Xinfeng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7617857/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atmospheric Processing of Particulate Imidazole Compounds Driven by Photochemistry. Environmental Science and Technology Letters, 2022, 9, 265-271.	3.9	11
2	Particulate organic nitrates at Mount Tai in winter and spring: Variation characteristics and effects of mountain-valley breezes and elevated emission sources. Environmental Research, 2022, 212, 113182.	3.7	3
3	Chemical composition, sources and optical properties of nitrated aromatic compounds in fine particulate matter during winter foggy days in Nanjing, China. Environmental Research, 2022, 212, 113255.	3.7	4
4	Measurement report: Optical properties and sources of water-soluble brown carbon in Tianjin, North China – insights from organic molecular compositions. Atmospheric Chemistry and Physics, 2022, 22, 6449-6470.	1.9	25
5	Large contributions of anthropogenic sources to amines in fine particles at a coastal area in northern China in winter. Science of the Total Environment, 2022, 839, 156281.	3.9	13
6	Variation characteristics of atmospheric methane and carbon dioxide in summertime at a coastal site in the South China Sea. Frontiers of Environmental Science and Engineering, 2022, 16, .	3.3	5
7	Increased new particle yields with largely decreased probability of survival to CCN size at the summit of Mt. Tai under reduced SO ₂ emissions. Atmospheric Chemistry and Physics, 2021, 21, 1305-1323.	1.9	8
8	Source Apportionment of Regional Ozone Pollution Observed at Mount Tai, North China: Application of Lagrangian Photochemical Trajectory Model and Implications for Control Policy. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033519.	1.2	7
9	Significant impacts of anthropogenic activities on monoterpene and oleic acid-derived particulate organic nitrates in the North China Plain. Atmospheric Research, 2021, 256, 105585.	1.8	7
10	Substantial emissions of nitrated aromatic compounds in the particle and gas phases in the waste gases from eight industries. Environmental Pollution, 2021, 283, 117132.	3.7	13
11	An unexpected large continental source of reactive bromine and chlorine with significant impact on wintertime air quality. National Science Review, 2021, 8, nwaa304.	4.6	42
12	Winter ClNO ₂ formation in the region of fresh anthropogenic emissions: seasonal variability and insights into daytime peaks in northern China. Atmospheric Chemistry and Physics, 2021, 21, 15985-16000.	1.9	8
13	Joint impact of atmospheric SO ₂ and NH ₃ on the formation of nanoparticles from photo-oxidation of a typical biomass burning compound. Environmental Science: Nano, 2020, 7, 2532-2545.	2.2	14
14	Aqueous-Phase Photooxidation of Vanillic Acid: A Potential Source of Humic-Like Substances (HULIS). ACS Earth and Space Chemistry, 2020, 4, 862-872.	1.2	28
15	Ship emission of nitrous acid (HONO) and its impacts on the marine atmospheric oxidation chemistry. Science of the Total Environment, 2020, 735, 139355.	3.9	21
16	Heterogeneous N ₂ O ₅ reactions on atmospheric aerosols at four Chinese sites: improving model representation of uptake parameters. Atmospheric Chemistry and Physics, 2020, 20, 4367-4378.	1.9	33
17	Atmospheric nitrous acid (HONO) at a rural coastal site in North China: Seasonal variations and effects of biomass burning. Atmospheric Environment, 2020, 229, 117429.	1.9	28
18	Evaluation of the Performance of Low-Cost Air Quality Sensors at a High Mountain Station with Complex Meteorological Conditions. Atmosphere, 2020, 11, 212.	1.0	12

#	Article	IF	CITATIONS
19	Size distributions of nitrated phenols in winter at a coastal site in north China and the impacts from primary sources and secondary formation. Chemosphere, 2020, 250, 126256.	4.2	26
20	Nitrated phenols and the phenolic precursors in the atmosphere in urban Jinan, China. Science of the Total Environment, 2020, 714, 136760.	3.9	48
