enhance the protein network of composite dough and bread. <i>Journal of Cereal Science</i> , 2012 , 56, 352-357	3.8	26	
74	Micro to Macro Level Structures of Food Materials 2012 , 26-51		3	
73	Unexpected high digestion rate of cooked starch by the Ct-maltase-glucoamylase small intestine mucosal ⊞lucosidase subunit. <i>PLoS ONE</i> , 2012 , 7, e35473	3.7	37	

72	Starch source influences dietary glucose generation at the mucosal Eglucosidase level. <i>Journal of Biological Chemistry</i> , 2012 , 287, 36917-21	5.4	41
71	Starch digestion and patients with congenital sucrase-isomaltase deficiency. <i>Journal of Pediatric Gastroenterology and Nutrition</i> , 2012 , 55 Suppl 2, S24-8	2.8	13
70	Modulation of starch digestion for slow glucose release through Eoggling of mucosal Eglucosidases by acarbose. <i>FASEB Journal</i> , 2012 , 26, 638.7	0.9	
69	High-quality instant sorghum porridge flours for the West African market using continuous processor cooking. <i>International Journal of Food Science and Technology</i> , 2011 , 46, 2344-2350	3.8	14
68	In vitro batch fecal fermentation comparison of gas and short-chain fatty acid production using "slowly fermentable" dietary fibers. <i>Journal of Food Science</i> , 2011 , 76, H137-42	3.4	85
67	Fine structural characteristics related to digestion properties of acid-treated fruit starches. <i>Starch/Staerke</i> , 2011 , 63, 717-727	2.3	21
66	Slow release glucose in small intestine via dietary approach slows gastric emptying in vivo in a dose response fashion. <i>FASEB Journal</i> , 2011 , 25, 93.6	0.9	
65	Alpha-glucogenic activity of mammalian mucosal enzymes on different disaccharides. <i>FASEB Journal</i> , 2011 , 25, 93.1	0.9	
64	REVIEW: Cereal Carbohydrates and Colon Health. Cereal Chemistry, 2010, 87, 331-341	2.4	35
63	Structural differences among alkali-soluble arabinoxylans from maize (Zea mays), rice (Oryza sativa), and wheat (Triticum aestivum) brans influence human fecal fermentation profiles. <i>Journal of Agricultural and Food Chemistry</i> , 2010 , 58, 493-9	5.7	119
62	Starch-entrapped microspheres show a beneficial fermentation profile and decrease in potentially harmful bacteria during in vitro fermentation in faecal microbiota obtained from patients with inflammatory bowel disease. <i>British Journal of Nutrition</i> , 2010 , 103, 1514-24	3.6	62
61	Slowly digestible starch diets alter proximal glucosidase activity and glucose absorption. <i>FASEB Journal</i> , 2010 , 24, 231.4	0.9	
60	Starch-entrapped microspheres extend in vitro fecal fermentation, increase butyrate production, and influence microbiota pattern. <i>Molecular Nutrition and Food Research</i> , 2009 , 53 Suppl 1, S121-30	5.9	44
59	Consumption of the slow-digesting waxy maize starch leads to blunted plasma glucose and insulin response but does not influence energy expenditure or appetite in humans. <i>Nutrition Research</i> , 2009 , 29, 383-90	4	39
58	Slowly digestible starch: concept, mechanism, and proposed extended glycemic index. <i>Critical Reviews in Food Science and Nutrition</i> , 2009 , 49, 852-67	11.5	260
57	Starch-entrapped biopolymer microspheres as a novel approach to vary blood glucose profiles. <i>Journal of the American College of Nutrition</i> , 2009 , 28, 583-90	3.5	32
56	Sorghum protein digestibility is affected by dosage of mutant alleles in endosperm cells. <i>Plant Breeding</i> , 2008 , 127, 579-586	2.4	13
