
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7617476/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy and Environmental Science, 2011, 4, 760.	30.8	1,153
2	Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition. Scientific Reports, 2013, 3, .	3.3	719
3	Nitrogen doping effects on the structure of graphene. Applied Surface Science, 2011, 257, 9193-9198.	6.1	476
4	Ultrathin MoS ₂ /Nitrogenâ€Doped Graphene Nanosheets with Highly Reversible Lithium Storage. Advanced Energy Materials, 2013, 3, 839-844.	19.5	440
5	Tin Oxide with Controlled Morphology and Crystallinity by Atomic Layer Deposition onto Graphene Nanosheets for Enhanced Lithium Storage. Advanced Functional Materials, 2012, 22, 1647-1654.	14.9	384
6	A Highly Durable Platinum Nanocatalyst for Proton Exchange Membrane Fuel Cells: Multiarmed Starlike Nanowire Single Crystal. Angewandte Chemie - International Edition, 2011, 50, 422-426.	13.8	344
7	Layer by layer assembly of sandwiched graphene/SnO2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties. Energy and Environmental Science, 2013, 6, 2900.	30.8	335
8	Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochemistry Communications, 2011, 13, 822-825.	4.7	315
9	From Lithiumâ€Oxygen to Lithiumâ€Air Batteries: Challenges and Opportunities. Advanced Energy Materials, 2016, 6, 1502164.	19.5	296
10	Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery. Chemical Communications, 2011, 47, 9438.	4.1	293
11	Nitrogen-doped carbon nanotubes as cathode for lithium–air batteries. Electrochemistry Communications, 2011, 13, 668-672.	4.7	261
12	Nitrogen-doped graphene nanosheets as cathode materials with excellent electrocatalytic activity for high capacity lithium-oxygen batteries. Electrochemistry Communications, 2012, 18, 12-15.	4.7	248
13	Co ₃ O ₄ nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries. Nanoscale, 2015, 7, 1830-1838.	5.6	226
14	3D porous LiFePO4/graphene hybrid cathodes with enhanced performance for Li-ion batteries. Journal of Power Sources, 2012, 208, 340-344.	7.8	201
15	Understanding the high-electrocatalytic performance of two-dimensional MoS ₂ nanosheets and their composite materials. Journal of Materials Chemistry A, 2017, 5, 24540-24563.	10.3	183
16	High concentration nitrogen doped carbon nanotube anodes with superior Li+ storage performance for lithium rechargeable battery application. Journal of Power Sources, 2012, 197, 238-245.	7.8	158
17	Facile controlled synthesis and growth mechanisms of flower-like and tubular MnO2 nanostructures by microwave-assisted hydrothermal method. Journal of Colloid and Interface Science, 2012, 369, 123-128.	9.4	141
18	Atomic layer deposition for nanomaterial synthesis and functionalization in energy technology. Materials Horizons, 2017, 4, 133-154.	12.2	141

#	Article	IF	CITATIONS
19	Defect-Rich Crystalline SnO ₂ Immobilized on Graphene Nanosheets with Enhanced Cycle Performance for Li Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 22149-22156.	3.1	138
20	Discharge product morphology and increased charge performance of lithium–oxygen batteries with graphene nanosheet electrodes: the effect of sulphur doping. Journal of Materials Chemistry, 2012, 22, 20170.	6.7	136
21	Hierarchically porous LiFePO4/nitrogen-doped carbon nanotubes composite as a cathode for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 7537.	6.7	135
22	Potential of metal-free "graphene alloy―as electrocatalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 1795-1810.	10.3	133
23	Nitrogen-doped carbon nanotubes with high activity for oxygen reduction in alkaline media. International Journal of Hydrogen Energy, 2011, 36, 2258-2265.	7.1	128
24	One-pot synthesis of MnO2/graphene/carbon nanotube hybrid by chemical method. Carbon, 2011, 49, 4434-4442.	10.3	125
25	Direct Growth of Singleâ€Crystal Pt Nanowires on Sn@CNT Nanocable: 3D Electrodes for Highly Active Electrocatalysts. Chemistry - A European Journal, 2010, 16, 829-835.	3.3	117