21	Photoinduced Production of Chlorine Molecules from Titanium Dioxide Surfaces Containing Chloride. Environmental Science and Technology Letters, 2020, 7, 70-75.	3.9	12
22	The evolution of cloud and aerosol microphysics at the summit of Mt.ÂTai, China. Atmospheric Chemistry and Physics, 2020, 20, 13735-13751.	1.9	10
23	Emissions of fine particulate nitrated phenols from various on-road vehicles in China. Environmental Research, 2019, 179, 108709.	3.7	42
24	Fast heterogeneous loss of N2O5 leads to significant nighttime NOx removal and nitrate aerosol formation at a coastal background environment of southern China. Science of the Total Environment, 2019, 677, 637-647.	3.9	38
25	Determination of Semivolatile Organic Nitrates in Ambient Atmosphere by Gas Chromatography/Electron Ionization–Mass Spectrometry. Atmosphere, 2019, 10, 88.	1.0	4
26	Characteristics and sources of halogenated hydrocarbons in the Yellow River Delta region, northern China. Atmospheric Research, 2019, 225, 70-80.	1.8	25
27	Nitrous acid in marine boundary layer over eastern Bohai Sea, China: Characteristics, sources, and implications. Science of the Total Environment, 2019, 670, 282-291.	3.9	36
28	Emissions of fine particulate nitrated phenols from residential coal combustion in China. Atmospheric Environment, 2019, 203, 10-17.	1.9	53
29	Observations of C1–C5 alkyl nitrates in the Yellow River Delta, northern China: Effects of biomass burning and oil field emissions. Science of the Total Environment, 2019, 656, 129-139.	3.9	18
30	Ozone from fireworks: Chemical processes or measurement interference?. Science of the Total Environment, 2018, 633, 1007-1011.	3.9	16
31	Summertime C1-C5 alkyl nitrates over Beijing, northern China: Spatial distribution, regional transport, and formation mechanisms. Atmospheric Research, 2018, 204, 102-109.	1.8	17
32	Pollution characteristics of particulate matters emitted from outdoor barbecue cooking in urban Jinan in eastern China. Frontiers of Environmental Science and Engineering, 2018, 12, 1.	3.3	9
33	Observations and Explicit Modeling of Summertime Carbonyl Formation in Beijing: Identification of Key Precursor Species and Their Impact on Atmospheric Oxidation Chemistry. Journal of Geophysical Research D: Atmospheres, 2018, 123, 1426-1440.	1.2	66
34	Abundance and origin of fine particulate chloride in continental China. Science of the Total Environment, 2018, 624, 1041-1051.	3.9	58
35	Identification and semi-quantification of biogenic organic nitrates in ambient particulate matters by UHPLC/ESI-MS. Atmospheric Environment, 2018, 176, 140-147.	1.9	12
36	Light absorption of black carbon is doubled at Mt. Tai and typical urban area in North China. Science of the Total Environment, 2018, 635, 1144-1151.	3.9	21

#	Article	IF	CITATIONS
37	Observations of fine particulate nitrated phenols in four sites in northern China: concentrations, source apportionment, and secondary formation. Atmospheric Chemistry and Physics, 2018, 18, 4349-4359.	1.9	67
38	Characteristics and sources of nitrous acid in an urban atmosphere of northern China: Results from 1-yr continuous observations. Atmospheric Environment, 2018, 182, 296-306.	1.9	82
39	Direct Observations of Fine Primary Particles From Residential Coal Burning: Insights Into Their Morphology, Composition, and Hygroscopicity. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,964.	1.2	61
40	A Review on the Methods for Observing the Substance and Energy Exchange between Atmosphere Boundary Layer and Free Troposphere. Atmosphere, 2018, 9, 460.	1.0	5
41	Six sources mainly contributing to the haze episodes and health risk assessment of PM2.5 at Beijing suburb in winter 2016. Ecotoxicology and Environmental Safety, 2018, 166, 146-156.	2.9	51
42	Heterogeneous N ₂ O ₅ uptake coefficient and production yield of CINO ₂ in polluted northern China: roles of aerosol water content and chemical composition. Atmospheric Chemistry and Physics, 2018, 18, 13155-13171.	1.9	67
