List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7616988/publications.pdf Version: 2024-02-01

SVEN TOUCAADD

#	Article	IF	CITATIONS
1	Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy. Applied Surface Science Advances, 2021, 5, 100112.	6.8	451
2	Quantitative analysis of the inelastic background in surface electron spectroscopy. Surface and Interface Analysis, 1988, 11, 453-472.	1.8	423
3	Influence of elastic and inelastic scattering on energy spectra of electrons emitted from solids. Physical Review B, 1982, 25, 4452-4466.	3.2	401
4	Electronic and optical properties of Cu, CuO and Cu ₂ O studied by electron spectroscopy. Journal of Physics Condensed Matter, 2012, 24, 175002.	1.8	317
5	Universality Classes of Inelastic Electron Scattering Cross-sections. Surface and Interface Analysis, 1997, 25, 137-154.	1.8	306
6	Differential inelastic electron scattering cross sections from experimental reflection electron-energy-loss spectra: Application to background removal in electron spectroscopy. Physical Review B, 1987, 35, 6570-6577.	3.2	284
7	Accuracy of the non-destructive surface nanostructure quantification technique based on analysis of the XPS or AES peak shape. Surface and Interface Analysis, 1998, 26, 249-269.	1.8	267
8	Practical algorithm for background subtraction. Surface Science, 1989, 216, 343-360.	1.9	266
9	Model for quantitative analysis of reflection-electron-energy-loss spectra. Physical Review B, 1992, 46, 2486-2497.	3.2	249
10	Inelastic-electron-scattering cross sections for Si, Cu, Ag, Au, Ti, Fe, and Pd. Physical Review B, 1991, 43, 1651-1661.	3.2	203
11	Surface nanostructure determination by xâ€ray photoemission spectroscopy peak shape analysis. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 1415-1423.	2.1	181
12	Model for quantitative analysis of reflection-electron-energy-loss spectra: Angular dependence. Physical Review B, 1996, 53, 9719-9727.	3.2	167
13	Determination of the Cu 2p primary excitation spectra for Cu, Cu2O and CuO. Surface Science, 2014, 620, 17-22.	1.9	159
14	Inelastic background correction and quantitative surface analysis. Journal of Electron Spectroscopy and Related Phenomena, 1990, 52, 243-271.	1.7	157
15	Low energy inelastic electron scattering properties of noble and transition metals. Solid State Communications, 1987, 61, 547-549.	1.9	140
16	Energy loss in XPS: Fundamental processes and applications for quantification, non-destructive depth profiling and 3D imaging. Journal of Electron Spectroscopy and Related Phenomena, 2010, 178-179, 128-153.	1.7	137
17	Background removal in x-ray photoelectron spectroscopy: Relative importance of intrinsic and extrinsic processes. Physical Review B, 1986, 34, 6779-6783.	3.2	116
18	Quantitative model of electron energy loss in XPS. Physical Review B, 1997, 56, 1612-1619.	3.2	114

SVEN TOUGAARD

#	Article	lF	CITATIONS
19	Comparison of validity and consistency of methods for quantitative XPS peak analysis. Surface and Interface Analysis, 1993, 20, 1013-1046.	1.8	100
20	Formalism for quantitative surface analysis by electron spectroscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1990, 8, 2197-2203.	2.1	91
21	Comparison of the attenuation lengths and the inelastic meanâ€free path for photoelectrons in silver. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1990, 8, 106-116.	2.1	90
22	Non-destructive depth profiling through quantitative analysis of surface electron spectra. Surface and Interface Analysis, 1989, 14, 730-738.	1.8	89
23	Elastic electron backscattering from surfaces. Physical Review B, 1989, 39, 61-71.	3.2	88
24	Dielectric loss function of Si and SiO2 from quantitative analysis of REELS spectra. Surface and Interface Analysis, 1993, 20, 719-726.	1.8	83
25	Concentration depth profiles by XPS; A new approach. Surface Science, 1983, 129, 355-365.	1.9	81
26	Inelastic background intensities in XPS spectra. Surface Science, 1984, 143, 482-494.	1.9	76
27	Electronic and optical properties of Al ₂ O ₃ /SiO ₂ thin films grown on Si substrate. Journal Physics D: Applied Physics, 2010, 43, 255301.	2.8	75
28	Practical guide to the use of backgrounds in quantitative XPS. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	2.1	74
29	Deconvolution of loss features from electron spectra. Surface Science, 1984, 139, 208-218.	1.9	71
30	QUEELS software package for calculation of surface effects in electron spectra. Surface and Interface Analysis, 2004, 36, 824-827.	1.8	71
31	Evaluation of theoretical models for elastic electron backscattering from surfaces. Progress in Surface Science, 2000, 63, 135-175.	8.3	66
32	Quantification of plasmon excitations in core-level photoemission. Physical Review B, 2005, 71, .	3.2	63
33	Use of QUASESâ,,¢/XPS measurements to determine the oxide composition and thickness on an iron substrate. Surface and Interface Analysis, 2004, 36, 632-639.	1.8	62
34	Quantitative analysis of reflection electron energy-loss spectra. Surface and Interface Analysis, 1992, 19, 269-273.	1.8	59
35	Proliferation of Faulty Materials Data Analysis in the Literature. Microscopy and Microanalysis, 2020, 26, 1-2.	0.4	59
36	Experimental test of model for angular and energy dependence of reflection-electron-energy-loss spectra. Physical Review B, 1996, 53, 9728-9732.	3.2	58

