Andrea C Ferrari

List of Publications by Citations

Source: https://exaly.com/author-pdf/7616123/andrea-c-ferrari-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

96,689 103 310 275 h-index g-index citations papers 106,806 8.45 10 313 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
275	Raman spectrum of graphene and graphene layers. <i>Physical Review Letters</i> , 2006 , 97, 187401	7.4	11029
274	Interpretation of Raman spectra of disordered and amorphous carbon. <i>Physical Review B</i> , 2000 , 61, 140	09 <u>5</u> .3141	1 07 0583
273	Graphene photonics and optoelectronics. <i>Nature Photonics</i> , 2010 , 4, 611-622	33.9	5678
272	Raman spectroscopy of graphene and graphite: Disorder, electronphonon coupling, doping and nonadiabatic effects. <i>Solid State Communications</i> , 2007 , 143, 47-57	1.6	5375
271	High-yield production of graphene by liquid-phase exfoliation of graphite. <i>Nature Nanotechnology</i> , 2008 , 3, 563-8	28.7	47 ¹ 5
270	Raman spectroscopy as a versatile tool for studying the properties of graphene. <i>Nature Nanotechnology</i> , 2013 , 8, 235-46	28.7	4466
269	Control of graphene's properties by reversible hydrogenation: evidence for graphane. <i>Science</i> , 2009 , 323, 610-3	33.3	3338
268	Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. <i>Nature Nanotechnology</i> , 2008 , 3, 210-5	28.7	2756
267	2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. <i>Science</i> , 2015 , 347, 1246501	33.3	2450
266	Photodetectors based on graphene, other two-dimensional materials and hybrid systems. <i>Nature Nanotechnology</i> , 2014 , 9, 780-93	28.7	2318
265	Quantifying defects in graphene via Raman spectroscopy at different excitation energies. <i>Nano Letters</i> , 2011 , 11, 3190-6	11.5	2228
264	Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. <i>Physical Review B</i> , 2001 , 64,	3.3	2119
263	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. <i>Nanoscale</i> , 2015 , 7, 4598-810	7.7	2015
262	Graphene mode-locked ultrafast laser. ACS Nano, 2010 , 4, 803-10	16.7	1547
261	Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grfleisen parameters, and sample orientation. <i>Physical Review B</i> , 2009 , 79,	3.3	1422
260	Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. <i>Nature Materials</i> , 2007 , 6, 198-201	27	1077
259	Origin of the 1150@m@ Raman mode in nanocrystalline diamond. <i>Physical Review B</i> , 2001 , 63,	3.3	952

(2012-2001)

258	Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. <i>Journal of Applied Physics</i> , 2001 , 90, 5308-5317	2.5	902
257	Raman spectroscopy of hydrogenated amorphous carbons. <i>Physical Review B</i> , 2005 , 72,	3.3	879
256	Inkjet-printed graphene electronics. ACS Nano, 2012, 6, 2992-3006	16.7	864
255	Raman spectroscopy of graphene edges. <i>Nano Letters</i> , 2009 , 9, 1433-41	11.5	821
254	Electroluminescence in single layer MoS2. <i>Nano Letters</i> , 2013 , 13, 1416-21	11.5	787
253	Production and processing of graphene and 2d crystals. <i>Materials Today</i> , 2012 , 15, 564-589	21.8	745
252	Graphene field-effect transistors as room-temperature terahertz detectors. <i>Nature Materials</i> , 2012 , 11, 865-71	27	725
251	Raman fingerprint of charged impurities in graphene. <i>Applied Physics Letters</i> , 2007 , 91, 233108	3.4	717
250	Kohn anomalies and electron-phonon interactions in graphite. <i>Physical Review Letters</i> , 2004 , 93, 185503	3 7.4	709
249	Strong plasmonic enhancement of photovoltage in graphene. <i>Nature Communications</i> , 2011 , 2, 458	17.4	679
248	Nanotube Polymer Composites for Ultrafast Photonics. Advanced Materials, 2009, 21, 3874-3899	24	659
247	. Proceedings of the IEEE, 2012 , 100, 1486-1517	14.3	649
246	Optical trapping and manipulation of nanostructures. <i>Nature Nanotechnology</i> , 2013 , 8, 807-19	28.7	629
245	Interpretation of infrared and Raman spectra of amorphous carbon nitrides. <i>Physical Review B</i> , 2003 , 67,	3.3	582
244	Making graphene luminescent by oxygen plasma treatment. ACS Nano, 2009, 3, 3963-8	16.7	541
243	Rayleigh imaging of graphene and graphene layers. <i>Nano Letters</i> , 2007 , 7, 2711-7	11.5	513
242	Wideband-tuneable, nanotube mode-locked, fibre laser. <i>Nature Nanotechnology</i> , 2008 , 3, 738-42	28.7	498
241	The shear mode of multilayer graphene. <i>Nature Materials</i> , 2012 , 11, 294-300	27	482

