Andrea C Ferrari

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7616123/andrea-c-ferrari-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

96,689 103 310 275 h-index g-index citations papers 106,806 8.45 10 313 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
275	Electrically Tunable Nonequilibrium Optical Response of Graphene ACS Nano, 2022,	16.7	4
274	Mapping the complex refractive index of single layer graphene on semiconductor or polymeric substrates at terahertz frequencies. <i>2D Materials</i> , 2022 , 9, 025018	5.9	2
273	Graphene-Based Interconnects for Stable Dye-Sensitized Solar Modules. <i>ACS Applied Energy Materials</i> , 2021 , 4, 98-110	6.1	5
272	2021 roadmap on lithium sulfur batteries. <i>JPhys Energy</i> , 2021 , 3, 031501	4.9	32
271	Low-Loss Integrated Nanophotonic Circuits with Layered Semiconductor Materials. <i>Nano Letters</i> , 2021 , 21, 2709-2718	11.5	10
270	Graphene overcoats for ultra-high storage density magnetic media. <i>Nature Communications</i> , 2021 , 12, 2854	17.4	5
269	Optoelectronic mixing with high-frequency graphene transistors. <i>Nature Communications</i> , 2021 , 12, 27	287.4	2
268	Tunable broadband light emission from graphene. 2D Materials, 2021, 8, 035026	5.9	2
267	In Situ Observation of Low-Power Nano-Synaptic Response in Graphene Oxide Using Conductive Atomic Force Microscopy. <i>Small</i> , 2021 , 17, e2101100	11	11
266	High-responsivity graphene photodetectors integrated on silicon microring resonators. <i>Nature Communications</i> , 2021 , 12, 3733	17.4	10
265	Confinement of long-lived interlayer excitons in WS2/WSe2 heterostructures. <i>Communications Physics</i> , 2021 , 4,	5.4	4
264	Raman spectroscopy of GaSe and InSe post-transition metal chalcogenides layers. <i>Faraday Discussions</i> , 2021 , 227, 163-170	3.6	11
263	Weak Distance Dependence of Hot-Electron-Transfer Rates at the Interface between Monolayer MoS and Gold. <i>ACS Nano</i> , 2021 , 15, 819-828	16.7	9
262	Non-equilibrium band broadening, gap renormalization and band inversion in black phosphorus. <i>2D Materials</i> , 2021 , 8, 025020	5.9	5
261	Efficient phonon cascades in WSe monolayers. <i>Nature Communications</i> , 2021 , 12, 538	17.4	12
260	Covalently interconnected transition metal dichalcogenide networks via defect engineering for high-performance electronic devices. <i>Nature Nanotechnology</i> , 2021 , 16, 592-598	28.7	22
259	Wafer-Scale Integration of Graphene-Based Photonic Devices. ACS Nano, 2021, 15, 3171-3187	16.7	24

(2019-2021)

258	Exciton-phonon coupling strength in single-layer MoSe at room temperature. <i>Nature Communications</i> , 2021 , 12, 954	17.4	9	
257	High-yield parallel fabrication of quantum-dot monolayer single-electron devices displaying Coulomb staircase, contacted by graphene. <i>Nature Communications</i> , 2021 , 12, 4307	17.4		
256	Shear and Breathing Modes of Layered Materials. ACS Nano, 2021,	16.7	4	
255	Strongly Coupled Coherent Phonons in Single-Layer MoS. <i>ACS Nano</i> , 2020 , 14, 5700-5710	16.7	15	
254	Transform-Limited Photons From a Coherent Tin-Vacancy Spin in Diamond. <i>Physical Review Letters</i> , 2020 , 124, 023602	7.4	56	
253	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001	5.9	179	
252	Thermoelectric graphene photodetectors with sub-nanosecond response times at terahertz frequencies. <i>Nanophotonics</i> , 2020 , 10, 89-98	6.3	11	
251	Terahertz Frequency Combs Exploiting an On-Chip, Solution-Processed, Graphene-Quantum Cascade Laser Coupled-Cavity. <i>ACS Photonics</i> , 2020 , 7, 3489-3498	6.3	10	
250	Ultrafast, Zero-Bias, Graphene Photodetectors with Polymeric Gate Dielectric on Passive Photonic Waveguides. <i>ACS Nano</i> , 2020 , 14, 11190-11204	16.7	24	
249	Screen-printed and spray coated graphene-based RFID transponders. 2D Materials, 2020, 7, 015019	5.9	7	
248	HBN-Encapsulated, Graphene-based, Room-temperature Terahertz Receivers, with High Speed and Low Noise. <i>Nano Letters</i> , 2020 , 20, 3169-3177	11.5	35	
247	Waveguide-Integrated, Plasmonic Enhanced Graphene Photodetectors. <i>Nano Letters</i> , 2019 , 19, 7632-764	44 .5	60	
246	Coherent anti-Stokes Raman spectroscopy of single and multi-layer graphene. <i>Nature Communications</i> , 2019 , 10, 3658	17.4	21	
245	High-Mobility, Wet-Transferred Graphene Grown by Chemical Vapor Deposition. <i>ACS Nano</i> , 2019 , 13, 8926-8935	16.7	70	
244	Raman spectroscopy of graphene under ultrafast laser excitation. <i>EPJ Web of Conferences</i> , 2019 , 205, 05003	0.3		
243	Niobium diselenide superconducting photodetectors. <i>Applied Physics Letters</i> , 2019 , 114, 251103	3.4	13	
242	Graphene/Polyelectrolyte Layer-by-Layer Coatings for Electromagnetic Interference Shielding. <i>ACS Applied Nano Materials</i> , 2019 , 2, 5272-5281	5.6	23	
241	Hot Electrons Modulation of Third-Harmonic Generation in Graphene. <i>ACS Photonics</i> , 2019 , 6, 2841-2849	96.3	22	