#	Article	IF	CITATIONS
37	Elastic electron backscattering from surfaces with overlayers. Physical Review B, 1992, 45, 3694-3702.	3.2	54
38	Quantitative non-destructive in-depth composition information from XPS. Surface and Interface Analysis, 1986, 8, 257-260.	1.8	53
39	Pure and Sn-doped ZnO films produced by pulsed laser deposition. Applied Surface Science, 2002, 197-198, 467-471.	6.1	53
40	Xâ€ray photoelectron spectroscopy peak shape analysis for the extraction of inâ€depth composition information. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1987, 5, 1275-1278.	2.1	51
41	The adsorption of alkanethiols on gold studied quantitatively by XPS inelastic background analysis. Journal of Electron Spectroscopy and Related Phenomena, 1992, 58, 141-158.	1.7	51
42	Elastic electron backscattering from surfaces: Prediction of maximum intensity. Physical Review B, 1993, 47, 7420-7430.	3.2	51
43	Characterization of Au nano-cluster formation on and diffusion in polystyrene using XPS peak shape analysis. Surface Science, 2007, 601, 3261-3267.	1.9	50
44	Noise reduction procedures applied to XPS imaging of depth distribution of atoms on the nanoscale. Surface Science, 2008, 602, 3064-3070.	1.9	50
45	Reflection electron energy loss spectroscopy for ultrathin gate oxide materials. Surface and Interface Analysis, 2012, 44, 623-627.	1.8	50
46	Quantitative XPS: non-destructive analysis of surface nano-structures. Applied Surface Science, 1996, 100-101, 1-10.	6.1	49
47	Escape probability of electrons from solids. Influence of elastic electron scattering. Surface Science, 1999, 432, 211-227.	1.9	47
48	Composition depth information from the inelastic background signal in XPS. Surface Science, 1985, 162, 875-885.	1.9	46
49	Validity of Yubero-Tougaard theory to quantitatively determine the dielectric properties of surface nanofilms. Physical Review B, 2008, 77, .	3.2	46
50	Electronic and optical properties of selected polymers studied by reflection electron energy loss spectroscopy. Journal of Applied Physics, 2012, 111, .	2.5	46
51	Quantitative analysis of REELS spectra of ZrO2: Determination of the dielectric loss function and inelastic mean free paths. Surface and Interface Analysis, 1994, 22, 124-128.	1.8	45
52	Electronic and optical properties of hafnium indium zinc oxide thin film by XPS and REELS. Journal of Electron Spectroscopy and Related Phenomena, 2012, 185, 18-22.	1.7	44
53	XPS for non-destructive depth profiling and 3D imaging of surface nanostructures. Analytical and Bioanalytical Chemistry, 2010, 396, 2741-2755.	3.7	42
54	LMM Auger primary excitation spectra of copper. Surface Science, 2014, 630, 294-299.	1.9	42

#	Article	IF	CITATIONS
55	Quantitative analysis by XPS using the multiline approach. Surface and Interface Analysis, 1994, 21, 724-730.	1.8	41
56	Practical correction formula for elastic electron scattering effects in attenuation of auger electrons and photoelectrons. Surface and Interface Analysis, 1998, 26, 17-29.	1.8	41
57	Surface morphology of PS–PDMS diblock copolymer films. Journal of Electron Spectroscopy and Related Phenomena, 2001, 121, 93-110.	1.7	40
58	Electronic properties of ultrathin HfO2, Al2O3, and Hf–Al–O dielectric films on Si(100) studied by quantitative analysis of reflection electron energy loss spectra. Journal of Applied Physics, 2006, 100, 083713.	2.5	40
59	Background correction in XPS: Comparison of validity of different methods. Surface and Interface Analysis, 1992, 19, 171-174.	1.8	37
60	Inelastic background removal in xâ€ray excited photoelectron spectra from homogeneous and inhomogeneous solids. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1987, 5, 1230-1234.	2.1	36
61	Surface roughness and island formation effects in ARXPS quantification. Surface and Interface Analysis, 2004, 36, 788-792.	1.8	36
62	Test on validity of recent formalism for quantitative XPS/AES. Surface Science, 1991, 244, 125-134.	1.9	35
63	Improved XPS analysis by visual inspection of the survey spectrum. Surface and Interface Analysis, 2018, 50, 657-666.	1.8	35
64	Inelastic background modelling applied to hard X-ray photoelectron spectroscopy of deeply buried layers: A comparison of synchrotron and lab-based (9.25ÂkeV) measurements. Applied Surface Science, 2021, 541, 148635.	6.1	35
65	Effective inelastic scattering cross-sections for background analysis in HAXPES of deeply buried layers. Applied Surface Science, 2017, 402, 78-85.	6.1	33
66	Evaluation of validity of the depth-dependent correction formula (CF) for elastic electron scattering effects in AES and XPS. Surface and Interface Analysis, 1998, 26, 374-384.	1.8	32
67	Controlled adhesion of <i>Salmonella Typhimurium</i> to poly(oligoethylene glycol methacrylate) grafts. Surface and Interface Analysis, 2011, 43, 1436-1443.	1.8	32
68	Composition dependence of dielectric and optical properties of Hf-Zr-silicate thin films grown on Si(100) by atomic layer deposition. Thin Solid Films, 2016, 616, 425-430.	1.8	32
69	XPS primary excitation spectra of Zn 2 <i>p</i> , Fe 2 <i>p</i> , and Ce 3 <i>d</i> from ZnO, αâ€Fe ₂ O ₃ , and CeO ₂ . Surface and Interface Analysis, 2019, 51, 353-360.	1.8	31
70	Path-length distribution of photoelectrons emitted from homogeneous noncrystalline solids: Consequences for inelastic-background analysis. Physical Review B, 1995, 52, 5935-5946.	3.2	30
71	Probing deeper by hard x-ray photoelectron spectroscopy. Applied Physics Letters, 2014, 104, 051608.	3.3	30
72	Atomic structure of the scandium (0001) surface. Surface Science, 1982, 115, 270-278.	1.9	29