43	Summertime fine particulate nitrate pollution in the North China Plain: increasing trends, formation mechanisms and implications for control policy. Atmospheric Chemistry and Physics, 2018, 18, 11261-11275.	1.9	98
44	Strong ozone production at a rural site in theNorth China Plain: Mixed effects of urban plumesand biogenic emissions. Journal of Environmental Sciences, 2018, 71, 261-270.	3.2	34
45	Understanding unusually high levels of peroxyacetyl nitrate (PAN) in winter in Urban Jinan, China. Journal of Environmental Sciences, 2018, 71, 249-260.	3.2	38
46	Molecular distributions of dicarboxylic acids, oxocarboxylic acids and <i>α</i> -dicarbonyls in PM _{2.5} collected at the top of Mt. Tai, North China, during the wheat burning season of 2014. Atmospheric Chemistry and Physics, 2018, 18, 10741-10758.	1.9	27
47	Chemical Composition and Bacterial Community in Size-Resolved Cloud Water at the Summit of Mt. Tai, China. Aerosol and Air Quality Research, 2018, 18, 1-14.	0.9	13
48	Trend in Fine Sulfate Concentrations and the Associated Secondary Formation Processes at an Urban Site in North China. Aerosol and Air Quality Research, 2018, 18, 1519-1530.	0.9	4
49	Aerosol optical properties at urban and coastal sites in Shandong Province, Northern China. Atmospheric Research, 2017, 188, 39-47.	1.8	14
50	Evolution of trace elements in the planetary boundary layer in southern China: Effects of dust storms and aerosolâ€cloud interactions. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3492-3506.	1.2	20
51	Reconciling modeling with observations of radiative absorption of black carbon aerosols. Journal of Geophysical Research D: Atmospheres, 2017, 122, 5932-5942.	1.2	13
52	Peroxyacetyl nitrate measurements by thermal dissociation–chemical ionization mass spectrometry in an urban environment: performance and characterizations. Frontiers of Environmental Science and Engineering, 2017, 11, 1.	3.3	3
53	Carbonyl compounds at Mount Tai in the North China Plain: Characteristics, sources, and effects on ozone formation. Atmospheric Research, 2017, 196, 53-61.	1.8	48
54	Observations of N 2 O 5 and ClNO 2 at a polluted urban surface site in North China: High N 2 O 5 uptake coefficients and low ClNO 2 product yields. Atmospheric Environment, 2017, 156, 125-134.	1.9	90

#	Article	IF	CITATIONS
55	Bacterial characterization in ambient submicron particles during severe haze episodes at Ji'nan, China. Science of the Total Environment, 2017, 580, 188-196.	3.9	89
56	Emissions of fine particulate nitrated phenols from the burning of five common types of biomass. Environmental Pollution, 2017, 230, 405-412.	3.7	73
57	A comparison study of carbonaceous aerosols in a typical North China Plain urban atmosphere: Seasonal variability, sources and implications to haze formation. Atmospheric Environment, 2017, 149, 95-103.	1.9	37
58	Contributions and source identification of biogenic and anthropogenic hydrocarbons to secondary organic aerosols at Mt. Tai in 2014. Environmental Pollution, 2017, 220, 863-872.	3.7	49
59	Chemical composition and droplet size distribution of cloud at the summit of Mount Tai, China. Atmospheric Chemistry and Physics, 2017, 17, 9885-9896.	1.9	53
60	Fast heterogeneous N ₂ O ₅ uptake and ClNO ₂ production in power plant and industrial plumes observed in the nocturnal residual layer over the North China Plain. Atmospheric Chemistry and	1.9	92
61	Physics, 2017, 17, 12361-12378. Direct observations of organic aerosols in common wintertime hazes in North China: insights into direct emissions from Chinese residential stoves. Atmospheric Chemistry and Physics, 2017, 17, 1259-1270.	1.9	56
62	Mixed Chloride Aerosols and their Atmospheric Implications: A Review. Aerosol and Air Quality Research, 2017, 17, 878-887.	0.9	24
63	Significant concentrations of nitryl chloride sustained in the morning: investigations of the causes and impacts on ozone production in a polluted region of northern China. Atmospheric Chemistry and Physics, 2016, 16, 14959-14977.	1.9	146
64	A conceptual framework for mixing structures in individual aerosol particles. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,784.	1.2	98
