Truls E Norby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7616618/publications.pdf

Version: 2024-02-01

290 papers

11,790 citations

51 h-index 94 g-index

296 all docs

296 docs citations

times ranked

296

8398 citing authors

#	Article	IF	CITATIONS
1	Solid-state protonic conductors: principles, properties, progress and prospects. Solid State Ionics, 1999, 125, 1-11.	2.7	747
2	Proton conduction in rare-earth ortho-niobates and ortho-tantalates. Nature Materials, 2006, 5, 193-196.	27.5	457
3	XPS characterisation of in situ treated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures. Journal of Electron Spectroscopy and Related Phenomena, 2011, 184, 399-409.	1.7	449
4	Hydrogen in oxides. Dalton Transactions, 2004, , 3012-3018.	3.3	342
5	Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science, 2016, 353, 563-566.	12.6	341
6	THE DEFECT STRUCTUFE OF SrTi 1â^'x Fe x O 3â^'y (x = 0â€"0.8) INVESTIGATED BY ELECTRICAL CONDUCTIVITY MEASUREMENTS AND ELECTRON ENERGY LOSS SPECTROSCOPY (EELS). Journal of Physics and Chemistry of Solids, 1997, 58, 969-976.	4.0	319
7	The promise of protonics. Nature, 2001, 410, 877-878.	27.8	253
8	Space–charge theory applied to the grain boundary impedance of proton conducting BaZr0.9Y0.1O3â^Î. Solid State Ionics, 2010, 181, 268-275.	2.7	219
9	Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers. Nature Materials, 2019, 18, 752-759.	27.5	191
10	Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss. Nature Energy, 2017, 2, 923-931.	39.5	178
11	Spinel and Perovskite Functional Layers Between Plansee Metallic Interconnect (Cr-5 wt % Fe-1 wt %) Tj ETQq1 1 Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2000, 147, 3251.	0.784314 2.9	rgBT /Overlo
12	Proton conduction in Ca- and Sr-substituted LaPO4. Solid State Ionics, 1995, 77, 240-243.	2.7	170
13	High-temperature proton conductivity in acceptor-doped LaNbO4. Solid State Ionics, 2006, 177, 1129-1135.	2.7	160
14	Oxidation Behavior of Ferritic Stainless Steels under SOFC Interconnect Exposure Conditions. Journal of the Electrochemical Society, 2004, 151, B669.	2.9	158
15	Concentration and transport of protons in oxides. Current Opinion in Solid State and Materials Science, 1997, 2, 593-599.	11.5	156
16	Gd- and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells. Solid State Ionics, 2015, 278, 120-132.	2.7	136
17	Protons and other defects in BaCeO3: a computational study. Solid State Ionics, 1999, 122, 145-156.	2.7	133
18	Mixed hydrogen ion–electronic conductors for hydrogen permeable membranes. Solid State Ionics, 2000, 136-137, 139-148.	2.7	125

#	Article	IF	CITATIONS
19	A textile-based wearable supercapacitor using reduced graphene oxide/polypyrrole composite. Electrochimica Acta, 2019, 305, 187-196.	5.2	125
20	Composite Membranes for High Temperature PEM Fuel Cells and Electrolysers: A Critical Review. Membranes, 2019, 9, 83.	3.0	114
21	EMF method determination of conductivity contributions from protons and other foreign ions in oxides. Solid State Ionics, 1988, 28-30, 1586-1591.	2.7	113
22	Proton and native-ion conductivities in Y2O3 at high temperatures. Solid State Ionics, 1986, 20, 169-184.	2.7	109
23	Transport number determination by the concentration-cell/open-circuit voltage method for oxides with mixed electronic, ionic and protonic conductivity. Solid State Ionics, 1995, 77, 167-174.	2.7	109
24	Electrical Conductivity and Defect Structure of Y2O3as a Function of Water Vapor Pressure. Journal of the American Ceramic Society, 1984, 67, 786-792.	3.8	93
25	Complete structural model for lanthanum tungstate: a chemically stable high temperature proton conductor by means of intrinsic defects. Journal of Materials Chemistry, 2012, 22, 1762-1764.	6.7	91
26	Proton and deuteron conductivity in CsHSO4 and CsDSO4 by in situ isotopic exchange. Solid State lonics, 1995, 77, 105-110.	2.7	84
27	Title is missing!. Oxidation of Metals, 1999, 51, 221-233.	2.1	81
28	Nonstoichiometry and reductive decomposition of CaMnO. Solid State Ionics, 2005, 176, 217-223.	2.7	79
29	Protonic and Native Conduction in Srâ€Substituted LaPO4 Studied by Thermoelectric Power Measurements. Journal of the Electrochemical Society, 1998, 145, 3313-3319.	2.9	77
30	Crystal structure, hydration and ionic conductivity of the inherently oxygen-deficient La2Ce2O7. Solid State Ionics, 2012, 228, 1-7.	2.7	77
31	Protective and non-protective scale formation of NiCr alloys in water vapour containing high- and low-pO2 gases. Corrosion Science, 2008, 50, 1753-1760.	6.6	75
32	Protons in rare earth oxides. Solid State Ionics, 1995, 77, 147-151.	2.7	74
33	On the Steady-State Oxygen Permeation Through La[sub 2]NiO[sub $4+\hat{l}$] Membranes. Journal of the Electrochemical Society, 2006, 153, A233.	2.9	72
34	Mechanisms of Protonic Surface Transport in Porous Oxides: Example of YSZ. Journal of Physical Chemistry C, 2017, 121, 12817-12825.	3.1	72
35	Investigation of pitting resistance of titanium based on a modified point defect model. Corrosion Science, 2011, 53, 815-821.	6.6	70
36	Proton Conduction in Solids: Bulk and Interfaces. MRS Bulletin, 2009, 34, 923-928.	3.5	69

