
Jens Kroll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7616233/publications.pdf Version: 2024-02-01

IENS KROL

#	Article	IF	CITATIONS
1	Inhibition of Rho-dependent kinases ROCK I/II activates VEGF-driven retinal neovascularization and sprouting angiogenesis. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H893-H899.	3.2	75
2	The Rac1 Regulator ELMO1 Controls Vascular Morphogenesis in Zebrafish. Circulation Research, 2010, 107, 45-55.	4.5	69
3	Aging-Dependent Reduction in Glyoxalase 1 Delays Wound Healing. Gerontology, 2013, 59, 427-437.	2.8	53
4	Oxidized phospholipids regulate amino acid metabolism through MTHFD2 to facilitate nucleotide release in endothelial cells. Nature Communications, 2018, 9, 2292.	12.8	44
5	High Tissue Glucose Alters Intersomitic Blood Vessels in Zebrafish via Methylglyoxal Targeting the VEGF Receptor Signaling Cascade. Diabetes, 2015, 64, 213-225.	0.6	41
6	Zebrafish as a Model for the Study of Microvascular Complications of Diabetes and Their Mechanisms. International Journal of Molecular Sciences, 2017, 18, 2002.	4.1	41
7	Regulation of lung development and regeneration by the vascular system. Cellular and Molecular Life Sciences, 2015, 72, 2709-2718.	5.4	40
8	The Transcription Factor HOXC9 Regulates Endothelial Cell Quiescence and Vascular Morphogenesis in Zebrafish via Inhibition of Interleukin 8. Circulation Research, 2011, 108, 1367-1377.	4.5	38
9	The combination of loss of glyoxalase1 and obesity results in hyperglycemia. JCI Insight, 2019, 4, .	5.0	37
10	Elevated 4-hydroxynonenal induces hyperglycaemia via Aldh3a1 loss in zebrafish and associates with diabetes progression in humans. Redox Biology, 2020, 37, 101723.	9.0	36
11	ELMO1 protects renal structure and ultrafiltration in kidney development and under diabetic conditions. Scientific Reports, 2016, 6, 37172.	3.3	34
12	The Bipartite Rac1 Guanine Nucleotide Exchange Factor Engulfment and Cell Motility 1/Dedicator of Cytokinesis 180 (Elmo1/Dock180) Protects Endothelial Cells from Apoptosis in Blood Vessel Development. Journal of Biological Chemistry, 2015, 290, 6408-6418.	3.4	30
13	Activation of Retinal Angiogenesis in Hyperglycemic <i>pdx1 â^'/â^'</i> Zebrafish Mutants. Diabetes, 2020, 69, 1020-1031.	0.6	30
14	The BTB-Kelch Protein KLEIP Controls Endothelial Migration and Sprouting Angiogenesis. Circulation Research, 2007, 100, 1155-1163.	4.5	29
15	Transgenic Mouse Models of Corneal Neovascularization: New Perspectives for Angiogenesis Research. , 2014, 55, 7637.		25
16	Nucleoside Diphosphate Kinase B Regulates Angiogenesis Through Modulation of Vascular Endothelial Growth Factor Receptor Type 2 and Endothelial Adherens Junction Proteins. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2292-2300.	2.4	25
17	Angiopoietin-1 Is Regulated by miR-204 and Contributes to Corneal Neovascularization in KLEIP-Deficient Mice. , 2014, 55, 4295.		24
18	Junb controls lymphatic vascular development in zebrafish via miR-182. Scientific Reports, 2015, 5, 15007.	3.3	23