#	Article	IF	CITATIONS
73	Absolute background determination in XPS. Surface and Interface Analysis, 1985, 7, 17-21.	1.8	29
74	Accuracy of the Tougaard method for quantitative surface analysis. Comparison of the Universal and REELS inelastic cross sections. Journal of Electron Spectroscopy and Related Phenomena, 1992, 60, 301-319.	1.7	29
75	Nanostructure of thin metal films on silicon(111) investigated by x-ray photoelectron spectroscopy: Inelastic peak shape analysis. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1995, 13, 949.	1.6	29
76	Quantitative x-ray photoelectron spectroscopy: Simple algorithm to determine the amount of atoms in the outermost few nanometers. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1081-1086.	2.1	29
77	XPS imaging of depth profiles and amount of substance based on Tougaard's algorithm. Surface Science, 2006, 600, 3015-3021.	1.9	29
78	Penetration of fluorine into the silicon lattice during exposure to F atoms, F2, and XeF2: Implications for spontaneous etching reactions. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 96-103.	2.1	29
79	Measurement of optical constants of Si and SiO2 from reflection electron energy loss spectra using factor analysis method. Journal of Applied Physics, 2010, 107, .	2.5	29
80	Background intensities in XPS spectra from homogeneous metals. Surface Science, 1983, 124, 451-460.	1.9	28
81	Quantitative analysis of satellite structures in XPS spectra of gold and silver. Applied Surface Science, 2016, 383, 317-323.	6.1	28
82	Growth and in-depth distribution of thin metal films on silicon (111) studied by XPS: inelastic peak shape analysis. Surface Science, 1995, 331-333, 942-947.	1.9	27
83	Quantitative analysis of Ni 2p photoemission in NiO and Ni diluted in a SiO 2 matrix. Surface Science, 2016, 644, 46-52.	1.9	27
84	Database of relativistic elastic scattering cross-sections for calculations of photoelectron and Auger electron transport. Surface and Interface Analysis, 1994, 22, 129-133.	1.8	26
85	Experimental estimation of surface excitation parameter for surface analysis. Surface and Interface Analysis, 2002, 33, 410-413.	1.8	26
86	Theoretical determination of the surface excitation parameter for Ti, Fe, Cu, Pd, Ag, and Au. Surface Science, 2007, 601, 5611-5615.	1.9	26
87	Test of algorithm for background correction in XPS under variation of XPS peak energy. Surface and Interface Analysis, 1988, 13, 225-227.	1.8	25
88	Yb growth on Ni(100) studied by XPS inelastic background analysis. Surface Science, 1990, 236, 271-281.	1.9	25
89	Nanostructure of Ge deposited on Si(001): a study by XPS peak shape analysis and AFM. Thin Solid Films, 1999, 338, 165-171.	1.8	25
90	Surface excitation effects in electron spectroscopy. Solid State Ionics, 2001, 141-142, 47-51.	2.7	25