26	Hierarchical nanostructured core–shell Sn@C nanoparticles embedded in graphene nanosheets: spectroscopic view and their application in lithium ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 3535.	2.8	113
27	Non-noble metal oxygen reduction electrocatalysts based on carbon nanotubes with controlled nitrogen contents. Journal of Power Sources, 2011, 196, 1795-1801.	7.8	105
28	Eggplant-derived microporous carbon sheets: towards mass production of efficient bifunctional oxygen electrocatalysts at low cost for rechargeable Zn–air batteries. Chemical Communications, 2015, 51, 8841-8844.	4.1	104
29	Controllable synthesis of graphene-based titanium dioxide nanocomposites by atomic layer deposition. Nanotechnology, 2011, 22, 165602.	2.6	90
30	Tellurium@Ordered Macroporous Carbon Composite and Freeâ€6tanding Tellurium Nanowire Mat as Cathode Materials for Rechargeable Lithium–Tellurium Batteries. Advanced Energy Materials, 2015, 5, 1401999.	19.5	83
31	Building better lithium-sulfur batteries: from LiNO3 to solid oxide catalyst. Scientific Reports, 2016, 6, 33154.	3.3	77
32	Non-Aqueous Approach to Synthesize Amorphous/Crystalline Metal Oxide-Graphene Nanosheet Hybrid Composites. Journal of Physical Chemistry C, 2010, 114, 18330-18337.	3.1	75
33	Metallic 1T-MoS2 nanosheets and their composite materials: Preparation, properties and emerging applications. Materials Today Energy, 2018, 10, 264-279.	4.7	75
34	Light-Activated Covalent Formation of Gold Nanoparticle–Graphene and Gold Nanoparticle–Glass Composites. Langmuir, 2011, 27, 13261-13268.	3.5	68
35	One-pot solvothermal synthesis of doped graphene with the designed nitrogen type used as a Pt support for fuel cells. Electrochemistry Communications, 2012, 22, 65-68.	4.7	66
36	Chemically modified graphene and nitrogen-doped graphene: Electrochemical characterisation and sensing applications. Electrochimica Acta, 2013, 114, 533-542.	5.2	65

#	Article	IF	CITATIONS
37	Manganese Oxide Catalyst Grown on Carbon Paper as an Air Cathode for Highâ€Performance Rechargeable Zinc–Air Batteries. ChemPlusChem, 2015, 80, 1341-1346.	2.8	65
38	Systematic synthesis of ZIF-67 derived Co3O4 and N-doped carbon composite for supercapacitors via successive oxidation and carbonization. Electrochimica Acta, 2021, 376, 137986.	5.2	64
39	Three-dimensional hierarchical interwoven nitrogen-doped carbon nanotubes/CoxNi1-x-layered double hydroxides ultrathin nanosheets for high-performance supercapacitors. Electrochimica Acta, 2016, 203, 21-29.	5.2	63
40	Insight into the correlation of Pt–support interactions with electrocatalytic activity and durability in fuel cells. Journal of Materials Chemistry A, 2020, 8, 9420-9446.	10.3	62
41	Microwave-assisted hydrothermal synthesis of nanostructured spinel Li4Ti5O12 as anode materials for lithium ion batteries. Electrochimica Acta, 2012, 63, 100-104.	5.2	59
42	Controllable atomic layer deposition of one-dimensional nanotubular TiO2. Applied Surface Science, 2013, 266, 132-140.	6.1	58
43	Carbon black cathodes for lithium oxygen batteries: Influence of porosity and heteroatom-doping. Carbon, 2013, 64, 170-177.	10.3	58
44	Achieving High-Performance Silicon Anodes of Lithium-Ion Batteries via Atomic and Molecular Layer Deposited Surface Coatings: an Overview. Electrochimica Acta, 2017, 251, 710-728.	5.2	58
45	Influence of paper thickness on the electrochemical performances of graphene papers as an anode for lithium ion batteries. Electrochimica Acta, 2013, 91, 227-233.	5.2	56
46	Controlled synthesis of Zirconium Oxide on graphene nanosheets by atomic layer deposition and its growth mechanism. Carbon, 2013, 52, 74-82.	10.3	55
47	High performance NiO nanosheets anchored on three-dimensional nitrogen-doped carbon nanotubes as a binder-free anode for lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 10940-10947.	10.3	55