Jens Kroll

#	Article	IF	CITATIONS
19	Vascular Damage in Obesity and Diabetes: Highlighting Links Between Endothelial Dysfunction and Metabolic Disease in Zebrafish and Man. Current Vascular Pharmacology, 2019, 17, 476-490.	1.7	19
20	Different Regulation of Physiological and Tumor Angiogenesis in Zebrafish by Protein Kinase D1 (PKD1). PLoS ONE, 2013, 8, e68033.	2.5	18
21	Studying Diabetes Through the Eyes of a Fish: Microdissection, Visualization, and Analysis of the Adult tg(fli:EGFP) Zebrafish Retinal Vasculature. Journal of Visualized Experiments, 2017, , .	0.3	16
22	Rho guanine exchange factors in blood vessels: Fine-tuners of angiogenesis and vascular function. Experimental Cell Research, 2013, 319, 1289-1297.	2.6	15
23	HOXC9: A Key Regulator of Endothelial Cell Quiescence and Vascular Morphogenesis. Trends in Cardiovascular Medicine, 2012, 22, 7-11.	4.9	14
24	FOXF1 Mediates Endothelial Progenitor Functions and Regulates Vascular Sprouting. Frontiers in Bioengineering and Biotechnology, 2018, 6, 76.	4.1	14
25	CNDP1 knockout in zebrafish alters the amino acid metabolism, restrains weight gain, but does not protect from diabetic complications. Cellular and Molecular Life Sciences, 2019, 76, 4551-4568.	5.4	14
26	Follistatinâ€controlled activinâ€HNF4αâ€coagulation factor axis in liver progenitor cells determines outcome of acute liver failure. Hepatology, 2022, 75, 322-337.	7.3	14
27	<i>pdx1</i> Knockout Leads to a Diabetic Nephropathy– Like Phenotype in Zebrafish and Identifies Phosphatidylethanolamine as Metabolite Promoting Early Diabetic Kidney Damage. Diabetes, 2022, 71, 1073-1080.	0.6	14
28	KLEIP Deficiency in Mice Causes Progressive Corneal Neovascular Dystrophy. , 2012, 53, 3260.		13
29	Kelch-like ECT2 interacting protein KLEIP regulates late stage pulmonary maturation via Hif-2α. DMM Disease Models and Mechanisms, 2014, 7, 683-92.	2.4	12
30	Targeting erythropoietin protects against proteinuria in type 2 diabetic patients and in zebrafish. Molecular Metabolism, 2018, 8, 189-202.	6.5	12
31	HOXC9 Regulates Formation of Parachordal Lymphangioplasts and the Thoracic Duct in Zebrafish via Stabilin 2. PLoS ONE, 2013, 8, e58311.	2.5	11
32	Reduced Acrolein Detoxification in <i>akr1a1a</i> Zebrafish Mutants Causes Impaired Insulin Receptor Signaling and Microvascular Alterations. Advanced Science, 2021, 8, e2101281.	11.2	11
33	Regulation of Gluconeogenesis by Aldo-keto-reductase 1a1b in Zebrafish. IScience, 2020, 23, 101763.	4.1	9
34	Accumulation of acetaldehyde in aldh2.1 zebrafish causes increased retinal angiogenesis and impaired glucose metabolism. Redox Biology, 2022, 50, 102249.	9.0	9
35	Genetic compensation byepobin pronephros development inepoamutant zebrafish. Cell Cycle, 2019, 18, 2683-2696.	2.6	8
36	Advancing Diabetic Retinopathy Research: Analysis of the Neurovascular Unit in Zebrafish. Cells, 2021, 10. 1313.	4.1	8

Jens Kroll

#	Article	IF	CITATIONS
37	Deep Metabolic Profiling Assessment of Tissue Extraction Protocols for Three Model Organisms. Frontiers in Chemistry, 2022, 10, 869732.	3.6	6
38	Metabolic and Transcriptional Adaptations Improve Physical Performance of Zebrafish. Antioxidants, 2021, 10, 1581.	5.1	3
39	Thiosulfate sulfurtransferase prevents hyperglycemic damage to the zebrafish pronephros in an experimental model for diabetes. Scientific Reports, 2022, 12, .	3.3	3
40	Comparative Morphological, Metabolic and Transcriptome Analyses in elmo1â^'/â^', elmo2â^'/â^', and elmo3â^'/â^' Zebrafish Mutants Identified a Functional Non-Redundancy of the Elmo Proteins. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	0