#	Article	lF	CITATIONS
37	High-Temperature Proton-Conducting Lanthanum Ortho-Niobate-Based Materials. Part II: Sintering Properties and Solubility of Alkaline Earth Oxides. Journal of the American Ceramic Society, 2008, 91, 879-886.	3.8	66
38	Proton mobility through a second order phase transition: theoretical and experimental study of LaNbO4. Physical Chemistry Chemical Physics, 2010, 12, 10313.	2.8	66
39	Defect structure and its nomenclature for mixed conducting lanthanum tungstates La28–xW4+xO54+3x/2. International Journal of Hydrogen Energy, 2012, 37, 8051-8055.	7.1	66
40	Fast oxygen ion conductorsâ€"from doped to ordered systems. Journal of Materials Chemistry, 2001, 11, 11-18.	6.7	65
41	Hydrogen ion conduction in iron-substituted strontium titanate, SrTi1â^'xFexO3â^'x/2 (0≤≶.8). Solid State Ionics, 2001, 143, 103-116.	2.7	65
42	High-Temperature Proton Conductivity in Acceptor-Substituted Rare-Earth Ortho-Tantalates, LnTaO4. Journal of the American Ceramic Society, 2007, 90, 1116-1121.	3.8	64
43	Development of Proton Conducting SOFCs Based on LaNbO ₄ Electrolyte – Status in Norway. Fuel Cells, 2011, 11, 17-25.	2.4	63
44	Charge carriers in grain boundaries of 0.5% Sr-doped LaNbO4. Solid State Ionics, 2010, 181, 104-109.	2.7	61
45	Correlation between the characteristic green emissions and specific defects of ZnO. Physical Chemistry Chemical Physics, 2010, 12, 2373.	2.8	57
46	A combined conductivity and DFT study of protons in PbZrO3 and alkaline earth zirconate perovskites. Solid State Ionics, 2010, 181, 130-137.	2.7	57
47	Single-step hydrogen production from NH ₃ , CH ₄ , and biogas in stacked proton ceramic reactors. Science, 2022, 376, 390-393.	12.6	56
48	Determination of the enthalpy of hydration of oxygen vacancies in Y-doped BaZrO3 and BaCeO3 by TG-DSC. Solid State Ionics, 2010, 181, 1740-1745.	2.7	55
49	Effects of A and B site acceptor doping on hydration and proton mobility of LaNbO4. International Journal of Hydrogen Energy, 2012, 37, 8004-8016.	7.1	55
50	Impedance spectroscopy and proton transport number measurements on Sr-substituted LaPO4 prepared by combustion synthesis. Solid State Ionics, 2003, 162-163, 167-173.	2.7	54
51	Protonic Conduction in Acceptor-Doped Cubic Rare-Earth Sesquioxides. Journal of the American Ceramic Society, 1992, 75, 1176-1181.	3.8	53
52	Cation self-diffusion in LaFeO3 measured by the solid state reaction method. Solid State Ionics, 2006, 177, 639-646.	2.7	53
53	Carbon Deposition and Sulfur Poisoning in SrFe _{0.75} Mo _{0.25} O _{3-δ} and SrFe _{0.5} Mn _{0.25} Mo _{0.25} O _{3-δ} Electrode Materials for Symmetrical SOFCs, lournal of the Electrochemical Society, 2015, 162, F1078-F1087.	2.9	52
54	Temperature dependence of oxygen ion transport in Sr+Mg-substituted LaGaO (LSGM) with varying grain sizes. Solid State Ionics, 2004, 174, 233-243.	2.7	51

#	Article	IF	Citations
55	Earth-Abundant Electrocatalysts in Proton Exchange Membrane Electrolyzers. Catalysts, 2018, 8, 657.	3.5	51
56	A Kr öger-Vink Compatible Notation for Defects in Inherently Defective Sublattices. Journal of the Korean Ceramic Society, 2010, 47, 19-25.	2.3	50
57	High-temperature proton conductivity and defect structure of TiP2O7. Solid State Ionics, 2010, 181, 510-516.	2.7	49
58	The electrode system ‖ZrO2: 8Y2O3 investigated by impedence spectroscopy. Solid State Ionics, 1991, 47, 161-167.	2.7	48
59	The equilibrium between water vapour, protons, and oxygen vacancies in rare earth oxides. Solid State lonics, 1997, 97, 523-528.	2.7	48
60	Redox energetics of perovskite-related oxides. Journal of Materials Chemistry, 2002, 12, 317-323.	6.7	48
61	Electrical Conductivity of Y2O3 as a Function of Oxygen Partial Pressure in Wet and Dry Atmospheres. Journal of the American Ceramic Society, 1986, 69, 784-789.	3.8	47
62	Structure, Water Uptake, and Electrical Conductivity of TiP2O7. Journal of the American Ceramic Society, 2011, 94, 1514-1522.	3.8	46
63	Direct-Current Conductivity of Y2O3 as a Function of Water Vapor Pressure. Journal of the American Ceramic Society, 1986, 69, 780-783.	3.8	45
64	Protons in Sr3(Sr1+xNb2â^2x)O9â^3x/2 perovskite. Solid State Ionics, 1999, 125, 369-376.	2.7	45
65	Defect Chemistry of Rutile TiO ₂ from First Principles Calculations. Journal of Physical Chemistry C, 2013, 117, 5919-5930.	3.1	45
66	On the development of proton ceramic fuel cells based on Ca-doped LaNbO4 as electrolyte. Journal of Power Sources, 2015, 282, 28-33.	7.8	45
67	MOF-modified polyester fabric coated with reduced graphene oxide/polypyrrole as electrode for flexible supercapacitors. Electrochimica Acta, 2020, 336, 135743.	5. 2	45
68	Synthesis and characterisation of Ni–SrCe0.9Yb0.1O3â^Î cermet anodes for protonic ceramic fuel cells. Solid State Ionics, 2003, 158, 333-342.	2.7	44
69	Electrochemical promotion of the hydrogenation of CO 2 on Ru deposited on a BZY proton conductor. Journal of Catalysis, 2015, 331, 98-109.	6.2	44
70	Solubility of transition metal interstitials in proton conducting BaZrO ₃ and similar perovskite oxides. Journal of Materials Chemistry A, 2016, 4, 8105-8112.	10.3	44
71	Protons in LaErO3. Solid State Ionics, 1994, 70-71, 305-310.	2.7	42
72	Microstructural characterization and electrical properties of spray pyrolyzed conventionally sintered or hot-pressed BaZrO3 and BaZrO.9Y0.1O3â^î. Solid State Ionics, 2011, 182, 32-40.	2.7	41