SVEN TOUGAARD

#	Article	IF	CITATIONS
91	Dielectric and optical properties of Zr silicate thin films grown on Si(100) by atomic layer deposition. Journal of Applied Physics, 2009, 106, 084108.	2.5	25
92	Electronic and optical properties of Fe, Pd, and Ti studied by reflection electron energy loss spectroscopy. Journal of Applied Physics, 2014, 115, 243508.	2.5	25
93	Scandium and lutetium surfaces studied by reflection electron energy-loss spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 1980, 18, 29-41.	1.7	24
94	Quantitative analysis of reflection electron energy loss spectra of aluminum. Solid State Communications, 1986, 57, 77-79.	1.9	24
95	Inelastic peak shape method applied to quantitative surface analysis of inhomogeneous samples. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1992, 10, 2938-2944.	2.1	24
96	X-ray photoelectron spectroscopy study of the first stages of ZnO growth and nanostructure dependence of the effects of polarization at ZnO/SiO2 and ZnO/Al2O3 interfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1393-1398.	2.1	24
97	Algorithm for automatic x-ray photoelectron spectroscopy data processing and x-ray photoelectron spectroscopy imaging. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 741-745.	2.1	24
98	Inelastic background analysis of HAXPES spectra: towards enhanced bulk sensitivity in photoemission. Surface and Interface Analysis, 2014, 46, 906-910.	1.8	24
99	Quantitative analysis of reflection electron energy loss spectra to determine electronic and optical properties of Fe–Ni alloy thin films. Journal of Electron Spectroscopy and Related Phenomena, 2016, 206, 6-11.	1.7	24
100	Determination of the input parameters for inelastic background analysis combined with HAXPES using a reference sample. Applied Surface Science, 2018, 432, 60-70.	6.1	24
101	Electron Emission from Solids During Ion Bombardment. Theoretical Aspects. Springer Series in Chemical Physics, 1981, , 2-37.	0.2	23
102	Separation of spectral components and depth profiling through inelastic background analysis of XPS spectra with overlapping peaks. Surface and Interface Analysis, 1991, 17, 593-607.	1.8	23
103	Deposition and characterization of ITO films produced by laser ablation at 355 nm. Applied Physics A: Materials Science and Processing, 2002, 74, 147-152.	2.3	23
104	Nondestructive quantitative XPS imaging of depth distribution of atoms on the nanoscale. Surface and Interface Analysis, 2008, 40, 688-691.	1.8	23
105	Theoretical study toward rationalizing inelastic background analysis of buried layers in <scp>XPS</scp> and <scp>HAXPES</scp> . Surface and Interface Analysis, 2019, 51, 857-873.	1.8	23
106	Electronic properties of ultrathin (HfO2)x(SiO2)1â^'x dielectrics on Si (100). Journal of Applied Physics, 2007, 102, 053709.	2.5	22
107	The growth of cobalt oxides on HOPG and SiO2 surfaces: A comparative study. Surface Science, 2014, 624, 145-153.	1.9	22
108	Quantitative determination of elemental diffusion from deeply buried layers by photoelectron spectroscopy. Journal of Applied Physics, 2018, 124, .	2.5	22

#	ARTICLE	IF	CITATIONS
109	The temperature dependent variation of bulk and surface composition of InxGa1â^xAs on GaAs grown by chemical beam epitaxy studied by RHEED, X-ray diffraction and XPS. Journal of Crystal Growth, 1992, 116, 271-282.	1.5	21
110	Intercomparison of algorithms for background correction in XPS. Surface and Interface Analysis, 1995, 23, 484-494.	1.8	21
111	XPS study of the surface enrichment process of carbon on C-doped Ni(111) using inelastic background analysis. Surface Science, 1995, 331-333, 343-348.	1.9	21
112	Practical correction procedures for elastic electron scattering effects in ARXPS. Surface Science, 2001, 481, 150-162.	1.9	21
113	Determination of the surface excitation parameter for oxides: TiO2, SiO2, ZrO2 and Al2O3. Surface Science, 2008, 602, 1974-1978.	1.9	21
114	Electronic and optical properties of Laâ€ e luminate dielectric thin films on Si (100). Surface and Interface Analysis, 2010, 42, 1566-1569.	1.8	21
115	Determining the Thickness and Completeness of the Shell of Polymer Core–Shell Nanoparticles by X-ray Photoelectron Spectroscopy, Secondary Ion Mass Spectrometry, and Transmission Scanning Electron Microscopy. Journal of Physical Chemistry C, 2019, 123, 29765-29775.	3.1	21
116	Mechanisms for oxygen adsorption on the Si(110) surface studied by Auger electron spectroscopy. Surface Science, 1981, 111, 545-554.	1.9	20
117	Algorithm for analysis of low-energy-resolution REELS; determination of inelastic electron scattering cross-sections and applications in quantitative XPS. Surface Science, 2000, 464, 233-239.	1.9	20
118	Electron backscattering from surfaces: The invariant-embedding approach. Physical Review B, 2003, 68, .	3.2	20
119	Test of validity of the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>V</mml:mi></mml:math> -type approach for electron trajectories in reflection electron energy loss spectroscopy. Physical Review B, 2008, 77, .	3.2	20
120	Quantitative XPS of NiO, CoO and MnO. The effects of elastic and inelastic electron scattering. Journal of Electron Spectroscopy and Related Phenomena, 1992, 60, 321-335.	1.7	19
121	Quantitative XPS: Influence of Elastic Electron Scattering in Quantification by Peak Shape Analysis. Surface and Interface Analysis, 1997, 25, 404-408.	1.8	19
122	Level of consistency in quantification and IMFP determination by the Tougaard method applied to XPS of a Langmuir-Blodgett film taken at widely different emission angles. Surface and Interface Analysis, 2001, 31, 862-868.	1.8	19
123	Determination of overlayer thickness by QUASES analysis of photon-excited KLL Auger spectra of Ni and Cu films. Surface and Interface Analysis, 2001, 31, 271-279.	1.8	19
124	Test of dielectric–response model for energy and angular dependence of plasmon excitations in core-level photoemission. Surface Science, 2005, 592, 1-7.	1.9	19
125	Theoretical study of the surface excitation parameter from reflection-electron-energy-loss spectra. Surface and Interface Analysis, 2005, 37, 1151-1157.	1.8	19
126	Impact of curing time on ageing and degradation of phenol-urea-formaldehyde binder. Polymer Degradation and Stability, 2018, 152, 86-94.	5.8	19