55	Slowly digestible state of starch: mechanism of slow digestion property of gelatinized maize starch. Journal of Agricultural and Food Chemistry, 2008 , 56, 4695-702	5.7	101

(2006-2008)

54	Carotenoid bioaccessibility from whole grain and degermed maize meal products. <i>Journal of Agricultural and Food Chemistry</i> , 2008 , 56, 9918-26	5.7	99
53	Nutritional property of endosperm starches from maize mutants: a parabolic relationship between slowly digestible starch and amylopectin fine structure. <i>Journal of Agricultural and Food Chemistry</i> , 2008 , 56, 4686-94	5.7	149
52	Luminal starch substrate "brake" on maltase-glucoamylase activity is located within the glucoamylase subunit. <i>Journal of Nutrition</i> , 2008 , 138, 685-92	4.1	74
51	Genetic analysis of opaque2 modifier loci in quality protein maize. <i>Theoretical and Applied Genetics</i> , 2008 , 117, 157-70	6	69
50	An SECMALLS Study of Molecular Features of Water-soluble Amylopectin and Amylose of Tef [Eragrostis tef (Zucc.) Trotter] Starches. <i>Starch/Staerke</i> , 2008 , 60, 8-22	2.3	35
49	Contribution of Mucosal Maltase-Glucoamylase to Mouse Small Intestinal Starch EGlucogenesis and Total Glucose Metabolism. <i>FASEB Journal</i> , 2008 , 22, 686.2	0.9	
48	Influence of dietary fiber on inflammatory bowel disease and colon cancer: importance of fermentation pattern. <i>Nutrition Reviews</i> , 2007 , 65, 51-62	6.4	116
47	Contribution of mucosal maltase-glucoamylase activities to mouse small intestinal starch alpha-glucogenesis. <i>Journal of Nutrition</i> , 2007 , 137, 1725-33	4.1	52
46	Evidence of native starch degradation with human small intestinal maltase-glucoamylase (recombinant). <i>FEBS Letters</i> , 2007 , 581, 2381-8	3.8	53
45	Similarities and differences in secondary structure of viscoelastic polymers of maize ⊞ein and wheat gluten proteins. <i>Journal of Cereal Science</i> , 2007 , 45, 353-359	3.8	85
44	Luminal substrate "brake" on mucosal maltase-glucoamylase activity regulates total rate of starch digestion to glucose. <i>Journal of Pediatric Gastroenterology and Nutrition</i> , 2007 , 45, 32-43	2.8	62
43	Rice amylopectin fine structure variability affects starch digestion properties. <i>Journal of Agricultural and Food Chemistry</i> , 2007 , 55, 1475-9	5.7	131
42	Starch with a slow digestion property produced by altering its chain length, branch density, and crystalline structure. <i>Journal of Agricultural and Food Chemistry</i> , 2007 , 55, 4540-7	5.7	203
41	In vitro fecal fermentation of alginate-starch microspheres shows slow fermentation rate and increased production of butyrate. <i>FASEB Journal</i> , 2007 , 21, A1101	0.9	
40	Effect of Mouse Maltase-glucoamylase (Mgam) Knockout on Starch Digestion to Glucose. <i>FASEB Journal</i> , 2007 , 21,	0.9	1
39	Biopolymer-entrapped starch microspheres as novel slowly digestible carbohydrate ingredients with moderated and extended glycemic response. <i>FASEB Journal</i> , 2007 , 21, A344	0.9	2
38	Effect of Growth Location in the United States on Amylose Content, Amylopectin Fine Structure, and Thermal Properties of Starches of Long Grain Rice Cultivars. <i>Cereal Chemistry</i> , 2006 , 83, 93-98	2.4	35
37	A Novel Modified Endosperm Texture in a Mutant High-Protein Digestibility/High-Lysine Grain Sorghum (Sorghum bicolor (L.) Moench). <i>Cereal Chemistry</i> , 2006 , 83, 194-201	2.4	34

36	Slow digestion property of native cereal starches. <i>Biomacromolecules</i> , 2006 , 7, 3252-8	6.9	318
35	Structural basis for the slow digestion property of native cereal starches. <i>Biomacromolecules</i> , 2006 , 7, 3259-66	6.9	182