#	Article	IF	Citations
73	Defects and transport in SrFe1â^'xCoxO3â^'δ. Ionics, 1999, 5, 434-443.	2.4	40
74	Redox energetics of SrFeO3â~δâ€" a coulometric titration study. Solid State Ionics, 2004, 167, 367-377.	2.7	40
75	Neutron diffraction study of the monoclinic to tetragonal structural transition in LaNbO4 and its relation to proton mobility. Journal of Solid State Chemistry, 2012, 187, 27-34.	2.9	40
76	Electronic Transport Properties of [Ca ₂ CoO _{3â^Î} <i>q</i> [CoO ₂]. Journal of Physical Chemistry C, 2014, 118, 2908-2918.	3.1	39
77	High-temperature oxidation of Cu–30 wt.% Ni–15 wt.% Fe. Corrosion Science, 2001, 43, 283-299.	6.6	38
78	High temperature transport properties of thermoelectric CaMnO3â^'Î' â€" Indication of strongly interacting small polarons. Journal of Applied Physics, 2014, 115, 103705.	2.5	38
79	Surface defect chemistry of Y-substituted and hydrated BaZrO ₃ with subsurface space-charge regions. Journal of Materials Chemistry A, 2016, 4, 7437-7444.	10.3	38
80	XPS surface analyses of LaPO4ceramics prepared by precipitation with or without excess of PO43â^'. Surface and Interface Analysis, 2002, 34, 306-310.	1.8	37
81	Protonic conduction in acceptor-doped LaP3O9. Solid State Ionics, 2005, 176, 2867-2870.	2.7	37
82	Role of protons in the electrical conductivity of acceptor-doped BaPrO3, BaTbO3, and BaThO3. Solid State Ionics, 2007, 178, 461-467.	2.7	36
83	Entropy of oxidation and redox energetics of CaMnO. Solid State Ionics, 2005, 176, 2261-2267.	2.7	35
84	Structure, chemical stability and mixed proton–electron conductivity in BaZr0.9â^'xPrxGd0.1O3â^'δ. Journal of Power Sources, 2011, 196, 9141-9147.	7.8	35
85	Hydration of lanthanum tungstate (La/W=5.6 and 5.3) studied by TG and simultaneous TG–DSC. Solid State lonics, 2013, 231, 25-29.	2.7	35
86	Electrical characterization of amorphous LiAlO ₂ thin films deposited by atomic layer deposition. RSC Advances, 2016, 6, 60479-60486.	3.6	34
87	Phase relations, chemical diffusion and electrical conductivity in pure and doped Sr4Fe6O13 mixed conductor materials. Solid State Ionics, 2000, 135, 687-697.	2.7	33
88	HT Corrosion of a Cr-5 wt % Fe-1 wt % Y[sub 2]O[sub 3] Alloy and Conductivity of the Oxide Scale. Journal of the Electrochemical Society, 2003, 150, B374.	2.9	33
89	H and Li Related Defects in ZnO and Their Effect on Electrical Properties. Journal of Physical Chemistry C, 2012, 116, 23764-23772.	3.1	33
90	Black Anatase TiO ₂ Nanotubes with Tunable Orientation for High Performance Supercapacitors. Journal of Physical Chemistry C, 2019, 123, 21931-21940.	3.1	33

#	Article	IF	Citations
91	lonic and electronic conductivity in CaTi1â^'xFexO3â^'δ (x=0.1–0.3). lonics, 1999, 5, 385-392.	2.4	32
92	Conductivity Dependence on Oxygen Partial Pressure and Oxide-Ion Transport Numbers Determination for La[sub 2]Mo[sub 2]O[sub 9]. Electrochemical and Solid-State Letters, 2004, 7, A373.	2.2	32
93	Conductivity and water uptake of Sr4(Sr2Nb2)O11·nH2O and Sr4(Sr2Ta2)O11·nH2O. Solid State Ionics, 2009, 180, 1151-1156.	2.7	32
94	NdHO, a novel oxyhydride. Journal of Solid State Chemistry, 2011, 184, 1890-1894.	2.9	32
95	Conductivity and hydration trends in disordered fluorite and pyrochlore oxides: A study on lanthanum cerate–zirconate based compounds. Solid State Ionics, 2012, 229, 26-32.	2.7	32
96	Solid-state photoelectrochemical H2 generation with gaseous reactants. Electrochimica Acta, 2013, 97, 320-325.	5.2	32
97	Relating defect chemistry and electronic transport in the double perovskite Ba _{1â^'x} Gd _{0.8} La _{0.2+x} Co ₂ O _{6â^'Î} (BGLC). Journal of Materials Chemistry A, 2017, 5, 15743-15751.	10.3	32
98	Thermoelectric properties of A-site deficient La-doped SrTiO3 at 100–900†°C under reducing conditions. Journal of the European Ceramic Society, 2020, 40, 401-407.	5.7	32
99	Incorporation of water in strontium tantalates with perovskite-related structure. Solid State Ionics, 2001, 145, 357-364.	2.7	31
100	Proton and apparent hydride ion conduction in Al-substituted SrTiO3. Solid State Ionics, 2002, 154-155, 669-677.	2.7	31
101	Mixed Ionic and Electronic Conductivity of Undoped and Acceptor-Doped Er[sub 6]WO[sub 12]. Journal of the Electrochemical Society, 2007, 154, B77.	2.9	31
102	Novel high temperature proton conducting fuel cells: Production of La0.995Sr0.005NbO4â $^{\circ}$ 1 electrolyte thin films and compatible cathode architectures. Journal of Power Sources, 2009, 188, 106-113.	7.8	31
103	High-Temperature Hydration and Conductivity of Mayenite, Ca ₁₂ Al ₁₄ O ₃₃ . Journal of Physical Chemistry C, 2009, 113, 8938-8944.	3.1	31
104	Oxygen bulk diffusion and surface exchange in Sr-substituted La2NiO4+δ. Solid State Ionics, 2011, 184, 42-46.	2.7	31
105	Versatile apparatus for thermoelectric characterization of oxides at high temperatures. Review of Scientific Instruments, 2014, 85, 103906.	1.3	31
106	Assessing the photoelectrochemical properties of C, N, F codoped TiO 2 nanotubes of different lengths. Catalysis Today, 2017, 287, 161-168.	4.4	31
107	Proton Conductivity in Perovskite Oxides. Fuel Cells and Hydrogen Energy, 2009, , 217-241.	0.6	30
108	Correlation of oxygen vacancy concentration and thermoelectric properties in Na0.73CoO2â^î. Applied Physics Letters, 2010, 96, 141905.	3.3	30