#	Article	IF	CITATIONS
127	Non-destructive depth information by inelastic XPS/AES background analysis, application to Cu2O growth investigations. Vacuum, 1990, 41, 1583-1585.	3.5	18
128	Oscillating surface effect in reflection-electron-energy-loss spectra. Physical Review B, 2006, 73, .	3.2	18
129	Sample-morphology effects on x-ray photoelectron peak intensities. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	2.1	18
130	Primary excitation spectra in XPS and AES of Cu, CuO: Relative importance of surface and core hole effects. Surface Science, 2015, 641, 326-329.	1.9	18
131	Thickness and structure of thin films determined by background analysis in hard X-ray photoelectron spectroscopy. Journal of Applied Physics, 2017, 121, .	2.5	18
132	Comparison of the Tougaard, ARXPS, RBS and ellipsometry methods to determine the thickness of thin SiO2 layers. Surface and Interface Analysis, 2002, 33, 238-244.	1.8	17
133	Surface excitation parameter for 12 semiconductors and determination of a general predictive formula. Surface and Interface Analysis, 2009, 41, 735-740.	1.8	17
134	Electronic and optical properties of GIZO thin film grown on SiO ₂ /Si substrates. Surface and Interface Analysis, 2010, 42, 906-910.	1.8	17
135	On the ultrathin gold film used as buffer layer at the transparent conductive anode/organic electron donor interface. Gold Bulletin, 2011, 44, 199-205.	2.4	17
136	Quantitative spectromicroscopy from inelastically scattered photoelectrons in the hard X-ray range. Applied Physics Letters, 2016, 109, .	3.3	17
137	Observation of changes in the electronic density of states at a Si (111) surface during adsorption of oxygen by Auger electron spectroscopy. Applied Physics Letters, 1979, 34, 488-490.	3.3	16
138	In-depth concentration profile information through analysis of the entire XPS peak shape. Applied Surface Science, 1988, 32, 332-337.	6.1	16
139	Ge growth on Si(001) studied by x-ray photoelectron spectroscopy peak shape analysis and atomic force microscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997, 15, 3032-3035.	2.1	16
140	The Excitation Depth Distribution Function for Auger Electrons Created by Electron Impact. Surface and Interface Analysis, 1997, 25, 688-698.	1.8	16
141	Analysis of angle-resolved electron energy loss in XPS spectra of Ag, Au, Co, Cu, Fe and Si. Surface Science, 1999, 436, 149-159.	1.9	16
142	Software package to calculate the effects of the core hole and surface excitations on XPS and AES. Surface and Interface Analysis, 2012, 44, 1114-1118.	1.8	16
143	Quantification of Au deposited on Ni: XPS peak shape analysis compared to RBS. Surface and Interface Analysis, 1999, 27, 52-56.	1.8	15
144	Non-Destructive Depth Profiling by XPS Peak Shape Analysis. Journal of Surface Analysis (Online), 2009, 15, 220-224.	0.1	15

