
Siyuan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7617225/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineering bioactive nanoparticles to rejuvenate vascular progenitor cells. Communications Biology, 2022, 5, .	4.4	7
2	Multiplexed Ultrasound Imaging Using Spectral Analysis on Gas Vesicles. Advanced Healthcare Materials, 2022, 11, .	7.6	4
3	Compressed Sensing-Based Super-Resolution Ultrasound Imaging for Faster Acquisition and High Quality Images. IEEE Transactions on Biomedical Engineering, 2021, 68, 3317-3326.	4.2	15
4	Selective glutamine metabolism inhibition in tumor cells improves antitumor T lymphocyte activity in triple-negative breast cancer. Journal of Clinical Investigation, 2021, 131, .	8.2	144
5	In vivo selection of highly metastatic human ovarian cancer sublines reveals role for AMIGO2 in intra-peritoneal metastatic regulation. Cancer Letters, 2021, 503, 163-173.	7.2	11
6	The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain Treg cell activation and suppression of antitumor immunity. Cell Reports, 2021, 35, 109235.	6.4	187
7	Isolation of mouse brain-infiltrating leukocytes for single cell profiling of epitopes and transcriptomes. STAR Protocols, 2021, 2, 100537.	1.2	11
8	Aged Breast Extracellular Matrix Drives Mammary Epithelial Cells to an Invasive and Cancer‣ike Phenotype. Advanced Science, 2021, 8, e2100128.	11.2	19
9	Multi-modal Single-Cell Analysis Reveals Brain Immune Landscape Plasticity during Aging and Gut Microbiota Dysbiosis. Cell Reports, 2020, 33, 108438.	6.4	46
10	CNS-Native Myeloid Cells Drive Immune Suppression in the Brain Metastatic Niche through Cxcl10. Cell, 2020, 183, 1234-1248.e25.	28.9	79
11	Rab11b-mediated integrin recycling promotes brain metastatic adaptation and outgrowth. Nature Communications, 2020, 11, 3017.	12.8	38
12	Cell surface GRP78 promotes stemness in normal and neoplastic cells. Scientific Reports, 2020, 10, 3474.	3.3	30
13	Host Wnt5a Potentiates Microenvironmental Regulation of Ovarian Cancer Metastasis. Cancer Research, 2020, 80, 1156-1170.	0.9	31
14	Selective inhibition of mTORC1 in tumor vessels increases antitumor immunity. JCI Insight, 2020, 5, .	5.0	12
15	Single-cell profiling guided combinatorial immunotherapy for fast-evolving CDK4/6 inhibitor-resistant HER2-positive breast cancer. Nature Communications, 2019, 10, 3817.	12.8	61
16	Death effector domain-containing protein induces vulnerability to cell cycle inhibition in triple-negative breast cancer. Nature Communications, 2019, 10, 2860.	12.8	18
17	Combined Scaffold Evaluation and Systemsâ€Level Transcriptomeâ€Based Analysis for Accelerated Lead Optimization Reveals Ribosomal Targeting Spirooxindole Cyclopropanes. ChemMedChem, 2019, 14, 1653-1661.	3.2	11
18	Generating intravital super-resolution movies with conventional microscopy reveals actin dynamics that construct pioneer axons. Development (Cambridge), 2019, 146, .	2.5	11