34	Development of a low glycemic maize starch: preparation and characterization. <i>Biomacromolecules</i> , 2006 , 7, 1162-8	6.9	77
33	Cys155 of 27 kDa maize gamma-zein is a key amino acid to improve its in vitro digestibility. <i>FEBS Letters</i> , 2006 , 580, 5803-6	3.8	13
32	Microstructural changes in zein proteins during extrusion. <i>Scanning</i> , 2006 , 21, 212-216	1.6	20
31	Distinctive Sorghum Starch Granule Morphologies Appear to Improve Raw Starch Digestibility. <i>Starch/Staerke</i> , 2006 , 58, 92-99	2.3	74
30	Extent of decortication and quality of flour, couscous and porridge made from different sorghum cultivars. <i>International Journal of Food Science and Technology</i> , 2006 , 41, 698-703	3.8	14
29	Detection of Proteins in Starch Granule Channels. <i>Cereal Chemistry</i> , 2005 , 82, 351-355	2.4	67
28	Sorghum (Sorghum bicolor L. Moench) Flour Pasting Properties Influenced by Free Fatty Acids and Protein. <i>Cereal Chemistry</i> , 2005 , 82, 534-540	2.4	52
27	Slowly Digestible Starch from Debranched Waxy Sorghum Starch: Preparation and Properties. <i>Cereal Chemistry</i> , 2004 , 81, 404-408	2.4	101
27		2.4	7
	Cereal Chemistry, 2004, 81, 404-408 Isolation and Characterization of a Soluble Branched Starch Fraction from Corn Masa Associated		
26	Cereal Chemistry, 2004, 81, 404-408 Isolation and Characterization of a Soluble Branched Starch Fraction from Corn Masa Associated with Adhesiveness. Cereal Chemistry, 2003, 80, 693-698 Turbidity Assay for Rapid and Efficient Identification of High Protein Digestibility Sorghum Lines.	2.4	7
26	Isolation and Characterization of a Soluble Branched Starch Fraction from Corn Masa Associated with Adhesiveness. <i>Cereal Chemistry</i> , 2003 , 80, 693-698 Turbidity Assay for Rapid and Efficient Identification of High Protein Digestibility Sorghum Lines. <i>Cereal Chemistry</i> , 2003 , 80, 40-44 Interaction of maize zein with wheat gluten in composite dough and bread as determined by	2.4	7
26 25 24	Isolation and Characterization of a Soluble Branched Starch Fraction from Corn Masa Associated with Adhesiveness. <i>Cereal Chemistry</i> , 2003 , 80, 693-698 Turbidity Assay for Rapid and Efficient Identification of High Protein Digestibility Sorghum Lines. <i>Cereal Chemistry</i> , 2003 , 80, 40-44 Interaction of maize zein with wheat gluten in composite dough and bread as determined by confocal laser scanning microscopy. <i>Scanning</i> , 2002 , 24, 1-5 Partial Leaching of Granule-Associated Proteins from Rice Starch during Alkaline Extraction and	2.4	7 8 22
26 25 24 23	Isolation and Characterization of a Soluble Branched Starch Fraction from Corn Masa Associated with Adhesiveness. <i>Cereal Chemistry</i> , 2003 , 80, 693-698 Turbidity Assay for Rapid and Efficient Identification of High Protein Digestibility Sorghum Lines. <i>Cereal Chemistry</i> , 2003 , 80, 40-44 Interaction of maize zein with wheat gluten in composite dough and bread as determined by confocal laser scanning microscopy. <i>Scanning</i> , 2002 , 24, 1-5 Partial Leaching of Granule-Associated Proteins from Rice Starch during Alkaline Extraction and Subsequent Gelatinization. <i>Starch/Staerke</i> , 2002 , 54, 454-460 Corn Dry-Milled Grit and Flour Fractions Exhibit Differences in Amylopectin Fine Structure and Gel	2.4 2.4 1.6	7 8 22 37