#	Article	IF	Citations
109	Ab initio studies of hydrogen and acceptor defects in rutile TiO2. Physical Chemistry Chemical Physics, 2010, 12, 6817.	2.8	30
110	Steam-promoted CO2 flux in dual-phase CO2 separation membranes. Journal of Membrane Science, 2015, 482, 115-119.	8.2	30
111	Protonic surface conduction controlled by space charge of intersecting grain boundaries in porous ceramics. Journal of Materials Chemistry A, 2018, 6, 8265-8270.	10.3	30
112	Crystal Structure of the Mixed Oxides La0.7Sr0.3Co1â^'zMnzO3±y(0â‰聲â‰⊉). Journal of Solid State Chemistry, 1999, 143, 52-57.	2.9	29
113	Determination of Thermodynamics and Kinetics of Point Defects in Cu2 O  Using the Rosenburg Method. Journal of the Electrochemical Society, 1999, 146, 999-1004.	2.9	29
114	Synthesis, densification and electrical properties of strontium cerate ceramics. Journal of the European Ceramic Society, 2007, 27, 4461-4471.	5.7	29
115	Oxygen and Hydrogen Separation Membranes Based on Dense Ceramic Conductors. Membrane Science and Technology, 2008, , 401-458.	0.5	29
116	Hydration and proton conductivity in LaAsO ₄ . Journal of Materials Chemistry, 2012, 22, 1652-1661.	6.7	29
117	Cathode compatibility, operation, and stability of LaNbO4-based proton conducting fuel cells. Solid State Ionics, 2014, 262, 382-387.	2.7	29
118	Evaluating surface protonic transport on cerium oxide via electrochemical impedance spectroscopy measurement. Solid State Communications, 2018, 270, 45-49.	1.9	29
119	Ceramic Proton and Mixed Proton-Electron Conductors in Membranes for Energy Conversion Applications. Journal of Chemical Engineering of Japan, 2007, 40, 1166-1171.	0.6	26
120	Solid-state photoelectrochemical cell with TiO2 nanotubes for water splitting. Photochemical and Photobiological Sciences, 2017, 16, 10-16.	2.9	26
121	Determination of thermodynamics and kinetics of point defects in NiO using the Rosenburg method. Solid State Ionics, 1998, 111, 323-332.	2.7	25
122	Defects and transport in Gd-doped BaPrO3. Journal of Electroceramics, 2009, 23, 80-88.	2.0	25
123	Hydration of Rutile TiO ₂ : Thermodynamics and Effects on <i>n</i> and <ip< i=""> Type Electronic Conduction. Journal of Physical Chemistry C, 2010, 114, 9139-9145.</ip<>	3.1	25
124	Influence of processing on stability, microstructure and thermoelectric properties of Ca3Co4â^'xO9+δ. Journal of the European Ceramic Society, 2018, 38, 1592-1599.	5.7	25
125	Dense ceramic membranes based on ion conducting oxides. Annales De Chimie: Science Des Materiaux, 2007, 32, 197-212.	0.4	25
126	Local condensation around oxygen vacancies in t-LaNbO4 from first principles calculations. Physical Chemistry Chemical Physics, 2009, 11, 5550.	2.8	24

#	Article	IF	CITATIONS
127	Oxygen Nonstoichiometry in (Ca ₂ CoO ₃) _{0.62} (CoO ₂): A Combined Experimental and Computational Study. Journal of Physical Chemistry C, 2014, 118, 18899-18907.	3.1	24
128	Liquid phases in Li:MgO as studied by thermoanalytical methods, electron microscopy, and electrical conductivity measurements. Catalysis Today, 1990, 6, 575-586.	4.4	23
129	On phase relations, transport properties and defect structure in mixed conducting SrFe1.5â^'xCoxOz. Solid State Ionics, 2000, 129, 285-297.	2.7	23
130	Transport properties and defect analysis of La1.9Sr0.1NiO4+δ. Solid State Ionics, 2009, 180, 1433-1441.	2.7	23
131	Preparation and Characterization of Ni–LaNbO ₄ Cermet Anode Supports for Protonâ€Conducting Fuel Cell Applications. Journal of the American Ceramic Society, 2010, 93, 2650-2655.	3.8	23
132	Investigation of La1â^'xSrxCrO3â^'â^, (x ~ 0.1) as Membrane for Hydrogen Production. Membranes, 2012, 2, 665-686.	3.0	23
133	Electromotive Force (emf) Determination of Transport Numbers for Native and Foreign Ions in Molten Alkali Metal Carbonates. Journal of the Electrochemical Society, 2015, 162, F1135-F1143.	2.9	23
134	Protons in Oxysulfides, Oxysulfates, and Sulfides: A First-Principles Study of La ₂ O ₂ SO ₄ , SrZrS ₃ , and BaZrS ₃ . Journal of Physical Chemistry C, 2015, 119, 23875-23882.	3.1	23
135	Segregation of Sr in Sr-doped LaPO4 ceramics. Surface and Interface Analysis, 2000, 30, 95-97.	1.8	22
136	Measurements of surface exchange kinetics and chemical diffusion in dense oxygen selective membranes. Catalysis Today, 2000, 56, 315-324.	4.4	22
137	Proton conductivity of Ca-doped Tb2O3. Solid State Ionics, 2005, 176, 2957-2961.	2.7	22
138	Structural transitions and conductivity of BaPrO3 and BaPrO.9Y0.1O3â~δ. Journal of Materials Chemistry, 2009, 19, 3238.	6.7	22
139	Proton Conductivity in Acceptor-Doped LaVO4. Journal of the Electrochemical Society, 2011, 158, B857.	2.9	22
140	Intrinsic photoelectrocatalytic activity in oriented, photonic TiO2 nanotubes. Materials Science in Semiconductor Processing, 2018, 88, 186-191.	4.0	22
141	Hydrogen from wet air and sunlight in a tandem photoelectrochemical cell. International Journal of Hydrogen Energy, 2019, 44, 587-593.	7.1	22
142	Protonic conductivity in Ca-doped yttria. Solid State Ionics, 1991, 49, 73-77.	2.7	21
143	lonic and Electronic Conductivity of 5% Ca-Doped GdNbO[sub 4]. Journal of the Electrochemical Society, 2006, 153, J87.	2.9	21
144	Reactivity between Titanium Dioxide and Water at Elevated Temperatures. Journal of Physical Chemistry C, 2010, 114, 18215-18221.	3.1	21