Siyuan Zhang

#	Article	IF	CITATIONS
19	A Poisson-Gaussian Denoising Dataset With Real Fluorescence Microscopy Images. , 2019, , .		78
20	Three-dimensional deep tissue multiphoton frequency-domain fluorescence lifetime imaging microscopy via phase multiplexing and adaptive optics. , 2019, , .		3
21	Stromal cell-laden 3D hydrogel microwell arrays as tumor microenvironment model for studying stiffness dependent stromal cell-cancer interactions. Biomaterials, 2018, 170, 37-48.	11.4	77
22	A sparse differential clustering algorithm for tracing cell type changes via single-cell RNA-sequencing data. Nucleic Acids Research, 2018, 46, e14-e14.	14.5	17
23	Tumor-induced Stromal STAT1 Accelerates Breast Cancer via Deregulating Tissue Homeostasis. Molecular Cancer Research, 2017, 15, 585-597.	3.4	17
24	3D hydrogel-based microwell arrays as a tumor microenvironment model to study breast cancer growth. Biomedical Materials (Bristol), 2017, 12, 025009.	3.3	62
25	GAD1 Upregulation Programs Aggressive Features of Cancer Cell Metabolism in the Brain Metastatic Microenvironment. Cancer Research, 2017, 77, 2844-2856.	0.9	33
26	An Integrative Platform for Three-dimensional Quantitative Analysis of Spatially Heterogeneous Metastasis Landscapes. Scientific Reports, 2016, 6, 24201.	3.3	13
27	On-chip three-dimensional tissue histology for microbiopsies. Biomicrofluidics, 2016, 10, .	2.4	3
28	Oncogenic Ras differentially regulates metabolism and anoikis in extracellular matrix-detached cells. Cell Death and Differentiation, 2016, 23, 1271-1282.	11.2	61
29	3D Segmentation of Glial Cells Using Fully Convolutional Networks and k-Terminal Cut. Lecture Notes in Computer Science, 2016, , 658-666.	1.3	13
30	Erbb4 Signaling: an overlooked backup system?. Cell Cycle, 2015, 14, 1623-1623.	2.6	3
31	The Role of Multicellular Aggregation in the Survival of ErbB2-positive Breast Cancer Cells during Extracellular Matrix Detachment. Journal of Biological Chemistry, 2015, 290, 8722-8733.	3.4	39
32	Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature, 2015, 527, 100-104.	27.8	966
33	A journey to uncharted territory: new technical frontiers in studying tumor–stromal cell interactions. Integrative Biology (United Kingdom), 2015, 7, 153-161.	1.3	9
34	Fast Background Removal in 3D Fluorescence Microscopy Images Using One-Class Learning. Lecture Notes in Computer Science, 2015, , 292-299.	1.3	4
35	Evolving concepts of tumor heterogeneity. Cell and Bioscience, 2014, 4, 69.	4.8	59
36	14-3-3ζ Orchestrates Mammary Tumor Onset and Progression via miR-221–Mediated Cell Proliferation. Cancer Research, 2014, 74, 363-373.	0.9	28

Siyuan Zhang

#	Article	IF	CITATIONS
37	Src Family Kinases as Novel Therapeutic Targets to Treat Breast Cancer Brain Metastases. Cancer Research, 2013, 73, 5764-5774.	0.9	108
38	Targeting Src family kinases in anti-cancer therapies: turning promise into triumph. Trends in Pharmacological Sciences, 2012, 33, 122-128.	8.7	254
39	Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance pathways. Nature Medicine, 2011, 17, 461-469.	30.7	466
40	Phase I/II Study of Trastuzumab in Combination With Everolimus (RAD001) in Patients With HER2-Overexpressing Metastatic Breast Cancer Who Progressed on Trastuzumab-Based Therapy. Journal of Clinical Oncology, 2011, 29, 3126-3132.	1.6	207
41	Phase I/II Study of Trastuzumab in Combination With Everolimus (RAD001) in Patients With HER2-Overexpressing Metastatic Breast Cancer Who Progressed on Trastuzumab-Based Therapy. Journal of Clinical Oncology, 2011, 29, 3126-3132.	1.6	10
42	PI(3)King Apart PTEN's Role in Cancer. Clinical Cancer Research, 2010, 16, 4325-4330.	7.0	221
43	PTEN, PIK3CA, p-AKT, and p-p70S6K Status. American Journal of Pathology, 2010, 177, 1647-1656.	3.8	276
44	Signaling pathways from membrane lipid rafts to JNK1 activation in reactive nitrogen species-induced non-apoptotic cell death. Cell Death and Differentiation, 2008, 15, 386-397.	11.2	22
45	c-Jun N-terminal kinase mediates hydrogen peroxide-induced cell death via sustained poly(ADP-ribose) polymerase-1 activation. Cell Death and Differentiation, 2007, 14, 1001-1010.	11.2	90
46	Critical role of pro-apoptotic Bcl-2 family members in andrographolide-induced apoptosis in human cancer cells. Biochemical Pharmacology, 2006, 72, 132-144.	4.4	153
47	Methyl-3-indolylacetate inhibits cancer cell invasion by targeting the MEK1/2-ERK1/2 signaling pathway. Molecular Cancer Therapeutics, 2006, 5, 3285-3293.	4.1	22
48	Anti-Cancer Potential of Sesquiterpene Lactones: Bioactivity and Molecular Mechanisms. Anti-Cancer Agents in Medicinal Chemistry, 2005, 5, 239-249.	7.0	309
49	Down-regulation of c-FLIP contributes to the sensitization effect of 3,3′-diindolylmethane on TRAIL-induced apoptosis in cancer cells. Molecular Cancer Therapeutics, 2005, 4, 1972-1981.	4.1	37
50	Suppressed NF-ÂB and sustained JNK activation contribute to the sensitization effect of parthenolide to TNF-Â-induced apoptosis in human cancer cells. Carcinogenesis, 2004, 25, 2191-2199.	2.8	99
51	Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells. Cancer Letters, 2004, 208, 143-153.	7.2	440
52	Involvement of proapoptotic Bcl-2 family members in parthenolide-induced mitochondrial dysfunction and apoptosis. Cancer Letters, 2004, 211, 175-188.	7.2	77
53	Targeting the EGFR family of receptor tyrosine kinases. , 0, , 843-853.		Ο