
Martin Schnittler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7616860/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The phylogeny and phylogenetically based classification of myxomycetes. , 2022, , 97-124.		3
2	Genetic structure of the protist <i>Physarum albescens</i> (Amoebozoa) revealed by multiple markers and genotyping by sequencing. Molecular Ecology, 2022, 31, 372-390.	3.9	7
3	Species-specific effects of thermal stress on the expression of genetic variation across a diverse group of plant and animal taxa under experimental conditions. Heredity, 2021, 126, 23-37.	2.6	11
4	Population structure and the influence of microenvironment and genetic similarity on individual growth at Alaskan white spruce treelines. Science of the Total Environment, 2021, 798, 149267.	8.0	8
5	A workflow for low-cost automated image analysis of myxomycete spore numbers, size and shape. PeerJ, 2021, 9, e12471.	2.0	3
6	Systematic revision of the <i>Tubifera casparyi–T</i> . <i>dictyoderma</i> complex: Resurrection of the genus <i>Siphoptychium</i> and introduction of the new genus <i>Thecotubifera</i> . Mycologia, 2019, 111, 981-997.	1.9	9
7	Different Degrees of Niche Differentiation for Bacteria, Fungi, and Myxomycetes Within an Elevational Transect in the German Alps. Microbial Ecology, 2019, 78, 764-780.	2.8	16
8	Towards a phylogenetic classification of the Myxomycetes. Phytotaxa, 2019, 399, 209.	0.3	61
9	Genetic diversity and hybrid formation in Central European club-mosses (Diphasiastrum,) Tj ETQq1 1 0.784314 Phylogenetics and Evolution, 2019, 131, 181-192.	rgBT /Over 2.7	rlock 10 Tf 50 8
10	Size matters—a comparison of three methods to assess age- and size-dependent climate sensitivity of trees. Trees - Structure and Function, 2019, 33, 183-192.	1.9	54
11	Genetic barcoding of darkâ€spored myxomycetes (Amoebozoa)—ldentification, evaluation and application of a sequence similarity threshold for species differentiation in <scp>NGS</scp> studies. Molecular Ecology Resources, 2018, 18, 306-318.	4.8	27
12	A four year survey reveals a coherent pattern between occurrence of fruit bodies and soil amoebae populations for nivicolous myxomycetes. Scientific Reports, 2018, 8, 11662.	3.3	18
13	Barcoding myxomycetes with molecular markers: challenges and opportunities. Nova Hedwigia, 2017, 104, 323-341.	0.4	39
14	Biogeographical assessment of myxomycete assemblages from Neotropical and Asian Palaeotropical forests. Journal of Biogeography, 2017, 44, 1524-1536.	3.0	21
15	Studies of life history of Gagea graeca (Liliaceae) based on morphological and molecular methods. , 2017, 58, 40.		3
16	Speciation in progress? A phylogeographic study among populations of Hemitrichia serpula (Myxomycetes). PLoS ONE, 2017, 12, e0174825.	2.5	27
17	Tuning the Voices of a Choir: Detecting Ecological Gradients in Time-Series Populations. PLoS ONE, 2016, 11, e0158346.	2.5	50
18	Morphological and molecular investigations of Gagea (Liliaceae) in southeastern Kazakhstan with special reference to putative altitudinal hybrid zones. Plant Systematics and Evolution, 2016, 302, 985-1007.	0.9	11

MARTIN SCHNITTLER

#	Article	IF	CITATIONS
19	What an Intron May Tell: Several Sexual Biospecies Coexist in Meriderma spp. (Myxomycetes). Protist, 2016, 167, 234-253.	1.5	33
20	First insight into dead wood protistan diversity: a molecular sampling of bright-spored Myxomycetes (Amoebozoa, slime-moulds) in decaying beech logs. FEMS Microbiology Ecology, 2015, 91, .	2.7	23
21	A critical revision of the <i>Tubifera ferruginosa</i> complex. Mycologia, 2015, 107, 959-985.	1.9	33
22	Sex or no sex? Group I introns and independent marker genes reveal the existence of three sexual but reproductively isolated biospecies in Trichia varia (Myxomycetes). Organisms Diversity and Evolution, 2015, 15, 631-650.	1.6	43
23	Pseudocapillitium or true capillitium? A study of capillitial structures in Alwisia bombarda (Myxomycetes). Nova Hedwigia, 2014, 99, 441-451.	0.4	9
24	A new species of <i>Alwisia</i> (Myxomycetes) from New South Wales and Tasmania. Mycologia, 2014, 106, 1212-1219.	1.9	14
25	The genus <i>Alwisia</i> (Myxomycetes) revalidated, with two species new to science. Mycologia, 2014, 106, 936-948.	1.9	33
26	FloraGREIF – An Internet-Based Data Repository for Biogeographical Research in Mongolia. Folia Geobotanica, 2013, 48, 523-536.	0.9	2
27	Phylogenetic position of the enigmatic myxomycete genus Kelleromyxa revealed by SSU rDNA sequences. Mycological Progress, 2013, 12, 599-608.	1.4	24
28	Contributions to "E-Taxonomyâ€⊷ A virtual approach to the flora of Mongolia (FloraGREIF). Feddes Repertorium, 2013, 123, n/a-n/a.	0.5	7
29	Myxomycete diversity in the Tarim basin and eastern Tian-Shan, Xinjiang Prov., China. Fungal Diversity, 2013, 59, 91-108.	12.3	21
30	Two-Gene Phylogeny of Bright-Spored Myxomycetes (Slime Moulds, Superorder Lucisporidia). PLoS ONE, 2013, 8, e62586.	2.5	58
31	Root suckering patterns in Populus euphratica (Euphrates poplar, Salicaceae). Trees - Structure and Function, 2009, 23, 991-1001.	1.9	47
32	Development of two microsatellite multiplex PCR systems for high throughput genotyping in Populus euphratica. Journal of Forestry Research, 2009, 20, 195-198.	3.6	12
33	Myxomycete diversity and distribution from the fossil record to the present. Biodiversity and Conservation, 2008, 17, 285-301.	2.6	91
34	A habitat colonisation model for spore-dispersed organisms—Does it work with eumycetozoans?. Mycological Research, 2008, 112, 697-707.	2.5	29