#	Article	IF	CITATIONS
145	Defect induced segregation of nitrogen implanted in Cu. Surface Science, 1985, 152-153, 932-939.	1.9	14
146	Extraction of depth distributions of electron-excited Auger electrons in Fe, Ni and Si using inelastic peak shape analysis. Surface Science, 1996, 357-358, 180-185.	1.9	14
147	Determination of growth mechanisms by X-ray photoemission and ion scattering spectroscopies: application to thin iron oxide films deposited on SiO2. Surface Science, 2000, 457, 24-36.	1.9	14
148	Intercomparison of methods for separation of REELS elastic peak intensities for determination of IMFP. Surface and Interface Analysis, 2001, 31, 1-10.	1.8	14
149	Contribution of intrinsic and extrinsic excitations to KLL Auger spectra induced from Ge films. Journal of Electron Spectroscopy and Related Phenomena, 2004, 135, 177-182.	1.7	14
150	Calculation of the angular distribution of the surface excitation parameter for Ti, Fe, Cu, Pd, Ag, and Au. Surface and Interface Analysis, 2008, 40, 731-733.	1.8	14
151	Dielectric response functions of the (0001Â ⁻), (101Â ⁻ 3) GaN single crystalline and disordered surfaces studied by reflection electron energy loss spectroscopy. Journal of Applied Physics, 2011, 110, 043507.	2.5	14
152	Background subtraction in electron spectroscopy by use of reflection electron energy loss spectra. Applied Surface Science, 1987, 29, 101-112.	6.1	13
153	Experimental determination of electron inelastic scattering cross-sections in Si, Ge and Ill–V semiconductors. Vacuum, 2003, 71, 147-152.	3.5	13
154	Pulsed laser deposition of aluminum-doped ZnO films at 355Ânm. Applied Physics A: Materials Science and Processing, 2004, 79, 1137-1139.	2.3	13
155	Quantitative analysis of the Auî—,Ni(111) system by XPS: separation of peaks and background subtraction. Vacuum, 1990, 41, 1710-1713.	3.5	12
156	The inelastic mean free path and the inelastic scattering cross-section of electrons in GaAs determined from highly resolved electron energy spectra. Surface Science, 1998, 402-404, 491-495.	1.9	12
157	Determination of amount of substance for nanometre-thin deposits: consistency between XPS, RBS and XRF quantification. Surface and Interface Analysis, 2003, 35, 984-990.	1.8	12
158	Determination of the effective surface region thickness and of Begrenzungs effect. Surface Science, 2009, 603, 2158-2162.	1.9	12
159	Core hole and surface excitation correction parameter for XPS peak intensities. Surface Science, 2011, 605, 1556-1562.	1.9	12
160	Evaluation of robustness to surface conditions of the target factor analysis method for determining the dielectric function from reflection electron energy loss spectra: Application to GaAs. Surface and Interface Analysis, 2013, 45, 985-992.	1.8	12
161	Intrinsic and extrinsic excitations in deep core photoelectron spectra of solid Ge. Surface and Interface Analysis, 2006, 38, 569-573.	1.8	11
162	Surface and core hole effects in X-ray photoelectron spectroscopy. Surface Science, 2010, 604, 1193-1196.	1.9	11

#	Article	IF	CITATIONS
163	Band-Gap Widening at the Cu(In,Ga)(S,Se) ₂ Surface: A Novel Determination Approach Using Reflection Electron Energy Loss Spectroscopy. ACS Applied Materials & Interfaces, 2016, 8, 21101-21105.	8.0	11
164	Optical properties and electronic transitions of zinc oxide, ferric oxide, cerium oxide, and samarium oxide in the ultraviolet and extreme ultraviolet. Applied Optics, 2017, 56, 6611.	1.8	11
165	Method to correct ambient pressure XPS for the distortion caused by the gas. Applied Surface Science, 2020, 530, 147243.	6.1	11
166	Range distribution of low-energy nitrogen ions in metals. Physical Review B, 1984, 30, 3124-3130.	3.2	10
167	Study of electron backscattering within the approximation of discrete flows. Surface and Interface Analysis, 1995, 23, 689-695.	1.8	10
168	Emission-depth Dependence of the Signal Photoelectron Energy Spectrum. Surface and Interface Analysis, 1997, 25, 119-131.	1.8	10
169	Comparison between surface excitation parameter obtained from QUEELS and SESINIPAC. Surface and Interface Analysis, 2012, 44, 1147-1150.	1.8	10
170	Surface excitation parameter for allotropic forms of carbon. Surface and Interface Analysis, 2013, 45, 811-816.	1.8	10
171	Validity of automated x-ray photoelectron spectroscopy algorithm to determine the amount of substance and the depth distribution of atoms. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	2.1	10
172	Effects of cation compositions on the electronic properties and optical dispersion of indium zinc tin oxide thin films by electron spectroscopy. Materials Research Bulletin, 2015, 62, 222-231.	5.2	10
173	Conductivity of powdered ZnO with chemisorbed oxygen during photodesorption. Journal of Applied Physics, 1976, 47, 5094-5096.	2.5	9
174	Depth Profiles of Implanted Low Energy Ions in Metals. Physica Scripta, 1983, T6, 76-78.	2.5	9
175	Influence of the inelastic background on the accuracy of factor analysis of electron spectra. Surface and Interface Analysis, 1990, 16, 173-177.	1.8	9
176	Electron backscattering from surfaces: Azimuth-resolved distributions. Physical Review B, 2005, 72, .	3.2	9
177	Effects of gas environment on electronic and optical properties of amorphous indium zinc tin oxide thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	2.1	9
178	Determination of electronic properties of nanostructures using reflection electron energy loss spectroscopy: Nano-metalized polymer as case study. Applied Surface Science, 2016, 377, 44-47.	6.1	9
179	Determining nonuniformities of coreâ€shell nanoparticle coatings by analysis of the inelastic background of Xâ€ray photoelectron spectroscopy survey spectra. Surface and Interface Analysis, 2020, 52, 770-777.	1.8	9
180	Segregation of impurities at the surface of a scandium single crystal. Applications of Surface Science, 1979, 3, 113-117.	1.0	8