#	Article	IF	CITATIONS
145	Influence of Pr substitution on defects, transport, and grain boundary properties of acceptor-doped BaZrO3. International Journal of Hydrogen Energy, 2012, 37, 7962-7969.	7.1	21
146	Surface reactivity and cation non-stoichiometry in BaZr _{1â^'x} Y _x O _{3â^'Î} (<i>x</i> = 0â€"0.2) exposed to CO ₂ at elevated temperature. Journal of Materials Chemistry A, 2019, 7, 3848-3856.	10.3	21
147	Enhanced activity of catalysts on substrates with surface protonic current in an electrical field – a review. Chemical Communications, 2021, 57, 5737-5749.	4.1	21
148	Al-doped ZnO prepared by co-precipitation method and its thermoelectric characteristics. Materials Letters, 2021, 288, 129352.	2.6	21
149	In situ cofactor regeneration enables selective CO2 reduction in a stable and efficient enzymatic photoelectrochemical cell. Applied Catalysis B: Environmental, 2021, 296, 120349.	20.2	21
150	Protonic Conduction in La ₂ NiO ₄₊ <i>_Î</i> and La _{2â€} <i>_xA_x</i> NiO ₄₊ <i>_{i>_Î}</i> (<i>A</i> A Â= Ca,)) IÞETQq0	@ 10 rgBT /C
151	Electron Probe Micro Analysis of A-Site Inter-Diffusion Between LaFeO3 and NdFeO3. Journal of the American Ceramic Society, 2006, 89, 582-586.	3.8	20
152	Ba _{0.5} Gd _{0.8} La _{0.7} Co ₂ O _{6-δ} Infiltrated in Porous BaZr _{0.7} Ce _{0.2} Y _{0.1} O ₃ Backbones as Electrode Material for Proton Ceramic Electrolytes. Journal of the Electrochemical Society, 2017, 164, F196-F202.	2.9	20
153	Highly Correlated Hydride Ion Tracer Diffusion in SrTiO _{3â€"<i>x</i>} H <i>x</i> Oxyhydrides. Journal of the American Chemical Society, 2019, 141, 4653-4659.	13.7	20
154	Effects of metal cation doping in CeO ₂ support on catalytic methane steam reforming at low temperature in an electric field. RSC Advances, 2020, 10, 14487-14492.	3.6	20
155	Electrical conductivity and defect structure of lithiumdoped magnesium oxide. Applied Catalysis, 1991, 71, 89-102.	0.8	19
156	Electrical conductivity and ionic transport number of YSZ and Cr-doped YSZ single crystals at 200–1000°C. Solid State Ionics, 1993, 67, 57-64.	2.7	19
157	In situ studies of structural stability and proton conductivity of titanate nanotubes. Energy and Environmental Science, 2009, 2, 517.	30.8	19
158	The influence of acceptor and donor doping on the protonic surface conduction of TiO ₂ . Physical Chemistry Chemical Physics, 2018, 20, 15653-15660.	2.8	19
159	Dense Ceramic Membranes for Hydrogen Separation. , 2006, , 1-48.		18
160	Transport of hydrogen species in a single crystal SrTiO3. Solid State Ionics, 2006, 177, 1469-1476.	2.7	18
161	Proton and oxide ion conductivity in grain boundaries and grain interior of Ca-doped Er2Ti2O7 with Si-impurities. Solid State Ionics, 2008, 179, 1849-1853.	2.7	18
162	Evaluation of metastable pitting on titanium by charge integration of current transients. Corrosion Science, 2010, 52, 3158-3161.	6.6	18

#	Article	IF	CITATIONS
163	C-type related order in the defective fluorites La ₂ Ce ₂ O ₇ and Nd ₂ Ce ₂ O ₇ studied by neutron scattering and ab initio MD simulations. Physical Chemistry Chemical Physics, 2016, 18, 24070-24080.	2.8	18
164	Structure and water uptake in BaLnCo2O6â^Î (Ln =La, Pr, Nd, Sm, Gd, Tb and Dy). Acta Materialia, 2020, 199, 297-310.	7.9	18
165	Structure, hydration, and proton conductivity in 50% La and Nd doped CeO2 – La2Ce2O7 and Nd2Ce2O7 – and their solid solutions. Solid State Ionics, 2020, 354, 115401.	2.7	18
166	One-dimensional WO3 and its hydrate: One-step synthesis, structural and spectroscopic characterization. Journal of Solid State Chemistry, 2012, 185, 245-252.	2.9	17
167	Thermal stability and enhanced thermoelectric properties of the tetragonal tungsten bronzes Nb8â°'xW9+xO47 (0 < x < 5). Journal of Materials Chemistry A, 2017, 5, 9768-9774.	10.3	17
168	Layered microstructures based on BaZr0.85Y0.15O3â^3Î^ by pulsed laser deposition for metal-supported proton ceramic electrolyser cells. Journal of Materials Science, 2017, 52, 6486-6497.	3.7	17
169	Acid reactions in hub systems consisting of separate non-reactive CO2 transport lines. International Journal of Greenhouse Gas Control, 2019, 87, 246-255.	4.6	17
170	Thermoelectric properties of non-stoichiometric CaMnO3-δ composites formed by redox-activated exsolution. Journal of the European Ceramic Society, 2020, 40, 1344-1351.	5.7	17
171	Double Perovskite Cobaltites Integrated in a Monolithic and Noble Metal-Free Photoelectrochemical Device for Efficient Water Splitting. ACS Applied Materials & Samp; Interfaces, 2021, 13, 20313-20325.	8.0	17
172	Protons in Ca-doped La2O3, Nd2O3 and LaNdO3. Solid State Ionics, 1992, 53-56, 446-452. Heat canacity of SyFeO336°° NA= 0.50, 0.25 and 0.15 a6° configurational entropy of structural entities in	2.7	16
173	grossly non-stoichiometric oxidesElectronic supplementary information (ESI) available: the experimental molar heat capacities of SrFeO2.54, SrFeO2.725 and SrFeO2.833 at sub-ambient temperatures and the corresponding data for SrFeO2.50, SrFeO2.74, SrFeO2.82, SrFeO2.833 and SrFeO2.85 at super-ambient temperatures. See http://www.rsc.org/suppdata/dt/b2/b209236k/. Dalton	3.3	16
174	Transactions, 2003, 361-368. Transport numbers from hydrogen concentration cells over different oxides under oxidising and reducing conditions. Dalton Transactions, 2004, , 3147.	3.3	16
175	Effect of oxygen partial pressure on the oxidation behaviour of an yttria dispersion strengthened NiCr-base alloy. Journal of Materials Science, 2008, 43, 5591-5598.	3.7	16
176	Interfacial Charge Transfer and Chemical Bonding in a Ni–LaNbO ₄ Cermet for Proton-Conducting Solid-Oxide Fuel Cell Anodes. Chemistry of Materials, 2012, 24, 4152-4159.	6.7	16
177	Reaction Kinetics of Protons and Oxide Ions in LSM/Lanthanum Tungstate Cathodes with Pt Nanoparticle Activation. Journal of the Electrochemical Society, 2016, 163, F507-F515.	2.9	16
178	Is ReO ₃ a mixed ionic–electronic conductor? A DFT study of defect formation and migration in a <i>B</i> ^{VI} O ₃ perovskite-type oxide. Physical Chemistry Chemical Physics, 2018, 20, 8008-8015.	2.8	16
179	Water Vapor Photoelectrolysis in a Solid-State Photoelectrochemical Cell with TiO ₂ Nanotubes Loaded with CdS and CdSe Nanoparticles. ACS Applied Materials & Interfaces, 2021, 13, 46875-46885.	8.0	16
180	H ₂ O-D ₂ O exchange in lawsonite. American Mineralogist, 2001, 86, 1166-1169.	1.9	15