48	High stability and activity of Pt electrocatalyst on atomic layer deposited metal oxide/nitrogen-doped graphene hybrid support. International Journal of Hydrogen Energy, 2014, 39, 15967-15974.	7.1	51
49	Atomic and Molecular Layer Deposition for Superior Lithiumâ€Sulfur Batteries: Strategies, Performance, and Mechanisms. Batteries and Supercaps, 2018, 1, 41-68.	4.7	50
50	Size-controlled synthesis of colloidal platinum nanoparticles and their activity for the electrocatalytic oxidation of carbon monoxide. Journal of Colloid and Interface Science, 2005, 287, 159-166.	9.4	47
51	Dependence of Onset Potential for Methanol Electrocatalytic Oxidation on Steric Location of Active Center in Multicomponent Electrocatalysts. Journal of Physical Chemistry C, 2007, 111, 11897-11902.	3.1	47
52	Advances in constructing polymeric carbon-nitride-based nanocomposites and their applications in energy chemistry. Sustainable Energy and Fuels, 2019, 3, 611-655.	4.9	47
53	Fabrication of MoS ₂ -Graphene Nanocomposites by Layer-by-Layer Manipulation for High-Performance Lithium Ion Battery Anodes. ECS Journal of Solid State Science and Technology, 2013, 2, M3034-M3039.	1.8	46
54	Efficient electrocatalytic reduction of CO2 to CO on an electrodeposited Zn porous network. Electrochemistry Communications, 2018, 97, 87-90.	4.7	44

#	Article	IF	CITATIONS
55	A simple solution-phase reduction method for the synthesis of shape-controlled platinum nanoparticles. Materials Letters, 2005, 59, 1567-1570.	2.6	42
56	Cobalt sulfide nanoparticles impregnated nitrogen and sulfur co-doped graphene as bifunctional catalyst for rechargeable Zn–air batteries. RSC Advances, 2015, 5, 7280-7284.	3.6	42
57	Facile assembly of Ni(OH)2 nanosheets on nitrogen-doped carbon nanotubes network as high-performance electrocatalyst for oxygen evolution reaction. Journal of Alloys and Compounds, 2018, 731, 766-773.	5.5	42
58	lmproved rate capability of a LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ /CNT/graphene hybrid material for Li-ion batteries. RSC Advances, 2017, 7, 24359-24367.	3.6	40
59	Palladium–Cobalt Nanowires Decorated with Jagged Appearance for Efficient Methanol Electro-oxidation. ACS Applied Materials & Interfaces, 2018, 10, 29965-29971.	8.0	40
60	Co ₃ O ₄ nanoparticles grown on N-doped Vulcan carbon as a scalable bifunctional electrocatalyst for rechargeable zinc–air batteries. RSC Advances, 2015, 5, 75773-75780.	3.6	39
61	Activity and Durability of Ternary PtRuIrâ^•C for Methanol Electro-oxidation. Journal of the Electrochemical Society, 2009, 156, B397.	2.9	36
62	Recent advances in enzyme-free electrochemical hydrogen peroxide sensors based on carbon hybrid nanocomposites. Journal of Materials Chemistry C, 2021, 9, 6970-6990.	5.5	36
63	Improved Electrocatalytic Performance in Overall Water Splitting with Rational Design of Hierarchical Co ₃ O ₄ @NiFe Layered Double Hydroxide Core‧hell Nanostructure. ChemElectroChem, 2018, 5, 1357-1363.	3.4	34
64	Unravelling the synergy effects of defect-rich 1T-MoS ₂ /carbon nanotubes for the hydrogen evolution reaction by experimental and calculational studies. Sustainable Energy and Fuels, 2019, 3, 2100-2110.	4.9	34
65	Steam reforming of acetic acid over Ni KOH/Al2O3 catalyst with low nickel loading: The remarkable promotional effects of KOH on activity. International Journal of Hydrogen Energy, 2019, 44, 729-747.	7.1	31
66	Recent progress in cobalt-based compounds as high-performance anode materials for lithium ion batteries. Rare Metals, 2017, 36, 307-320.	7.1	30
67	Cobalt oxide nanosheets anchored onto nitrogen-doped carbon nanotubes as dual purpose electrodes for lithium-ion batteries and oxygen evolution reaction. International Journal of Energy Research, 2018, 42, 853-862.	4.5	30
68	Size effect of gold nanoparticles on the electrocatalytic oxidation of carbon monoxide in alkaline solution. Journal of Nanoparticle Research, 2007, 9, 1145-1151.	1.9	29