#	Article	IF	CITATIONS
181	Non-destructive in-depth composition information from XPS. Surface Science, 1986, 172, L503-L506.	1.9	8
182	Secondary ion mass spectroscopy (SIMS) study of LiNbO3. Fresenius Zeitschrift Für Analytische Chemie, 1987, 329, 240-241.	0.8	8
183	Estimation of Excitation Depth Distribution from Electron-excited Auger Spectra of Iron Using Peak Shape Analysis. Surface and Interface Analysis, 1996, 24, 211-216.	1.8	8
184	Quantification and IMFP determination of multilayer Langmuir–Blodgett films by AFM and XPS measurements. Surface and Interface Analysis, 2006, 38, 604-609.	1.8	8
185	Theoretical determination of the surface excitation parameter from X-ray photoelectron spectroscopy. Surface and Interface Analysis, 2006, 38, 672-675.	1.8	8
186	Inelastic electron scattering by the gas phase in near ambient pressure XPS measurements. Surface and Interface Analysis, 2021, 53, 605-617.	1.8	8
187	Optical properties of molybdenum in the ultraviolet and extreme ultraviolet by reflection electron energy loss spectroscopy. Applied Optics, 2020, 59, 4527.	1.8	8
188	Deconvolution of inelastic background signal from XPS spectra of homogeneous solids. Surface Science, 1987, 182, L253-L256.	1.9	7
189	Validity of the method for quantitative XPS of surface nano-structures: application to Cu/Au/Cu. Surface Science, 1995, 331-333, 753-758.	1.9	7
190	Comparison of source functions obtained by using QUASES and partial intensity analysis for inelastic background correction: KLL Auger spectra of 3d transition elements Cu and Ni. Surface and Interface Analysis, 2002, 33, 681-686.	1.8	7
191	Angular and Energy Dependences of Reflection Electron Energy Loss Spectra of Si. E-Journal of Surface Science and Nanotechnology, 2009, 7, 199-202.	0.4	7
192	Novel Applications of Inelastic Background XPS Analysis: 3D Imaging and HAXPES. Journal of Surface Analysis (Online), 2017, 24, 107-114.	0.1	7
193	Desorption from powdered ZnO during electron bombardment and interaction with atomic hydrogen. Journal of Applied Physics, 1977, 48, 3443-3447.	2.5	6
194	Electron energy loss studies of the valence band density of states of scandium. Surface and Interface Analysis, 1981, 3, 3-4.	1.8	6
195	Observation of a surface peak in low energy implant depth profiles in silicon. Nuclear Instruments & Methods in Physics Research B, 1984, 2, 797-799.	1.4	6
196	Characteristic depth of the excitation function for Auger electrons in the noble metals Cu, Ag and Au determined by inelastic background analysis. Journal of Electron Spectroscopy and Related Phenomena, 1996, 82, 173-178.	1.7	6
197	Surface morphology of SiO2 on a Si() 7×7 surface formed after alternating exposure to caesium and oxygen and subsequent annealing. Surface Science, 2002, 498, 11-20.	1.9	6
198	Model for Monte Carlo simulations of reflection electron energy loss spectra applied to Silicon at energies between 300 and 2000 eV. Surface and Interface Analysis, 2010, 42, 1100-1104.	1.8	6

#	Article	IF	CITATIONS
199	Factor analysis and advanced inelastic background analysis in XPS: Unraveling time dependent contamination growth on multilayers and thin films. Surface Science, 2013, 616, 161-165.	1.9	6
200	SURFACE ANALYSIS X-ray Photoelectron Spectroscopy. , 2013, , .		6
201	Modeling of Xâ€ray photoelectron spectra: surface and core hole effects. Surface and Interface Analysis, 2014, 46, 920-923.	1.8	6
202	Quantitative analysis of Yb 4d photoelectron spectrum of metallic Yb. Surface and Interface Analysis, 2018, 50, 1168-1173.	1.8	6
203	Inelastic Scattering Cross Section of Si Determined from Angular Dependent Reflection Electron Energy Loss Spectra. Journal of Surface Analysis (Online), 2009, 15, 321-324.	0.1	6
204	Multilayer model for analysis of surface imperfections by leed. Surface Science, 1986, 169, L266-L272.	1.9	5
205	Validity of background correction algorithms studied by comparison with theory of synchrotron-radiation-excited core levels and their corresponding auger peak intensities. Surface and Interface Analysis, 1992, 19, 217-221.	1.8	5
206	Surface excitation parameter for selected polymers. Surface and Interface Analysis, 2009, 41, 23-26.	1.8	5
207	Dielectric description of the angular dependence of the loss structure in core level photoemission. Journal of Electron Spectroscopy and Related Phenomena, 2012, 185, 552-558.	1.7	5
208	Three-Dimensional X-Ray Photoelectron Tomography on the Nanoscale: Limits of Data Processing by Principal Component Analysis. Microscopy and Microanalysis, 2013, 19, 751-760.	0.4	5
209	Summary Abstract: Ionâ€beamâ€enhanced diffusion at surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1983, 1, 339-340.	2.1	4
210	Low temperature radiation induced surface segregation. Radiation Effects, 1985, 91, 97-110.	0.4	4
211	Quantitative xâ€ray photoelectron spectroscopy of CuAu, CoNi, and CuNi alloys using theoretical photoionization cross sections or reference spectra. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1994, 12, 2332-2336.	2.1	4
212	Test of elastic electron scattering corrections for quantitative XPS. Surface and Interface Analysis, 1995, 23, 559-564.	1.8	4
213	First nucleation steps of nickel nanoparticle growth on Al2O3 (0001) studied by XPS inelastic peak shape analysis. Applied Surface Science, 2008, 255, 3000-3003.	6.1	4
214	Energy loss function for Si determined from reflection electron energy loss spectra with factor analysis method. Surface and Interface Analysis, 2010, 42, 1076-1081.	1.8	4
215	An application for near-real-time analysis of XPS data. Surface and Interface Analysis, 2010, 42, 1061-1065.	1.8	4
216	Band alignment and optical properties of (ZrO ₂) _{0.66} (HfO ₂) _{0.34} gate dielectrics thin films on <i>p</i> -Si (100). Journal of Surface Analysis (Online), 2011, 17, 203-207.	0.1	4