#	Article	IF	Citations
181	High Temperature Proton Conductivity of ZrP[sub 2]O[sub 7]. Journal of the Electrochemical Society, 2010, 157, B1491.	2.9	15
182	Theoretical analysis of oxygen vacancies in layered sodium cobaltate, Na _{<i>x</i>} CoO _{2â~δ} . Journal of Physics Condensed Matter, 2012, 24, 475505.	1.8	15
183	Nitrogen defects in wide band gap oxides: defect equilibria and electronic structure from first principles calculations. Physical Chemistry Chemical Physics, 2012, 14, 11808.	2.8	15
184	Tetragonal tungsten bronzes Nb $<$ sub $>$ 8â $^{^{\prime}}$ x $<$ /sub $>$ W $<$ sub $>$ 9+x $<$ /sub $>$ O $<$ sub $>$ 47â $^{^{\prime}}$ Î $^{\prime}$ $<$ /sub $>$: optimization strategies and transport properties of a new n-type thermoelectric oxide. Materials Horizons, 2015, 2, 519-527.	12.2	15
185	Effect of SO2, O2, NO2, and H2O Concentrations on Chemical Reactions and Corrosion of Carbon Steel in Dense Phase CO2. Corrosion, 2019, 75, 1327-1338.	1.1	15
186	High-Temperature Structural and Electrical Properties of BaLnCo2O6 Positrodes. Materials, 2020, 13, 4044.	2.9	15
187	Visible Light Driven Photocatalytic Decolorization and Disinfection of Water Employing Reduced TiO2 Nanopowders. Catalysts, 2021, 11, 228.	3.5	15
188	La2Ce2O7 doped with alkaline earth elements: Phase behavior, hydration and electrical properties. Journal of Alloys and Compounds, 2022, 899, 163306.	5.5	15
189	Synthesis, Sintering, Transport Properties, and Surface Exchange of <scp><scp>La</scp>₂<scp>Ni</scp></scp> <scp>Cu</scp> Journal of the American Ceramic Society, 2012, 95, 2065-2073.	>3. s ub>0.1	. 1/ 5ub> < sc
190	Inter-diffusion in lanthanum tungsten oxide. Solid State Ionics, 2013, 244, 57-62.	2.7	14
191	Determination of inter-diffusion coefficients for the A- and B-site in the A2BO4+ \hat{l} (A = La, Nd and B = Ni,) Tj ETQq1	1.0.7843 2.7	14 rgBT /O
192	Performance and stability in H2S of SrFe0.75Mo0.25O3-δas electrode in proton ceramic fuel cells. Journal of the European Ceramic Society, 2018, 38, 163-171.	5.7	14
193	Ta3N5/Co(OH)x composites as photocatalysts for photoelectrochemical water splitting. Photochemical and Photobiological Sciences, 2019, 18, 837-844.	2.9	14
194	Support effects on catalysis of low temperature methane steam reforming. RSC Advances, 2020, 10, 26418-26424.	3.6	14
195	Hydrogen Defects in Inorganic Solids. Studies in Inorganic Chemistry, 1989, 9, 101-142.	0.2	13
196	Novel anode materials for multi-fuel applicable solid oxide fuel cells. Journal of Alloys and Compounds, 2006, 408-412, 622-627.	5.5	13
197	Steady-State Permeation of Oxygen Through La[sub 1.9]Sr[sub 0.1]NiO[sub $4+\hat{l}$]. Journal of the Electrochemical Society, 2009, 156, B1039.	2.9	13
198	XPS characterisation of the interface between anode and electrolyte in a proton conducting solid oxide fuel cell. Surface and Interface Analysis, 2010, 42, 568-571.	1.8	13

#	Article	IF	CITATIONS
199	Defects at the $(1\ 1\ 0)$ surface of rutile TiO2 from ab initio calculations. International Journal of Hydrogen Energy, 2012, 37, 8110-8117.	7.1	13
200	Atomistic study of LaNbO4; surface properties and hydrogen adsorption. International Journal of Hydrogen Energy, 2012, 37, 6674-6685.	7.1	13
201	Inter-diffusion across a direct p-n heterojunction of Li-doped NiO and Al-doped ZnO. Solid State lonics, 2018, 320, 215-220.	2.7	13
202	All-Oxide Thermoelectric Module with in Situ Formed Non-Rectifying Complex p–p–n Junction and Transverse Thermoelectric Effect. ACS Omega, 2018, 3, 9899-9906.	3.5	13
203	Disagreements between space charge models and grain boundary impedance data in yttrium-substituted barium zirconate. Solid State Ionics, 2020, 353, 115369.	2.7	13
204	First observation of surface protonics on SrZrO ₃ perovskite under a H ₂ atmosphere. Chemical Communications, 2020, 56, 2699-2702.	4.1	13
205	La1 â^' x Ba x Cr1 â^' y Ti y  O 3 with Varied Oxygen Content. Journal of the Electroch 264-269.	emical So	ciety, 1998, 1
206	lonic and electronic conductivity in CaTi _{0.9} fe _{0.1} o _{3-δ} . Phase Transitions, 1999, 69, 157-168.	1.3	12
207	Silver coated cathode for molten carbonate fuel cells. International Journal of Hydrogen Energy, 2020, 45, 19847-19857.	7.1	12
208	Structural study of the perovskite system Ba6â^'yCayNb2O11 hydrated to proton conducting Ba6â^'yCayNb2O10(OH)2. Solid State Ionics, 2008, 179, 1858-1866.	2.7	11
209	Proton segregation and space-charge at the BaZrO3 (0 0 1)/MgO (0 0 1) heterointerface. Solid State lonics, 2016, 297, 77-81.	2.7	11
210	Near-Broken-Gap Alignment between FeWO ₄ and Fe ₂ WO ₆ for Ohmic Direct pâ€"n Junction Thermoelectrics. ACS Applied Materials & Direct pâ€"n Junction Thermoelectrics ACS Applied Materials & Direct pâ€"n Junction Thermoelectric pâ§"n Junction Thermoelectric p	8.0	11
211	Microstructure and electrochemical behavior of layered cathodes for molten carbonate fuel cell. Journal of Power Sources, 2021, 500, 229949.	7.8	11
212	Water and protons in electrodeposited MnO2 (EMD). Solid State Ionics, 2002, 152-153, 695-701.	2.7	10
213	Structure, defect chemistry, and proton conductivity in nominally Sr-doped Ba3La(PO4)3. Solid State lonics, 2009, 180, 338-342.	2.7	10
214	Novel Fabrication of Caâ€Doped LaNbO ₄ Thinâ€Film Protonâ€Conducting Fuel Cells by Pulsed Laser Deposition. Journal of the American Ceramic Society, 2010, 93, 1874-1878.	3.8	10
215	The defect chemistry of nitrogen in oxides: A review of experimental and theoretical studies. Journal of Solid State Chemistry, 2013, 198, 65-76.	2.9	10
216	Protons in acceptor doped langasite, La3Ga5SiO14. Solid State Ionics, 2014, 264, 76-84.	2.7	10