240	Graphene is on track to deliver on its promises. <i>Nature Nanotechnology</i> , 2019 , 14, 907-910	28.7	34
239	Layered material platform for surface plasmon resonance biosensing. <i>Scientific Reports</i> , 2019 , 9, 20286	4.9	33
238	Photocatalytic activity of exfoliated graphite-TiO nanoparticle composites. <i>Nanoscale</i> , 2019 , 11, 19301-	1 ,9.3 14	12
237	Excitonic Emission of Monolayer Semiconductors Near-Field Coupled to High-Q Microresonators. <i>Nano Letters</i> , 2018 , 18, 3138-3146	11.5	32
236	Raman spectroscopy of graphene under ultrafast laser excitation. <i>Nature Communications</i> , 2018 , 9, 308	17.4	47
235	GrapheneBilicon phase modulators with gigahertz bandwidth. <i>Nature Photonics</i> , 2018 , 12, 40-44	33.9	169
234	Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling. <i>Nature Nanotechnology</i> , 2018 , 13, 41-46	28.7	87
233	Electrically Controlled Nano and Micro Actuation in Memristive Switching Devices with On-Chip Gas Encapsulation. <i>Small</i> , 2018 , 14, e1801599	11	7
232	Wavelength tunable soliton rains in a nanotube-mode locked Tm-doped fiber laser. <i>Applied Physics Letters</i> , 2018 , 113, 193102	3.4	18
231	Cleaning interfaces in layered materials heterostructures. <i>Nature Communications</i> , 2018 , 9, 5387	17.4	152
230	Intravalley Spin-Flip Relaxation Dynamics in Single-Layer WS. Nano Letters, 2018, 18, 6882-6891	11.5	50
229	Graphene-based integrated photonics for next-generation datacom and telecom. <i>Nature Reviews Materials</i> , 2018 , 3, 392-414	73-3	170
228	Tetrahedral amorphous carbon resistive memories with graphene-based electrodes. <i>2D Materials</i> , 2018 , 5, 045028	5.9	6
227	Charge-tuneable biexciton complexes in monolayer WSe. <i>Nature Communications</i> , 2018 , 9, 3721	17.4	113
226	Broadband, electrically tunable third-harmonic generation in graphene. <i>Nature Nanotechnology</i> , 2018 , 13, 583-588	28.7	143
225	Multi-Valley Superconductivity in Ion-Gated MoS Layers. <i>Nano Letters</i> , 2018 , 18, 4821-4830	11.5	36
224	p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor. <i>Nature Communications</i> , 2017 , 8, 14024	17.4	62
223	Microfluidization of Graphite and Formulation of Graphene-Based Conductive Inks. <i>ACS Nano</i> , 2017 , 11, 2742-2755	16.7	192

(2016-2017)

222	Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance. <i>Nature Communications</i> , 2017 , 8, 14311	17.4	101
221	Enhanced piezoelectric effect at the edges of stepped molybdenum disulfide nanosheets. <i>Nanoscale</i> , 2017 , 9, 6237-6245	7.7	17
220	A stable, power scaling, graphene-mode-locked all-fiber oscillator. <i>Applied Physics Letters</i> , 2017 , 110, 243102	3.4	5
219	Terahertz saturable absorbers from liquid phase exfoliation of graphite. <i>Nature Communications</i> , 2017 , 8, 15763	17.4	69
218	Large-scale quantum-emitter arrays in atomically thin semiconductors. <i>Nature Communications</i> , 2017 , 8, 15093	17.4	275
217	Graphene and Related Materials for Resistive Random Access Memories. <i>Advanced Electronic Materials</i> , 2017 , 3, 1600195	6.4	137
216	Weak localization in electric-double-layer gated few-layer graphene. 2D Materials, 2017, 4, 035006	5.9	18
215	Vertically Illuminated, Resonant Cavity Enhanced, Graphene-Silicon Schottky Photodetectors. <i>ACS Nano</i> , 2017 , 11, 10955-10963	16.7	70
214	Ultra-strong nonlinear optical processes and trigonal warping in MoS layers. <i>Nature Communications</i> , 2017 , 8, 893	17.4	123
213	Spider silk reinforced by graphene or carbon nanotubes. 2D Materials, 2017, 4, 031013	5.9	40
212	High Responsivity, Large-Area Graphene/MoS2 Flexible Photodetectors. ACS Nano, 2016, 10, 8252-62	16.7	206
211	Stable, Surfactant-Free Grapheneßtyrene Methylmethacrylate Composite for Ultrafast Lasers. <i>Advanced Optical Materials</i> , 2016 , 4, 1088-1097	8.1	29
21 0	Atomically thin quantum light-emitting diodes. <i>Nature Communications</i> , 2016 , 7, 12978	17.4	174
209	Light-enhanced liquid-phase exfoliation and current photoswitching in graphene-azobenzene composites. <i>Nature Communications</i> , 2016 , 7, 11090	17.4	85
208	Liquid-Phase Exfoliation of Graphite into Single- and Few-Layer Graphene with Functionalized Alkanes. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 2714-21	6.4	64
207	Raman Radiation Patterns of Graphene. ACS Nano, 2016, 10, 1756-63	16.7	38
206	Surface Plasmon Polariton Graphene Photodetectors. <i>Nano Letters</i> , 2016 , 16, 8-20	11.5	119
205	Raman Fingerprints of Atomically Precise Graphene Nanoribbons. <i>Nano Letters</i> , 2016 , 16, 3442-7	11.5	67