69	Atomic-scale tuned interface of nickel-rich cathode for enhanced electrochemical performance in lithium-ion batteries. Journal of Materials Science and Technology, 2020, 54, 77-86.	10.7	29
70	Electrocatalytic oxidation of carbon monoxide on platinum-modified polyaniline film electrodes. Thin Solid Films, 2006, 497, 309-314.	1.8	26
71	Steam reforming of carboxylic acids for hydrogen generation: Effects of aliphatic chain of the acids on their reaction behaviors. Molecular Catalysis, 2018, 450, 1-13.	2.0	23
72	N-containing functional groups induced superior cytocompatible and hemocompatible graphene by NH2 ion implantation. Journal of Materials Science: Materials in Medicine, 2013, 24, 2741-2748.	3.6	22

#	Article	IF	CITATIONS
73	Hydrogenation of fourteen biomass-derived phenolics in water and in methanol: their distinct reaction behaviours. Sustainable Energy and Fuels, 2018, 2, 751-758.	4.9	22
74	Assemblage of Perovskite LaNiO ₃ Connected With In Situ Grown Nitrogenâ€Doped Carbon Nanotubes as Highâ€Performance Electrocatalyst for Oxygen Evolution Reaction. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800380.	1.8	20
75	Nitrogen ion implanted graphene as thrombo-protective safer and cytoprotective alternative for biomedical applications. Carbon, 2013, 61, 321-328.	10.3	19
76	First-principles studies on the electronic and optical properties of Fe-doped potassium dihydrogen phosphate crystal. Computational Materials Science, 2018, 143, 398-402.	3.0	16
77	NH2+ implantations induced superior hemocompatibility of carbon nanotubes. Nanoscale Research Letters, 2013, 8, 205.	5.7	14
78	Batteries: Tin Oxide with Controlled Morphology and Crystallinity by Atomic Layer Deposition onto Graphene Nanosheets for Enhanced Lithium Storage (Adv. Funct. Mater. 8/2012). Advanced Functional Materials, 2012, 22, 1646-1646.	14.9	13
79	One-Pot Synthesis of Highly Efficient Carbon-Supported Polyhedral Pt3Ni Alloy Nanoparticles for Oxygen Reduction Reaction. Electrocatalysis, 2019, 10, 613-620.	3.0	12
80	Dendritic Ag/Pd Alloy Nanostructure Arrays for Electrochemical CO 2 Reduction. ChemElectroChem, 2020, 7, 2608-2613.	3.4	12
81	pH induced size-selected synthesis of PtRu nanoparticles, their characterization and electrocatalytic properties. Journal of Molecular Catalysis A, 2007, 265, 42-49.	4.8	11
82	A strain or electric field induced direct bandgap in ultrathin silicon film and its application in photovoltaics or photocatalysis. Physical Chemistry Chemical Physics, 2016, 18, 7156-7162.	2.8	11
83	Enhanced Charge Storage Mechanism and Long-Term Cycling Stability in Diamondized Titania Nanocomposite Supercapacitors Operating in Aqueous Electrolytes. Journal of Physical Chemistry C, 2020, 124, 15698-15712.	3.1	11
84	Designed Growth and Characterization of Radially Aligned Ti5Si3 Nanowire Architectures. Journal of Physical Chemistry C, 2011, 115, 15885-15889.	3.1	10
85	Investigation on the Cyclability of Lithiumâ€Oxygen Cells in a Confined Potential Window using Cathodes with Preâ€filled Discharge Products. Chemistry - an Asian Journal, 2015, 10, 2182-2189.	3.3	10
86	Planar Fully Stretchable Lithium-Ion Batteries Based on a Lamellar Conductive Elastomer. ACS Applied Materials & Interfaces, 2020, 12, 53774-53780.	8.0	10
87	Tailoring atomically dispersed cobalt–nitrogen active sites in wrinkled carbon nanosheets <i>via</i> "fence―isolation for highly sensitive detection of hydrogen peroxide. Journal of Materials Chemistry A, 2022, 10, 3190-3200.	10.3	9
88	Inside Cover: Direct Growth of Single-Crystal Pt Nanowires on Sn@CNT Nanocable: 3D Electrodes for Highly Active Electrocatalysts (Chem. Eur. J. 3/2010). Chemistry - A European Journal, 2010, 16, 732-732.	3.3	7
89	Destabilization of Thiolated Gold Clusters for the Growth of Singleâ€Crystalline Gold Nanoparticles and Their Selfâ€Assembly for SERS Detection. Particle and Particle Systems Characterization, 2015, 32, 588-595.	2.3	7