#	Article	IF	Citations
217	Effects of temperature, triazole and hot-pressing on the performance of TiO2 photoanode in a solid-state photoelectrochemical cell. Electrochimica Acta, 2014, 115, 66-74.	5.2	10
218	Hall effect measurements on thermoelectric Ca3Co4O9: On how to determine the charge carrier concentration in strongly correlated misfit cobaltites. Journal of Applied Physics, 2015, 117 , .	2.5	10
219	Investigation of the electrostatic potential of a grain boundary in Y-substituted BaZrO3 using inline electron holography. Physical Chemistry Chemical Physics, 2019, 21, 17662-17672.	2.8	10
220	Improved CO2 flux by dissolution of oxide ions into the molten carbonate phase of dual-phase CO2 separation membranes. Separation and Purification Technology, 2019, 212, 723-727.	7.9	10
221	Photocatalytic generation of gas phase reactive oxygen species from adsorbed water: Remote action and electrochemical detection. Journal of Environmental Chemical Engineering, 2021, 9, 104809.	6.7	10
222	Increasing the thermal expansion of proton conducting Y-doped BaZrO3 by Sr and Ce substitution. Solid State Ionics, 2021, 359, 115534.	2.7	10
223	An experimental study of the electronic structure of anodically grown films on an amorphous Ni ₇₈ Si ₈ B ₁₄ alloy. Surface and Interface Analysis, 2008, 40, 826-829.	1.8	9
224	Nitrogen defects from NH $<$ sub $>$ 3 $<$ /sub $>$ in rare-earth sesquioxides and ZrO $<$ sub $>$ 2 $<$ /sub $>$. Dalton Transactions, 2011, 40, 132-135.	3.3	9
225	Determination of Chemical Tracer Diffusion Coefficients for the <scp><scp>La</scp></scp> ―and <scp><scp>Ni</scp></scp> <scb>La</scb> Ceramic Society 201396598-605 Ceramic Society 201396598-605	3.8	9
226	Electrochemical performance of Co3O4/CeO2 electrodes in H2S/H2O atmospheres in a proton-conducting ceramic symmetrical cell with BaZr0.7Ce0.2Y0.1O3 solid electrolyte. Solid State lonics, 2017, 306, 31-37.	2.7	9
227	Importance of the Spin–Orbit Interaction for a Consistent Theoretical Description of Small Polarons in Pr-Doped CeO ₂ . Journal of Physical Chemistry C, 2020, 124, 15831-15838.	3.1	9
228	Development of a hydrogen membrane reformer based CO2 emission free gas fired power plant., 2005,, 83-91.		9
229	A Study of Anodically Grown Hydroxide Films on an Amorphous Ni[sub 78]Si[sub 8]B[sub 14] Alloy. Journal of the Electrochemical Society, 2007, 154, F111.	2.9	8
230	Defects and transport properties of Sr-doped LaP3O9. Solid State Ionics, 2010, 181, 1264-1269.	2.7	8
231	Concentration and Mobility of Electrons in ZnO from Electrical Conductivity and Thermoelectric Power in H ₂ + H ₂ O at High Temperatures. Journal of Physical Chemistry C, 2010, 114, 16785-16792.	3.1	8
232	Preparation of TiO2 rutile nanorods decorated with cobalt oxide nanoparticles for solar photoelectrochemical activity. Materials Letters, 2019, 247, 1-3.	2.6	8
233	Facet-engineered TiO ₂ nanomaterials reveal the role of water–oxide interactions in surface protonic conduction. Journal of Materials Chemistry A, 2021, 10, 218-227.	10.3	8
234	Immobilization of FeFe-hydrogenase on black TiO2 nanotubes as biocathodes for the hydrogen evolution reaction. Electrochemistry Communications, 2022, 135, 107221.	4.7	8

#	Article	IF	CITATIONS
235	Studies of chemical diffusion in La _{1-X} Sr _X CoO _{3-δ} . Phase Transitions, 1996, 58, 145-157.	1.3	7
236	Determination of the Self-Diffusion Coefficient of Ni2+in La2NiO4+Îby the Solid State Reaction Method. Journal of the Electrochemical Society, 2012, 159, B702-B708.	2.9	7
237	Comparison of Cu and Pt point-contact electrodes on proton conducting BaZr0.7Ce0.2Y0.1O3â^2. Solid State Ionics, 2017, 306, 38-47.	2.7	7
238	Charge-Carrier Enrichment at BaZrO ₃ /SrTiO ₃ Interfaces. Journal of Physical Chemistry C, 2019, 123, 20808-20816.	3.1	7
239	Assessing common approximations in space charge modelling to estimate the proton resistance across grain boundaries in Y-doped BaZrO ₃ . Physical Chemistry Chemical Physics, 2020, 22, 11891-11902.	2.8	7
240	XPS and SEM studies of Ca- and Ni-substituted LaCrO3 after quenching from reducing and oxidizing atmospheres at 800 ${\hat A}^{\circ}$ C. Surface and Interface Analysis, 1994, 22, 275-279.	1.8	6
241	Hydrogen energetics and charge transfer in the Ni/LaNbO4 interface from DFT calculations. International Journal of Hydrogen Energy, 2012, 37, 8033-8042.	7.1	6
242	On the Complex Structural Picture of the Ionic Conductor Sr ₆ Ta ₂ O ₁₁ . Journal of Physical Chemistry C, 2013, 117, 9543-9549.	3.1	6
243	Hydrogen Oxidation Kinetics and Performance of Ni-LaNbO ₄ Cermet Anodes for Proton Conducting SOFCs. Journal of the Electrochemical Society, 2014, 161, F373-F379.	2.9	6
244	Protons in piezoelectric langatate; La3Ga5.5Ta0.5O14. Solid State Ionics, 2015, 278, 275-280.	2.7	6
245	Chemical tracer diffusion of Sr and Co in polycrystalline Ca-deficient CaMnO _{3â^Î^} with CaMn ₂ O ₄ precipitates. Physical Chemistry Chemical Physics, 2018, 20, 2754-2760.	2.8	6
246	Ohmically heated ceramic asymmetric tubular membranes for gas separation. Journal of Membrane Science, 2018, 564, 598-604.	8.2	6
247	Electrical Properties of a p–n Heterojunction of Li-Doped NiO and Al-Doped ZnO for Thermoelectrics. Journal of Electronic Materials, 2018, 47, 5296-5301.	2.2	6
248	Thermoelectric Properties of Ca3Co2â^'xMnxO6 (x = 0.05, 0.2, 0.5, 0.75, and 1). Materials, 2019, 12, 497.	2.9	6
249	lonic conductivity in LixTaOy thin films grown by atomic layer deposition. Electrochimica Acta, 2020, 361, 137019.	5.2	6
250	Quantifiable models for surface protonic conductivity in porous oxides – case of monoclinic ZrO ₂ . Physical Chemistry Chemical Physics, 2022, 24, 11856-11871.	2.8	6
251	Impedance spectroscopy studies of electrode-electrolyte systems. Solid State Ionics, 1992, 52, 93-97.	2.7	5
252	Titanium Dioxide Photocatalyst - Unresolved Problems. Solid State Phenomena, 2010, 162, 77-90.	0.3	5