204	Photo-Induced Bandgap Renormalization Governs the Ultrafast Response of Single-Layer MoS2. <i>ACS Nano</i> , 2016 , 10, 1182-8	16.7	209
203	Graphene-Based Interfaces Do Not Alter Target Nerve Cells. ACS Nano, 2016 , 10, 615-23	16.7	172
202	Tunnelling anisotropic magnetoresistance at La0.67Sr0.33MnO3-graphene interfaces. <i>Applied Physics Letters</i> , 2016 , 108, 112405	3.4	4
201	On-Chip Integrated, Silicon-Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain. <i>Nano Letters</i> , 2016 , 16, 3005-13	11.5	199
200	Transport conductivity of graphene at RF and microwave frequencies. 2D Materials, 2016, 3, 015010	5.9	27
199	Long Spin Diffusion Length in Few-Layer Graphene Flakes. <i>Physical Review Letters</i> , 2016 , 117, 147201	7.4	29
198	Interface Coupling in Twisted Multilayer Graphene by Resonant Raman Spectroscopy of Layer Breathing Modes. <i>ACS Nano</i> , 2015 , 9, 7440-9	16.7	105
197	Role of Cooperative Interactions in the Intercalation of Heteroatoms between Graphene and a Metal Substrate. <i>Journal of the American Chemical Society</i> , 2015 , 137, 7099-103	16.4	38
196	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. <i>Nanoscale</i> , 2015 , 7, 4598-810	7.7	2015
195	Ultrafast pseudospin dynamics in graphene. <i>Physical Review B</i> , 2015 , 92,	3.3	38
194	Ultrafast valley relaxation dynamics in monolayer MoS2 probed by nonequilibrium optical		71
	techniques. <i>Physical Review B</i> , 2015 , 92,	3.3	
193	Few-cycle pulses from a graphene mode-locked all-fiber laser. <i>Applied Physics Letters</i> , 2015 , 106, 25310		34
193 192			34
	Few-cycle pulses from a graphene mode-locked all-fiber laser. <i>Applied Physics Letters</i> , 2015 , 106, 25310 All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser.	13.4	
192	Few-cycle pulses from a graphene mode-locked all-fiber laser. <i>Applied Physics Letters</i> , 2015 , 106, 25310 All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser. <i>Applied Physics Letters</i> , 2015 , 107, 241107 Fiber grating compression of giant-chirped nanosecond pulses from an ultra-long nanotube	1 _{3.4} 3.4	12
192 191	Few-cycle pulses from a graphene mode-locked all-fiber laser. <i>Applied Physics Letters</i> , 2015 , 106, 25310 All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser. <i>Applied Physics Letters</i> , 2015 , 107, 241107 Fiber grating compression of giant-chirped nanosecond pulses from an ultra-long nanotube mode-locked fiber laser. <i>Optics Letters</i> , 2015 , 40, 387-90 Temperature dependent separation of metallic and semiconducting carbon nanotubes using gel	1 _{3.4} 3.4	12
192 191 190	Few-cycle pulses from a graphene mode-locked all-fiber laser. <i>Applied Physics Letters</i> , 2015 , 106, 25310 All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser. <i>Applied Physics Letters</i> , 2015 , 107, 241107 Fiber grating compression of giant-chirped nanosecond pulses from an ultra-long nanotube mode-locked fiber laser. <i>Optics Letters</i> , 2015 , 40, 387-90 Temperature dependent separation of metallic and semiconducting carbon nanotubes using gel agarose chromatography. <i>Carbon</i> , 2015 , 93, 574-594	1 _{3.4} 3.4 3 10.4	12 18 17