90	Enhanced Electrochemical Reduction of CO ₂ to CO on Ag/SnO ₂ by a Synergistic Effect of Morphology and Structural Defects. Chemistry - an Asian Journal, 2021, 16, 2694-2701.	3.3	7

#	Article	IF	CITATIONS
91	Nitrogen-doped carbon nanotubes self-catalytically grown on desert sands towards water purification. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	4
92	Selfâ€reconstructionâ€induced <scp> câ€CoSe ₂ </scp> coupled with co(<scp>OH</scp>) ₂ from Co _{0.} <scp> ₈₅ Se </scp> For efficient <scp>HER</scp> Electrocatalysis in alkaline media. International Journal of Energy Research, 2022, 46, 12476-12484.	4.5	4
93	Temperature-Induced Structure Transformation from Co _{0.85} Se to Orthorhombic Phase CoSe ₂ Realizing Enhanced Hydrogen Evolution Catalysis. ACS Omega, 2022, 7, 15901-15908.	3.5	4
94	Hierarchical Hybrid of Few-Layer Graphene upon Tungsten Monocarbide Nanowires: Controlled Synthesis and Electrocatalytic Performance for Methanol Oxidation. ACS Applied Energy Materials, 2019, 2, 328-337.	5.1	3
95	Facile solid-state synthesis of heteroatom-doped and alkaline-treated bismuth vanadate for photocatalyzing methylene blue degradation and water oxidation. Materials Science in Semiconductor Processing, 2020, 117, 105180.	4.0	3
96	Titelbild: A Highly Durable Platinum Nanocatalyst for Proton Exchange Membrane Fuel Cells: Multiarmed Starlike Nanowire Single Crystal (Angew. Chem. 2/2011). Angewandte Chemie, 2011, 123, 341-341.	2.0	2
97	Atomic and Molecular Layer Deposition for Superior Lithium-Sulfur Batteries: Strategies, Performance, and Mechanisms. Batteries and Supercaps, 2018, 1, 40-40.	4.7	2
98	Cover Picture: A Highly Durable Platinum Nanocatalyst for Proton Exchange Membrane Fuel Cells: Multiarmed Starlike Nanowire Single Crystal (Angew. Chem. Int. Ed. 2/2011). Angewandte Chemie - International Edition, 2011, 50, 325-325.	13.8	1
99	Correlation of composition, cooling rate and superheating temperature with solidification behaviors and microstructures of Al–Bi–Sn ribbons. Materials Research Express, 2019, 6, 066539.	1.6	1
100	Building well-defined hierarchical nanostructures for sulfur and silicon electrodes. Progress in Natural Science: Materials International, 2019, 29, 672-678.	4.4	1
101	Coral-Like Ni2P-Ni5P4 Polymorphs as Noble Metal-Free Catalysts for Efficient Water Splitting. ECS Journal of Solid State Science and Technology, 2021, 10, 085004.	1.8	1
102	Graphene and N-Doped Graphene as Cathodes for Li-Air Batteries. ECS Meeting Abstracts, 2012, , .	0.0	0
103	Improved Electrocatalytic Performance in Overall Water Splitting with Rational Design of Hierarchical Co ₃ O ₄ @NiFe Layered Double Hydroxide Core–Shell Nanostructure. ChemElectroChem, 2018, 5, 1339-1339.	3.4	0
104	In-Situ Electrochemical Construction of Stable Water Oxidation Catalysts. ECS Meeting Abstracts, 2021, MA2021-01, 1222-1222.	0.0	0
105	Monolayer Iridium Nanoparticles Coated TiO 2 Coreâ€Shell Architecture as Efficient Oxygen Evolution Reaction Electrocatalyst. ChemistrySelect, 2021, 6, 9134-9138.	1.5	0
106	Stable Water Oxidation Catalysts Based on in-situ Electrochemical Transition of Nickel Phosphate. Catalysis Letters, 0, , 1.	2.6	0
107	Interfacial Design of Metallic 1T-MoS2/Carbon Nanotubes for High-Electrocatalytic Hydrogen Evolution Performance. ECS Meeting Abstracts, 2019, , .	0.0	0
108	Pt Nanowires with High Catalytic Activity and Durability Towards Methanol Oxidation Reaction. ECS Meeting Abstracts, 2019, , .	0.0	0

#	Article	IF	CITATIONS
109	Dendritic Silver/Palladium Alloy Arrays for Electrochemical CO2 Reduction. ECS Meeting Abstracts, 2020, MA2020-01, 2632-2632.	0.0	0
110	Facet-Dependent Selectivity of Cuprous Oxide/Silver Tandem Catalysts for Promoting C ₂ H ₄ Production from Electrochemical CO ₂ Reduction. ECS Meeting Abstracts, 2022, MA2022-01, 1700-1700.	0.0	0