26 25 24 23	Isolation and Characterization of a Soluble Branched Starch Fraction from Corn Masa Associated with Adhesiveness. <i>Cereal Chemistry</i> , 2003 , 80, 693-698 Turbidity Assay for Rapid and Efficient Identification of High Protein Digestibility Sorghum Lines. <i>Cereal Chemistry</i> , 2003 , 80, 40-44 Interaction of maize zein with wheat gluten in composite dough and bread as determined by confocal laser scanning microscopy. <i>Scanning</i> , 2002 , 24, 1-5 Partial Leaching of Granule-Associated Proteins from Rice Starch during Alkaline Extraction and Subsequent Gelatinization. <i>Starch/Staerke</i> , 2002 , 54, 454-460 Corn Dry-Milled Grit and Flour Fractions Exhibit Differences in Amylopectin Fine Structure and Gel Texture. <i>Cereal Chemistry</i> , 2002 , 79, 354-358 Consequence of Starch Damage on Rheological Properties of Maize Starch Pastes. <i>Cereal Chemistry</i> ,	2.4 2.4 1.6 2.3	7 8 22 37

18	Improvement of Sorghum-Wheat Composite Dough Rheological Properties and Breadmaking Quality Through Zein Addition. <i>Cereal Chemistry</i> , 2001 , 78, 31-35	2.4	30
17	Proteolytic Activity in Sorghum Flour and Its Interference in Protein Analysis. <i>Cereal Chemistry</i> , 2000 , 77, 343-344	2.4	2
16	Physicochemical Properties of Flours that Relate to Sorghum Couscous Quality. <i>Cereal Chemistry</i> , 1999 , 76, 308-313	2.4	28
15	Effect of Specific Mechanical Energy on Protein Bodies and ⊠eins in Corn Flour Extrudates. <i>Cereal Chemistry</i> , 1999 , 76, 316-320	2.4	33
14	Potential nutritional contribution of quality protein maize: A close-up on children in poor communities* Paper No. 15534 of the Purdue Agricultural Research Programs <i>Ecology of Food and Nutrition</i> , 1999 , 38, 165-182	1.9	5
13	Low P Amylase Starch Digestibility of Cooked Sorghum Flours and the Effect of Protein. <i>Cereal Chemistry</i> , 1998 , 75, 710-713	2.4	92
12	Changes Occurring in Protein Body Structure and ⊞ein During Cornflake Processing. <i>Cereal Chemistry</i> , 1998 , 75, 217-221	2.4	48
11	Discovery of Grain Sorghum Germ Plasm with High Uncooked and Cooked In Vitro Protein Digestibilities. <i>Cereal Chemistry</i> , 1998 , 75, 665-670	2.4	73
10	Effect of Lime on Gelatinization of Corn Flour and Starch. Cereal Chemistry, 1997, 74, 171-175	2.4	76
9	Responses to Selection for Endosperm Hardness and Associated Changes in Agronomic Traits after Four Cycles of Recurrent Selection in Maize. <i>Crop Science</i> , 1995 , 35, 745-748	2.4	5
8	Registration of H126w White-Endosperm Parental Inbred Line of Maize. <i>Crop Science</i> , 1995 , 35, 1243-1	2 <i>4</i> 44	
7	Registration of H125 Yellow-Endosperm Parental Inbred Line of Maize. <i>Crop Science</i> , 1995 , 35, 1242-12	4 3 .4	2
6	Registration of HQPSSS and HQPSCB Maize Germplasm. <i>Crop Science</i> , 1995 , 35, 1720-1720	2.4	
5	Distribution of B-6 vitamers in human milk during a 24-h period after oral supplementation with different amounts of pyridoxine. <i>American Journal of Clinical Nutrition</i> , 1990 , 51, 1062-6	7	14
4	Improving the in vitro protein digestibility of sorghum with reducing agents. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1987 , 84, 626-8	11.5	147
3	Digestibility and utilization of protein and energy from Nasha, a traditional Sudanese fermented sorghum weaning food. <i>Journal of Nutrition</i> , 1986 , 116, 978-84	4.1	36
2	Overview of Dietary Fiber and its Influence on Gastrointestinal Health185-221		3
1	In vitro faecal fermentation of indigestible residues from heat-moisture treated maize meal and maize starch with stearic acid. <i>Starch/Staerke</i> ,2100238	2.3	