186	Double-wall carbon nanotubes for wide-band, ultrafast pulse generation. ACS Nano, 2014, 8, 4836-47	16.7	54
185	Resonant Raman spectroscopy of twisted multilayer graphene. <i>Nature Communications</i> , 2014 , 5, 5309	17.4	160
184	Doping dependence of the Raman spectrum of defected graphene. ACS Nano, 2014, 8, 7432-41	16.7	249
183	Photodetectors based on graphene, other two-dimensional materials and hybrid systems. <i>Nature Nanotechnology</i> , 2014 , 9, 780-93	28.7	2318
182	Photothermoelectric and photoelectric contributions to light detection in metal-graphene-metal photodetectors. <i>Nano Letters</i> , 2014 , 14, 3733-42	11.5	124
181	High performance bilayer-graphene terahertz detectors. <i>Applied Physics Letters</i> , 2014 , 104, 061111	3.4	124
180	Graphene saturable absorbers for VECSELs 2014,		1
179	Graphene saturable absorber power scaling laser 2014,		2
178	Anomalous low-temperature Coulomb drag in graphene-GaAs heterostructures. <i>Nature Communications</i> , 2014 , 5, 5824	17.4	70
177	Scalar Nanosecond Pulse Generation in a Nanotube Mode-Locked Environmentally Stable Fiber Laser. <i>IEEE Photonics Technology Letters</i> , 2014 , 26, 1672-1675	2.2	18
176	Enhanced performance of polymer:fullerene bulk heterojunction solar cells upon graphene addition. <i>Applied Physics Letters</i> , 2014 , 105, 083306	3.4	49
175	Effects of electron-electron interactions on the electronic Raman scattering of graphite in high magnetic fields. <i>Physical Review B</i> , 2014 , 89,	3.3	5
174	Raman scattering efficiency of graphene. <i>Physical Review B</i> , 2013 , 87,	3.3	71
173	Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening. <i>Physical Review B</i> , 2013 , 88,	3.3	128
172	1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler. <i>Optics Express</i> , 2013 , 21, 7943-50	3.3	98
171	Controlling subnanometer gaps in plasmonic dimers using graphene. <i>Nano Letters</i> , 2013 , 13, 5033-8	11.5	179
170	Nanotubes complexed with DNA and proteins for resistive-pulse sensing. ACS Nano, 2013, 7, 8857-69	16.7	25
169	Optical trapping and manipulation of nanostructures. <i>Nature Nanotechnology</i> , 2013 , 8, 807-19	28.7	629

168	Electron-beam-induced direct etching of graphene. Carbon, 2013, 64, 84-91	10.4	33
167	CW-pumped short pulsed 1.12 fh Raman laser using carbon nanotubes. <i>Laser Physics Letters</i> , 2013 , 10, 015101	1.5	17
166	2 h solid-state laser mode-locked by single-layer graphene. <i>Applied Physics Letters</i> , 2013 , 102, 013113	3.4	101
165	Electroluminescence in single layer MoS2. <i>Nano Letters</i> , 2013 , 13, 1416-21	11.5	787
164	Multiwall nanotubes, multilayers, and hybrid nanostructures: new frontiers for technology and Raman spectroscopy. <i>ACS Nano</i> , 2013 , 7, 1838-44	16.7	45
163	Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. <i>Physical Review B</i> , 2013 , 87,	3.3	343
162	Raman spectroscopy as a versatile tool for studying the properties of graphene. <i>Nature Nanotechnology</i> , 2013 , 8, 235-46	28.7	4466
161	Sorting Nanoparticles by Centrifugal Fields in Clean Media. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 13217-13229	3.8	66
160	Ultrafast collinear scattering and carrier multiplication in graphene. <i>Nature Communications</i> , 2013 , 4, 1987	17.4	364
159	Wavelength Tunable Graphene Modelocked VECSEL 2013 ,		1
159 158	Wavelength Tunable Graphene Modelocked VECSEL 2013, Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA. <i>Optics Express</i> , 2013, 21, 23261-71	3.3	64
	Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond	3.3	
158	Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA. <i>Optics Express</i> , 2013 , 21, 23261-71 Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a		64
158 157	Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA. <i>Optics Express</i> , 2013 , 21, 23261-71 Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector. <i>Optics Express</i> , 2013 , 21, 31548-59 Measurement of filling-factor-dependent magnetophonon resonances in graphene using Raman	3.3	64 91
158 157 156	Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA. <i>Optics Express</i> , 2013 , 21, 23261-71 Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector. <i>Optics Express</i> , 2013 , 21, 31548-59 Measurement of filling-factor-dependent magnetophonon resonances in graphene using Raman spectroscopy. <i>Physical Review Letters</i> , 2013 , 110, 227402 Evanescent-wave coupled right angled buried waveguide: Applications in carbon nanotube	3·3 7·4	64 91 26
158 157 156	Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA. <i>Optics Express</i> , 2013 , 21, 23261-71 Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector. <i>Optics Express</i> , 2013 , 21, 31548-59 Measurement of filling-factor-dependent magnetophonon resonances in graphene using Raman spectroscopy. <i>Physical Review Letters</i> , 2013 , 110, 227402 Evanescent-wave coupled right angled buried waveguide: Applications in carbon nanotube mode-locking. <i>Applied Physics Letters</i> , 2013 , 103, 221117	3·3 7·4	64 91 26
158 157 156 155	Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA. <i>Optics Express</i> , 2013 , 21, 23261-71 Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector. <i>Optics Express</i> , 2013 , 21, 31548-59 Measurement of filling-factor-dependent magnetophonon resonances in graphene using Raman spectroscopy. <i>Physical Review Letters</i> , 2013 , 110, 227402 Evanescent-wave coupled right angled buried waveguide: Applications in carbon nanotube mode-locking. <i>Applied Physics Letters</i> , 2013 , 103, 221117 Double-wall carbon nanotube Q-switched and mode-locked two-micron fiber lasers 2012 , Stable Gain-Guided Soliton Propagation in a Polarized Yb-Doped Mode-Locked Fiber Laser. <i>IEEE</i>	3·3 7·4 3·4	64 91 26

(2011-2012)