65	Oxidative capacity and radical chemistry in the polluted atmosphere of Hong Kong and Pearl River Delta region: analysis of a severe photochemical smog episode. Atmospheric Chemistry and Physics, 2016, 16, 9891-9903.	1.9	168
66	Significant increase of summertime ozone at Mount Tai in Central Eastern China. Atmospheric Chemistry and Physics, 2016, 16, 10637-10650.	1.9	192
67	Distribution and sources of air pollutants in the North China Plain based on on-road mobile measurements. Atmospheric Chemistry and Physics, 2016, 16, 12551-12565.	1.9	22
68	Optical properties of atmospheric fine particles near Beijing during the HOPE-J ³ A campaign. Atmospheric Chemistry and Physics, 2016, 16, 6421-6439.	1.9	38
69	Identification of concentrations and sources of PM2.5-bound PAHs in North China during haze episodes in 2013. Air Quality, Atmosphere and Health, 2016, 9, 823-833.	1.5	30
70	Characteristics of ambient volatile organic compounds and the influence of biomass burning at a rural site in Northern China during summer 2013. Atmospheric Environment, 2016, 124, 156-165.	1.9	54
71	Characteristics of carbonaceous aerosols: Impact of biomass burning and secondary formation in summertime in a rural area of the North China Plain. Science of the Total Environment, 2016, 557-558, 520-530.	3.9	46
72	Organic acids in cloud water and rainwater at a mountain site in acid rain areas of South China. Environmental Science and Pollution Research, 2016, 23, 9529-9539.	2.7	53

#	Article	IF	CITATIONS
73	Radiative absorption enhancement from coatings on black carbon aerosols. Science of the Total Environment, 2016, 551-552, 51-56.	3.9	86
74	Development of a chlorine chemistry module for the Master Chemical Mechanism. Geoscientific Model Development, 2015, 8, 3151-3162.	1.3	59
75	Enhanced formation of fine particulate nitrate at a rural site on the North China Plain in summer: The important roles of ammonia and ozone. Atmospheric Environment, 2015, 101, 294-302.	1.9	121
76	Levels, indoor–outdoor relationships and exposure risks of airborne particle-associated perchlorate and chlorate in two urban areas in Eastern Asia. Chemosphere, 2015, 135, 31-37.	4.2	19
77	HONO and its potential source particulate nitrite at an urban site in North China during the cold season. Science of the Total Environment, 2015, 538, 93-101.	3.9	59
78	Large daytime signals of N ₂ O ₅ and NO ₃ inferred at 62 amu in a TD-CIMS: chemical interference or a real atmospheric phenomenon?. Atmospheric Measurement Techniques, 2014, 7, 1-12.	1.2	53
79	On the use of an explicit chemical mechanism to dissect peroxy acetyl nitrate formation. Environmental Pollution, 2014, 195, 39-47.	3.7	53
80	Fog Formation in Cold Season in Ji'nan, China: Case Analyses with Application of HYSPLIT Model. Advances in Meteorology, 2014, 2014, 1-8.	0.6	5
81	Impacts of firecracker burning on aerosol chemical characteristics and human health risk levels during the Chinese New Year Celebration in Jinan, China. Science of the Total Environment, 2014, 476-477, 57-64.	3.9	68
82	Presence of high nitryl chloride in Asian coastal environment and its impact on atmospheric photochemistry. Science Bulletin, 2014, 59, 356-359.	1.7	54
83	Severe haze episodes and seriously polluted fog water in Ji'nan, China. Science of the Total Environment, 2014, 493, 133-137.	3.9	71
84	Photochemical evolution of organic aerosols observed in urban plumes from Hong Kong and the Pearl River Delta of China. Atmospheric Environment, 2014, 88, 219-229.	1.9	39
85	Composition and hygroscopicity of aerosol particles at Mt. Lu in South China: Implications for acid precipitation. Atmospheric Environment, 2014, 94, 626-636.	1.9	30
86	Polluted dust promotes new particle formation and growth. Scientific Reports, 2014, 4, 6634.	1.6	121
87	Ground-level ozone in four Chinese cities: precursors, regional transport and heterogeneous processes. Atmospheric Chemistry and Physics, 2014, 14, 13175-13188.	1.9	305