#	Article	IF	CITATIONS
253	On the hydration of grain boundaries and bulk of proton conducting BaZr0.7Pr0.2Y0.1O3-δ. International Journal of Hydrogen Energy, 2012, 37, 7970-7974.	7.1	5
254	Coking Study in Anode Materials for SOFCs: Physicochemical Properties and Behavior of Mo-Containing Perovskites in CO and CH ₄ Fuels. ECS Transactions, 2014, 64, 103-116.	0.5	5
255	Development of Metal Supported Cells Using BaZrO3-Based Proton Conducting Ceramics. ECS Transactions, 2019, 91, 1035-1045.	0.5	5
256	Voids in walls of mesoporous TiO2 anatase nanotubes by controlled formation and annihilation of protonated titanium vacancies. Materials Chemistry and Physics, 2020, 239, 121953.	4.0	5
257	Defects and polaronic electron transport in Fe ₂ WO ₆ . Physical Chemistry Chemical Physics, 2020, 22, 15541-15548.	2.8	5
258	Lanthanum strontium cobaltite as interconnect in oxide thermoelectric generators. Solid State Sciences, 2022, 124, 106801.	3.2	5
259	Formation of YSZ Films By Thermal Annealing of Y/Zr Layers in Air. Surface Engineering, 2003, 19, 379-383.	2.2	4
260	Cation transport in Sr and Cu substituted La2NiO4+δ studied by inter-diffusion. Solid State Ionics, 2014, 254, 32-39.	2.7	4
261	Vacancy ordering and superstructure formation in dry and hydrated strontium tantalate perovskites: A TEM perspective. Micron, 2014, 62, 11-27.	2.2	4
262	The Band Gap of BaPrO ₃ Studied by Optical and Electrical Methods. Journal of the American Ceramic Society, 2016, 99, 492-498.	3.8	4
263	Highlights from Faraday Discussion 182: Solid Oxide Electrolysis: Fuels and Feedstocks from Water and Air, York, UK, July 2015. Chemical Communications, 2016, 52, 1759-1767.	4.1	4
264	Impedance spectroscopy study of Au electrodes on Gd-doped CeO2 (GDC) – Molten Li2CO3+Na2CO3 (LNC) composite electrolytes. Journal of Power Sources, 2022, 522, 230986.	7.8	4
265	Kinetic Decomposition of a La2NiO4+Î Membrane under an Oxygen Potential Gradient. Journal of the Electrochemical Society, 2012, 159, F461-F467.	2.9	3
266	Effect of cation disorder on the solubility and result of doping in oxides. International Journal of Hydrogen Energy, 2012, 37, 8062-8065.	7.1	3
267	Structural study of the complex perovskite Ba4(Ba2Nb2)O11. Materials Characterization, 2015, 102, 71-78.	4.4	3
268	Fabrication of Metal-Supported Proton-Conducting Electrolysers with Thin Film Sr- and Ce-Doped BZY Electrolyte. ECS Transactions, 2019, 91, 941-949.	0.5	3
269	High performance and toxicity assessment of Ta3N5 nanotubes for photoelectrochemical water splitting. Catalysis Today, 2021, 361, 57-62.	4.4	3
270	Versatile four-leg thermoelectric module test setup adapted to a commercial sample holder system for high temperatures and controlled atmospheres. Review of Scientific Instruments, 2021, 92, 043902.	1.3	3

#	Article	IF	Citations
271	Development of Proton Conducting Ceramic Cells in Metal Supported Architecture. ECS Transactions, 2021, 103, 1779-1789.	0.5	3
272	Protons in ZrO2; A Search for Effects of Water Vapour on the Electrical Conductivity and M/T Phase Transformation of Undoped ZrO2. , 1989 , , $209-218$.		3
273	Chemical stability of Ca ₃ Co _{4â^'x} O _{9+δ} /CaMnO _{3â^'δ} pâ€"n junction for oxide-based thermoelectric generators. RSC Advances, 2020, 10, 5026-5031.	3.6	3
274	Oxidation of methane on a Au + SrFeO3 $\hat{a}^{\hat{1}}/ YSZ $ electrode characterised by mass spectroscopy and 18O2 pulses. Chemical Engineering and Technology, 1995, 18, 139-147.	1.5	2
275	Electrochemical and degradation study of Sr0.6Na0.4SiO3-δ. Journal of Solid State Electrochemistry, 2018, 22, 3009-3013.	2.5	2
276	Mechanisms for sonochemical oxidation of nitrogen. Physical Chemistry Chemical Physics, 2022, 24, 15357-15364.	2.8	2
277	Galvanic Restructuring of Exsolved Nanoparticles for Plasmonic and Electrocatalytic Energy Conversion. Small, 2022, 18, .	10.0	2
278	A low-angle grain boundary in iron-doped strontium titanate revealed by transmission electron microscopy. Journal of Materials Science Letters, 1994, 13, 1789-1792.	0.5	1
279	Deep decarbonization efforts in Norway for energy sustainability. MRS Energy & Sustainability, 2019, 6, 1.	3.0	1
280	First-Principles Analyses of Nanoionic Effects at Oxide–Oxide Heterointerfaces for Electrochemical Applications. Journal of Physical Chemistry C, 2020, 124, 14072-14081.	3.1	1
281	La1-xSrxMO3 (M = Co, Mn, Cr) interconnects in a 4-leg all-oxide thermoelectric generator at high temperatures. Journal of Physics and Chemistry of Solids, 2022, 167, 110739.	4.0	1
282	In Memory Per Kofstad. Oxidation of Metals, 1998, 49, 401-402.	2.1	0
283	Conductivity dependence on oxygen partial pressure and transport number measurements of La2Mo2O9. Materials Research Society Symposia Proceedings, 2004, 822, S6.5.1.	0.1	0
284	Electron Microscopy Study of interfaces of Proton Conducting Fuel Cell Anodes. Microscopy and Microanalysis, 2010, 16, 1444-1445.	0.4	0
285	Preface of the Special Issue of International Journal of Hydrogen Energy: Proceedings of the 7th Petite Workshop on the Defect Chemical Nature of Energy Materials. International Journal of Hydrogen Energy, 2012, 37, 7953.	7.1	0
286	Solid Proton Conductors: Oxides and Polymers. Fuel Cells, 2013, 13, 4-5.	2.4	0
287	On the Conductivity of KBaPO4and Its Decomposition in Steam and Water. Journal of the Electrochemical Society, 2017, 164, F885-F888.	2.9	0
288	Metal Supported Proton Conducting Ceramic Cell with Thin Film Electrolyte for Electrolysis Application. ECS Transactions, 2021, 103, 693-700.	0.5	0

#	Article	IF	CITATIONS
289	PROTONIC CONDUCTION IN TiP ₂ O ₇ ., 2006, , .		O
290	High Temperature Proton Conductors. , 1998, , 603-608.		0