150	Synthesis of YBa2Cu3O(7-Dand Y2BaCuO5 nanocrystalline powders for YBCO superconductors using carbon nanotube templates. <i>ACS Nano</i> , 2012 , 6, 5395-403	16.7	35
149	Light-matter interaction in a microcavity-controlled graphene transistor. <i>Nature Communications</i> , 2012 , 3, 906	17.4	297
148	Production and processing of graphene and 2d crystals. <i>Materials Today</i> , 2012 , 15, 564-589	21.8	745
147	Dual-wavelength, carbon nanotube mode-locked fiber laser 2012,		1
146	The shear mode of multilayer graphene. <i>Nature Materials</i> , 2012 , 11, 294-300	27	482
145	Inkjet-printed graphene electronics. ACS Nano, 2012 , 6, 2992-3006	16.7	864
144	. Proceedings of the IEEE, 2012 , 100, 1486-1517	14.3	649
143	Graphene passively Q-switched two-micron fiber lasers 2012,		10
142	Optical trapping of nanotubes with cylindrical vector beams. Optics Letters, 2012, 37, 3381-3	3	71
141	Single-particle probing of edge-state formation in a graphene nanoribbon. <i>Physical Review B</i> , 2012 , 85,	3.3	4
140	Magnetophonon resonance in graphite: High-field Raman measurements and electron-phonon coupling contributions. <i>Physical Review B</i> , 2012 , 85,	3.3	28
139	Tm-doped fiber laser mode-locked by graphene-polymer composite. <i>Optics Express</i> , 2012 , 20, 25077-84	3.3	233
138	Mode-locking by nanotubes of a Raman laser based on a highly doped GeO2 fiber 2012,		2
137	Intercalation of few-layer graphite flakes with FeCl3: Raman determination of Fermi level, layer by layer decoupling, and stability. <i>Journal of the American Chemical Society</i> , 2011 , 133, 5941-6	16.4	205
136	Self-aligned coupled nanowire transistor. ACS Nano, 2011 , 5, 6910-5	16.7	11
135	High pressure Raman scattering of silicon nanowires. <i>Nanotechnology</i> , 2011 , 22, 195707	3.4	16
134	Development of a universal stress sensor for graphene and carbon fibres. <i>Nature Communications</i> , 2011 , 2,	17.4	152
133	Ultrafast Raman laser mode-locked by nanotubes. <i>Optics Letters</i> , 2011 , 36, 3996-8	3	52

132	Sub-100fs pulse generation from a fiber oscillator mode-locked by nanotubes 2011,		1
131	Graphene-Driven Revolutions in ICT and Beyond. <i>Procedia Computer Science</i> , 2011 , 7, 30-33	1.6	9
130	Strong plasmonic enhancement of photovoltage in graphene. <i>Nature Communications</i> , 2011 , 2, 458	17.4	679
129	Nanotube and Graphene Polymer Composites for Photonics and Optoelectronics 2011 , 279-354		5
128	Quantifying defects in graphene via Raman spectroscopy at different excitation energies. <i>Nano Letters</i> , 2011 , 11, 3190-6	11.5	2228
127	Photoluminescence of CdSe nanowires grown with and without metal catalyst. <i>Nano Research</i> , 2011 , 4, 343-359	10	24
126	Molar Extinction Coefficient of Single-Wall Carbon Nanotubes. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 14682-14686	3.8	117
125	Reply to Comment on 'Dynamic Catalyst Restructuring during Carbon Nanotube Growth' IACS Nano, 2011 , 5, 686-687	16.7	
124	Atomic force microscope nanolithography of graphene: Cuts, pseudocuts, and tip current measurements. <i>Applied Physics Letters</i> , 2011 , 98, 133120	3.4	34
123	Tilted potential induced coupling of localized states in a graphene nanoconstriction. <i>Physical Review B</i> , 2011 , 83,	3.3	27
122	Graphene Q-switched, tunable fiber laser. <i>Applied Physics Letters</i> , 2011 , 98, 073106	3.4	351
121	High-power Ultrafast Solid-state Laser Using Graphene Based Saturable Absorber 2011 ,		1
120	Graphene photonics and optoelectronics. <i>Nature Photonics</i> , 2010 , 4, 611-622	33.9	5678
119	Scanning gate microscopy of current-annealed single layer graphene. <i>Applied Physics Letters</i> , 2010 , 96, 113501	3.4	44
118	Generation of 63-nJ pulses from a fiber oscillator mode-locked by nanotubes 2010 ,		1
117	Ultrafast Fiber Laser Mode-locked by Graphene Based Saturable Absorber 2010 ,		2
116	Graphene mode-locked ultrafast laser. ACS Nano, 2010 , 4, 803-10	16.7	1547
115	Brownian motion of graphene. ACS Nano, 2010 , 4, 7515-23	16.7	160

(2009-2010)