88	Speciation of "brown―carbon in cloud water impacted by agricultural biomass burning in eastern China. Journal of Geophysical Research D: Atmospheres, 2013, 118, 7389-7399.	1.2	231
89	Size distributions of aerosol sulfates and nitrates in Beijing during the 2008 Olympic Games: Impacts of pollution control measures and regional transport. Advances in Atmospheric Sciences, 2013, 30, 341-353.	1.9	18
90	Size-resolved aerosol ionic composition and secondary formation at Mount Heng in South Central China. Frontiers of Environmental Science and Engineering, 2013, 7, 815-826.	3.3	7

#	Article	IF	CITATIONS
91	Source identification and health impact of PM2.5 in a heavily polluted urban atmosphere in China. Atmospheric Environment, 2013, 75, 265-269.	1.9	121
92	Highly Time-Resolved Measurements of Secondary Ions in PM2.5 during the 2008 Beijing Olympics: The Impacts of Control Measures and Regional Transport. Aerosol and Air Quality Research, 2013, 13, 367-376.	0.9	15
93	Asian dust storm observed at a rural mountain site in southern China: chemical evolution and heterogeneous photochemistry. Atmospheric Chemistry and Physics, 2012, 12, 11985-11995.	1.9	44
94	Aqueous phase sulfate production in clouds in eastern China. Atmospheric Environment, 2012, 62, 502-511.	1.9	80
95	Formation of secondary organic carbon and long-range transport of carbonaceous aerosols at Mount Heng in South China. Atmospheric Environment, 2012, 63, 203-212.	1.9	58
96	The secondary formation of inorganic aerosols in the droplet mode through heterogeneous aqueous reactions under haze conditions. Atmospheric Environment, 2012, 63, 68-76.	1.9	195
97	Aerosol ionic components at Mt. Heng in central southern China: Abundances, size distribution, and impacts of long-range transport. Science of the Total Environment, 2012, 433, 498-506.	3.9	28
98	Characterization of cloud water chemistry at Mount Tai, China: Seasonal variation, anthropogenic impact, and cloud processing. Atmospheric Environment, 2012, 60, 467-476.	1.9	88
99	Characterization of aerosol acidity at a high mountain site in central eastern China. Atmospheric Environment, 2012, 51, 11-20.	1.9	39
100	Airborne fine particulate pollution in Jinan, China: Concentrations, chemical compositions and influence on visibility impairment. Atmospheric Environment, 2012, 55, 506-514.	1.9	114
101	Evaluating PM2.5 ionic components and source apportionment in Jinan, China from 2004 to 2008 using trajectory statistical methods. Journal of Environmental Monitoring, 2011, 13, 1662.	2.1	40
102	Integrated evaluation of aerosols from regional brown hazes over northern China in winter: Concentrations, sources, transformation, and mixing states. Journal of Geophysical Research, 2011, 116, .	3.3	68
103	Source and variation of carbonaceous aerosols at Mount Tai, North China: Results from a semi-continuous instrument. Atmospheric Environment, 2011, 45, 1655-1667.	1.9	38
104	Semi-continuous measurement of water-soluble ions in PM2.5 in Jinan, China: Temporal variations and source apportionments. Atmospheric Environment, 2011, 45, 6048-6056.	1.9	143
105	Aerosol size distributions in urban Jinan: Seasonal characteristics and variations between weekdays and weekends in a heavily polluted atmosphere. Environmental Monitoring and Assessment, 2011, 179, 443-456.	1.3	21
106	Comparison among filter-based, impactor-based and continuous techniques for measuring atmospheric fine sulfate and nitrate. Atmospheric Environment, 2010, 44, 4396-4403.	1.9	74
107	Air quality during the 2008 Beijing Olympics: secondary pollutants and regional impact. Atmospheric Chemistry and Physics, 2010, 10, 7603-7615.	1.9	344
108	Measurement of gas-phase total peroxides at the summit of Mount Tai in China. Atmospheric Environment, 2009, 43, 1702-1711.	1.9	38

#	Article	IF	CITATIONS
109	Continuous observations of water-soluble ions in PM2.5 at Mount Tai (1534Âm a.s.l.) in central-eastern China. Journal of Atmospheric Chemistry, 2009, 64, 107-127.	1.4	71