#	Article	IF	CITATIONS
217	Universal inelastic electron scattering crossâ€section including extrinsic and intrinsic excitations in XPS. Surface and Interface Analysis, 2020, 52, 413-421.	1.8	4
218	Quantification of Surface and Near-Surface Composition by AES and XPS. , 2009, , 223-244.		4
219	Using the inelastic background in hard x-ray photoelectron spectroscopy for a depth-resolved analysis of the CdS/Cu(In,Ca)Se2 interface. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	2.1	4
220	Surface relaxation of zinc blende (110). Physical Review B, 1978, 18, 3799-3809.	3.2	3
221	Range Distributions of Low Energy lons in Silver and Copper. IEEE Transactions on Nuclear Science, 1983, 30, 1066-1068.	2.0	3
222	Evidence for mono- and diatomic steps on a cleaved Os(0001) surface. Surface Science, 1986, 178, 452-461.	1.9	3
223	Elastic and inelastic scattering of electrons emitted from solids: effects on energy spectra and depth profiling in xps/aes. Surface and Interface Analysis, 1986, 9, 130-130.	1.8	2
224	Bremsstrahlung induced Auger electron spectra (BAES) of transition metals. Fresenius Zeitschrift Für Analytische Chemie, 1987, 329, 152-157.	0.8	2
225	The NIST surface analysis data center. , 1998, , .		2
226	Probing theex situ morphology of Ge islands on Si(001): AFM and XPS inelastic peak shape analysis. Surface and Interface Analysis, 2001, 31, 328-337.	1.8	2
227	Growth mechanism of iron nanoparticles on (0001) sapphire wafers. Microelectronics Journal, 2008, 39, 1374-1375.	2.0	2
228	Effects of background gas composition and pressure on 1,4-polymyrcene (and) Tj ETQq0 0 0 rgBT /Overlock 10 T 014005.	f 50 307 1 1.3	d (polytetraf 2
229	Improved depth information from routine analysis of the inelastic background of XPS and HAXPES spectra using optimized two―and threeâ€parameter crossâ€sections. Surface and Interface Analysis, 2022, 54, 433-441.	1.8	2
230	Accuracy of the non-destructive surface nanostructure quantification technique based on analysis of the XPS or AES peak shape. , 1998, 26, 249.		2
231	Band Alignment and Optical Properties of (ZrO2)0.66(HfO2)0.34 Gate Dielectrics Thin Films on p-Si (100). ITB Journal of Science, 2011, 43, 199-208.	0.1	2
232	QUEELS: Software to calculate the energy loss processes in TEELS, REELS, XPS, and AES including effects of the core hole. Surface and Interface Analysis, 0, , .	1.8	2
233	Deconvolution of inelastic background signal from XPS spectra of homogeneous solids. Surface Science Letters, 1987, 182, L253-L256.	0.1	1
234	Experimental verification of the shape of the excitation depth distribution function for AES. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2011, 29, 051401.	2.1	1

#	Article	IF	CITATIONS
235	Summary Abstract: Defect induced segregation of nitrogen implanted in copper. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1985, 3, 819-820.	2.1	0
236	Non-destructive in-depth composition information from XPS. Surface Science Letters, 1986, 172, L503-L506.	0.1	0
237	Ni0.44Cu0.55 Alloy by XPS. Surface Science Spectra, 1992, 1, 87-90.	1.3	0
238	Determination of Inelastic Mean Free Path of High Energy Electrons from Shape Analysis of K-Auger and K-conversion Spectra Emitted from Thin Films. Journal of Surface Analysis (Online), 2002, 9, 281-284.	0.1	0
239	Morphology of Ferromagnetic Cobalt Nanoparticles Grown on Al ₂ O ₃ (0001) by Pulsed Laser Deposition. Journal of Advanced Microscopy Research, 2013, 8, 294-299.	0.3	0
240	Surface Electron Spectroscopy; Importance of Particle Transport. NATO ASI Series Series B: Physics, 1991, , 487-488.	0.2	0
241	Developments in Practical Applications of Inelastic Background Analysis to Characterize nano-structures. Journal of Surface Analysis (Online), 2019, 26, 124-125.	0.1	0