114	Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene. <i>Nano Letters</i> , 2010 , 10, 1589-94	11.5	71
113	320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber. <i>Applied Physics Letters</i> , 2010 , 97, 111114	3.4	46
112	First-principles prediction of doped graphane as a high-temperature electron-phonon superconductor. <i>Physical Review Letters</i> , 2010 , 105, 037002	7.4	140
111	Surface-enhanced Raman spectroscopy of graphene. ACS Nano, 2010, 4, 5617-26	16.7	384
110	Sub 200 fs pulse generation from a graphene mode-locked fiber laser. <i>Applied Physics Letters</i> , 2010 , 97, 203106	3.4	344
109	Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 17267-17285	3.8	125
108	A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser. <i>Nano Research</i> , 2010 , 3, 653-660	10	295
107	Ultrafast stretched-pulse fiber laser mode-locked by carbon nanotubes. <i>Nano Research</i> , 2010 , 3, 404-41	1 10	111
106	Solution-phase exfoliation of graphite for ultrafast photonics. <i>Physica Status Solidi (B): Basic Research</i> , 2010 , 247, 2953-2957	1.3	152
105	Characterization of Dynamic Nonlinear Absorption of Carbon Nanotube Saturable Absorber 2010 ,		1
104	Ultrafast Erbium-doped Fiber Laser Mode-locked by a Carbon Nanotube Saturable Absorber 2009,		2
103	Deep reactive ion etching as a tool for nanostructure fabrication. <i>Journal of Vacuum Science & Technology B</i> , 2009 , 27, 1520		91
102	Plasma restructuring of catalysts for chemical vapor deposition of carbon nanotubes. <i>Journal of Applied Physics</i> , 2009 , 105, 064304	2.5	22
101	Nanosecond-pulse fiber lasers mode-locked with nanotubes. <i>Applied Physics Letters</i> , 2009 , 95, 111108	3.4	115
100	Nanotube Polymer Composites for Ultrafast Photonics. Advanced Materials, 2009, 21, 3874-3899	24	659
99	The morphology of silicon nanowire samples: A Raman study. <i>Physica Status Solidi (B): Basic Research</i> , 2009 , 246, 2809-2812	1.3	12
98	Fabrication of graphene nanoribbons via nanowire lithography. <i>Physica Status Solidi (B): Basic Research</i> , 2009 , 246, 2514-2517	1.3	23
97	Subjecting a graphene monolayer to tension and compression. <i>Small</i> , 2009 , 5, 2397-402	11	352

96	Control of graphene's properties by reversible hydrogenation: evidence for graphane. <i>Science</i> , 2009 , 323, 610-3	33.3	3338
95	Raman spectroscopy of graphene edges. <i>Nano Letters</i> , 2009 , 9, 1433-41	11.5	821
94	Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene. <i>Physical Review B</i> , 2009 , 80,	3.3	349
93	Making graphene luminescent by oxygen plasma treatment. <i>ACS Nano</i> , 2009 , 3, 3963-8	16.7	541
92	Dielectrophoretic assembly of high-density arrays of individual graphene devices for rapid screening. <i>ACS Nano</i> , 2009 , 3, 1729-34	16.7	69
91	Generation and direct measurement of giant chirp in a passively mode-locked laser. <i>Optics Letters</i> , 2009 , 34, 3526-8	3	76
90	Rotation detection in light-driven nanorotors. ACS Nano, 2009, 3, 3077-84	16.7	87
89	Photonics with multiwall carbon nanotube arrays. ACS Nano, 2009, 3, 1238-48	16.7	64
88	Phonon renormalization in doped bilayer graphene. <i>Physical Review B</i> , 2009 , 79,	3.3	212
87	Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, GrBeisen parameters, and sample orientation. <i>Physical Review B</i> , 2009 , 79,	3.3	1422
86	A compact, high power, ultrafast laser mode-locked by carbon nanotubes. <i>Applied Physics Letters</i> , 2009 , 95, 253102	3.4	98
85	Top-gated silicon nanowire transistors in a single fabrication step. ACS Nano, 2009, 3, 1587-93	16.7	37
84	High-yield production of graphene by liquid-phase exfoliation of graphite. <i>Nature Nanotechnology</i> , 2008 , 3, 563-8	28.7	4715
83	Wideband-tuneable, nanotube mode-locked, fibre laser. <i>Nature Nanotechnology</i> , 2008 , 3, 738-42	28.7	498
82	Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. <i>Nature Nanotechnology</i> , 2008 , 3, 210-5	28.7	2756
81	Edge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties. <i>Physical Review B</i> , 2008 , 77,	3.3	461
80	Ion beam doping of silicon nanowires. <i>Nano Letters</i> , 2008 , 8, 2188-93	11.5	77
79	Femtonewton force sensing with optically trapped nanotubes. <i>Nano Letters</i> , 2008 , 8, 3211-6	11.5	95

(2007-2008)

78	Sub-100 fs pump-probe spectroscopy of Single Wall Carbon Nanotubes with a 100 MHz Er-fiber laser system. <i>Optics Express</i> , 2008 , 16, 11727-34	3.3	25
77	Characterization of carbon nanotubel hermotropic nematic liquid crystal composites. <i>Journal Physics D: Applied Physics</i> , 2008 , 41, 125106	3	44
76	L-band ultrafast fiber laser mode locked by carbon nanotubes. <i>Applied Physics Letters</i> , 2008 , 93, 061114	1 3.4	91
75	Polymer-Assisted Isolation of Single Wall Carbon Nanotubes in Organic Solvents for Optical-Quality Nanotube Polymer Composites. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 20227-20232	3.8	44
74	Nanowire lithography on silicon. <i>Nano Letters</i> , 2008 , 8, 1358-62	11.5	35
73	Effect of the sp2 carbon phase on n-type conduction in nanodiamond films. <i>Journal of Applied Physics</i> , 2008 , 104, 073720	2.5	73
72	Self-assembled nanotube field-effect transistors for label-free protein biosensors. <i>Journal of Applied Physics</i> , 2008 , 104, 074310	2.5	21
71	Thermal conductivity of ultrathin tetrahedral amorphous carbon films. <i>Applied Physics Letters</i> , 2008 , 93, 043115	3.4	61
70	Vapor-phase nucleation of individual CdSe nanostructures from shape-engineered nanocrystal seeds. <i>Applied Physics Letters</i> , 2008 , 92, 023106	3.4	4
69	Room temperature single electron charging in single silicon nanochains. <i>Journal of Applied Physics</i> , 2008 , 103, 053705	2.5	26
68	Electronic transport characterization of Sc@C82 single-wall carbon nanotube peapods. <i>Journal of Applied Physics</i> , 2008 , 104, 083717	2.5	8
67	Silicon nanowire optical Raman line shapes at cryogenic and elevated temperatures. <i>Physica Status Solidi (B): Basic Research</i> , 2008 , 245, 2090-2093	1.3	9
66	Soliton fiber laser mode-locked by a single-wall carbon nanotube-polymer composite. <i>Physica Status Solidi (B): Basic Research</i> , 2008 , 245, 2319-2322	1.3	19
65	Electronic properties of chemically modi.ed graphene ribbons. <i>Physica Status Solidi (B): Basic Research</i> , 2008 , 245, 2068-2071	1.3	21
64	Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers. Advanced Materials, 2008, 20, 4040-4	10 <u>4</u> β	129
63	Raman fingerprint of charged impurities in graphene. <i>Applied Physics Letters</i> , 2007 , 91, 233108	3.4	717
62	Rayleigh imaging of graphene and graphene layers. <i>Nano Letters</i> , 2007 , 7, 2711-7	11.5	513
61	Ink-jet printing of carbon nanotube thin film transistors. <i>Journal of Applied Physics</i> , 2007 , 102, 043710	2.5	165

60	Diamond-like carbon for data and beer storage. <i>Materials Today</i> , 2007 , 10, 44-53	21.8	186
59	Electronic transport in ambipolar silicon nanowires. <i>Physica Status Solidi (B): Basic Research</i> , 2007 , 244, 4161-4164	1.3	26
58	Carbon nanotubes for ultrafast photonics. <i>Physica Status Solidi (B): Basic Research</i> , 2007 , 244, 4303-4307	71.3	24
57	Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. <i>Nature Materials</i> , 2007 , 6, 198-201	27	1077
56	Stabilization and D ebundling D f Single-Wall Carbon Nanotube Dispersions in N-Methyl-2-pyrrolidone (NMP) by Polyvinylpyrrolidone (PVP). <i>Journal of Physical Chemistry C</i> , 2007 , 111, 12594-12602	3.8	142
55	Photoluminescence spectroscopy of carbon nanotube bundles: evidence for exciton energy transfer. <i>Physical Review Letters</i> , 2007 , 99, 137402	7.4	161
54	Optical phonons of graphene and nanotubes. European Physical Journal: Special Topics, 2007, 148, 159-1	17203	29
53	Thermal and chemical vapor deposition of Si nanowires: Shape control, dispersion, and electrical properties. <i>Journal of Applied Physics</i> , 2007 , 102, 034302	2.5	72
52	Raman spectroscopy of graphene and graphite: Disorder, electronphonon coupling, doping and nonadiabatic effects. <i>Solid State Communications</i> , 2007 , 143, 47-57	1.6	5375
51	Electron and Phonon Properties of Graphene: Their Relationship with Carbon Nanotubes. <i>Topics in Applied Physics</i> , 2007 , 673-709	0.5	106
50	Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects. <i>Physical Review B</i> , 2007 , 75,	3.3	393
49	Deterministic shape-selective synthesis of nanowires, nanoribbons and nanosaws by steady-state vapour-transport. <i>Nanotechnology</i> , 2006 , 17, 1046-51	3.4	22
48	Raman scattering on silicon nanowires: The thermal conductivity of the environment determines the optical phonon frequency. <i>Applied Physics Letters</i> , 2006 , 88, 233114	3.4	42
47	Raman spectroscopy of single-wall boron nitride nanotubes. <i>Nano Letters</i> , 2006 , 6, 1812-6	11.5	259
46	Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser. <i>Applied Physics Letters</i> , 2006 , 89, 231115	3.4	79
45	Phonon linewidths and electron-phonon coupling in graphite and nanotubes. <i>Physical Review B</i> , 2006 , 73,	3.3	2 90
44	Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures. <i>Nano Letters</i> , 2006 , 6, 1107-12	11.5	267
43	Generation of ultra-fast laser pulses using nanotube mode-lockers. <i>Physica Status Solidi (B): Basic Research</i> , 2006 , 243, 3551-3555	1.3	38

(2001-2006)

42	Raman spectrum of graphene and graphene layers. <i>Physical Review Letters</i> , 2006 , 97, 187401	7.4	11029
41	Thermal conductivity of diamond-like carbon films. <i>Applied Physics Letters</i> , 2006 , 89, 161921	3.4	178
40	Raman spectroscopy of hydrogenated amorphous carbons. <i>Physical Review B</i> , 2005 , 72,	3.3	879
39	Electron transport and hot phonons in carbon nanotubes. <i>Physical Review Letters</i> , 2005 , 95, 236802	7.4	224
38	Resonant Raman scattering in cubic and hexagonal boron nitride. <i>Physical Review B</i> , 2005 , 71,	3.3	279
37	Surface diffusion: the low activation energy path for nanotube growth. <i>Physical Review Letters</i> , 2005 , 95, 036101	7.4	329
36	Kohn Anomalies and Electron-Phonon Coupling in Carbon Nanotubes. <i>AIP Conference Proceedings</i> , 2005 ,	О	2
35	Low-temperature synthesis of ZnSe nanowires and nanosaws by catalyst-assisted molecular-beam epitaxy. <i>Applied Physics Letters</i> , 2005 , 86, 153103	3.4	82
34	The ultrasmoothness of diamond-like carbon surfaces. <i>Science</i> , 2005 , 309, 1545-8	33.3	262
33	Selective growth of ZnSe and ZnCdSe nanowires by molecular beam epitaxy. <i>Nanotechnology</i> , 2005 , 16, S139-S142	3.4	30
32	Kohn Anomalies in Graphite and Nanotubes. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 858, 283		4
31	Kohn anomalies and electron-phonon interactions in graphite. <i>Physical Review Letters</i> , 2004 , 93, 185503	³ 7.4	709
30	Interpretation of infrared and Raman spectra of amorphous carbon nitrides. <i>Physical Review B</i> , 2003 , 67,	3.3	582
29	Gold catalyzed growth of silicon nanowires by plasma enhanced chemical vapor deposition. <i>Journal of Applied Physics</i> , 2003 , 94, 6005-6012	2.5	225
28	Dynamic roughening of tetrahedral amorphous carbon. <i>Physical Review Letters</i> , 2003 , 91, 226104	7.4	90
27	Raman spectroscopy of silicon nanowires. <i>Physical Review B</i> , 2003 , 68,	3.3	286
26	Bonding and mechanical properties of ultrathin diamond-like carbon films. <i>Applied Physics Letters</i> , 2002 , 81, 3804-3806	3.4	75
25	X-Ray Reflectivity of Ultra-Thin Diamond-Like Carbon Films. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 675, 1		3

24	Properties of amorphous carbonBilicon alloys deposited by a high plasma density source. <i>Journal of Applied Physics</i> , 2001 , 90, 5002-5012	2.5	89
23	Raman and infrared modes of hydrogenated amorphous carbon nitride. <i>Journal of Applied Physics</i> , 2001 , 89, 5425-5430	2.5	176
22	Role of sp2 phase in field emission from nanostructured carbons. <i>Journal of Applied Physics</i> , 2001 , 90, 2024-2032	2.5	90
21	Origin of the 1150@m@ Raman mode in nanocrystalline diamond. <i>Physical Review B</i> , 2001 , 63,	3.3	952
20	Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. <i>Journal of Applied Physics</i> , 2001 , 90, 5308-5317	2.5	902
19	Effect of graphitic inclusions on the optical gap of tetrahedral amorphous carbon films. <i>Journal of Applied Physics</i> , 2001 , 89, 3706-3710	2.5	46
18	Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. <i>Physical Review B</i> , 2001 , 64,	3.3	2119
17	Elastic Constants of Nanometer Thick Diamond-like Carbon Films. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 675, 1		
16	Density, sp3 fraction, and cross-sectional structure of amorphous carbon films determined by x-ray reflectivity and electron energy-loss spectroscopy. <i>Physical Review B</i> , 2000 , 62, 11089-11103	3.3	461
15	Interpretation of Raman spectra of disordered and amorphous carbon. <i>Physical Review B</i> , 2000 , 61, 140)9 <u>5</u> .314	107 0583
14	Effect of sp2-phase nanostructure on field emission from amorphous carbons. <i>Applied Physics Letters</i> , 2000 , 76, 2627-2629	3.4	163
13	Influence of nitrogen and temperature on the deposition of tetrahedrally bonded amorphous carbon. <i>Journal of Applied Physics</i> , 2000 , 88, 1149-1157	2.5	115
12	Evolution of sp2 bonding with deposition temperature in tetrahedral amorphous carbon studied by Raman spectroscopy. <i>Applied Physics Letters</i> , 2000 , 76, 1419-1421	3.4	225
11	Elastic constants of tetrahedral amorphous carbon films by surface Brillouin scattering. <i>Applied Physics Letters</i> , 1999 , 75, 1893-1895	3.4	156
10	Stress reduction and bond stability during thermal annealing of tetrahedral amorphous carbon. Journal of Applied Physics, 1999 , 85, 7191-7197	2.5	363
9	The Preparation, Characterization and Tribological Properties of TA-C:H Deposited Using an Electron Cyclotron Wave Resonance Plasma Beam Source. <i>Physica Status Solidi A</i> , 1999 , 172, 79-90		48
8	Electron field emission from cluster-assembled carbon thin films. <i>Europhysics Letters</i> , 1999 , 46, 245-250	0 1.6	44
7	Density and sp3 Content in Diamond-Like Carbon Films by X-ray Reflectivity and Electron Energy Loss Spectroscopy. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 593, 293		8

LIST OF PUBLICATIONS

6	Raman Signature of Bonding and Disorder in Carbons. <i>Materials Research Society Symposia</i> Proceedings, 1999 , 593, 299	16
5	Elastic Constants of Diamond-Like Carbon Films by Surface Brillouin Scattering. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 593, 311	6
4	Structural and Mechanical Properties of Diamond-Like Carbon Films Prepared by Pulsed Laser Deposition With Varying Laser Intensity. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 593, 359	12
3	Amorphous Carbon-Silicon Alloys Prepared by a High Plasma Density Source. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 593, 523	1
2	Elastic Constants of Diamond Like Carbon Films by Surface Brillouin Scattering. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 594, 289	2
1	Atomically thin quantum light-emitting diodes	1