240	Edge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties. <i>Physical Review B</i> , 2008 , 77,	3.3	461
239	Density, sp3 fraction, and cross-sectional structure of amorphous carbon films determined by x-ray reflectivity and electron energy-loss spectroscopy. <i>Physical Review B</i> , 2000 , 62, 11089-11103	3.3	461
238	Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects. <i>Physical Review B</i> , 2007 , 75,	3.3	393
237	Surface-enhanced Raman spectroscopy of graphene. <i>ACS Nano</i> , 2010 , 4, 5617-26	16.7	384
236	Ultrafast collinear scattering and carrier multiplication in graphene. <i>Nature Communications</i> , 2013 , 4, 1987	17.4	364
235	Stress reduction and bond stability during thermal annealing of tetrahedral amorphous carbon. <i>Journal of Applied Physics</i> , 1999 , 85, 7191-7197	2.5	363
234	Subjecting a graphene monolayer to tension and compression. <i>Small</i> , 2009 , 5, 2397-402	11	352
233	Graphene Q-switched, tunable fiber laser. <i>Applied Physics Letters</i> , 2011 , 98, 073106	3.4	351
232	Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene. <i>Physical Review B</i> , 2009 , 80,	3.3	349
231	Sub 200 fs pulse generation from a graphene mode-locked fiber laser. <i>Applied Physics Letters</i> , 2010 , 97, 203106	3.4	344
230	Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. <i>Physical Review B</i> , 2013 , 87,	3.3	343
229	Surface diffusion: the low activation energy path for nanotube growth. <i>Physical Review Letters</i> , 2005 , 95, 036101	7.4	329
228	Light-matter interaction in a microcavity-controlled graphene transistor. <i>Nature Communications</i> , 2012 , 3, 906	17.4	297
227	A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser. <i>Nano Research</i> , 2010 , 3, 653-660	10	295
226	Phonon linewidths and electron-phonon coupling in graphite and nanotubes. <i>Physical Review B</i> , 2006 , 73,	3.3	290
225	Raman spectroscopy of silicon nanowires. <i>Physical Review B</i> , 2003 , 68,	3.3	286
224	Resonant Raman scattering in cubic and hexagonal boron nitride. <i>Physical Review B</i> , 2005 , 71,	3.3	279
223	Large-scale quantum-emitter arrays in atomically thin semiconductors. <i>Nature Communications</i> , 2017 , 8, 15093	17.4	275

(2006-2006)

222	Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures. <i>Nano Letters</i> , 2006 , 6, 1107-12	11.5	267
221	The ultrasmoothness of diamond-like carbon surfaces. <i>Science</i> , 2005 , 309, 1545-8	33.3	262
220	Raman spectroscopy of single-wall boron nitride nanotubes. <i>Nano Letters</i> , 2006 , 6, 1812-6	11.5	259
219	Doping dependence of the Raman spectrum of defected graphene. ACS Nano, 2014, 8, 7432-41	16.7	249
218	Tm-doped fiber laser mode-locked by graphene-polymer composite. <i>Optics Express</i> , 2012 , 20, 25077-84	3.3	233
217	Gold catalyzed growth of silicon nanowires by plasma enhanced chemical vapor deposition. <i>Journal of Applied Physics</i> , 2003 , 94, 6005-6012	2.5	225
216	Evolution of sp2 bonding with deposition temperature in tetrahedral amorphous carbon studied by Raman spectroscopy. <i>Applied Physics Letters</i> , 2000 , 76, 1419-1421	3.4	225
215	Electron transport and hot phonons in carbon nanotubes. <i>Physical Review Letters</i> , 2005 , 95, 236802	7.4	224
214	Phonon renormalization in doped bilayer graphene. <i>Physical Review B</i> , 2009 , 79,	3.3	212
213	Photo-Induced Bandgap Renormalization Governs the Ultrafast Response of Single-Layer MoS2. <i>ACS Nano</i> , 2016 , 10, 1182-8	16.7	209
212	High Responsivity, Large-Area Graphene/MoS2 Flexible Photodetectors. ACS Nano, 2016, 10, 8252-62	16.7	206
211	Intercalation of few-layer graphite flakes with FeCl3: Raman determination of Fermi level, layer by layer decoupling, and stability. <i>Journal of the American Chemical Society</i> , 2011 , 133, 5941-6	16.4	205
210	On-Chip Integrated, Silicon-Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain. <i>Nano Letters</i> , 2016 , 16, 3005-13	11.5	199
209	Microfluidization of Graphite and Formulation of Graphene-Based Conductive Inks. <i>ACS Nano</i> , 2017 , 11, 2742-2755	16.7	192
208	Diamond-like carbon for data and beer storage. <i>Materials Today</i> , 2007 , 10, 44-53	21.8	186
207	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001	5.9	179
206	Controlling subnanometer gaps in plasmonic dimers using graphene. <i>Nano Letters</i> , 2013 , 13, 5033-8	11.5	179
205	Thermal conductivity of diamond-like carbon films. <i>Applied Physics Letters</i> , 2006 , 89, 161921	3.4	178

204	Raman and infrared modes of hydrogenated amorphous carbon nitride. <i>Journal of Applied Physics</i> , 2001 , 89, 5425-5430	2.5	176
203	Atomically thin quantum light-emitting diodes. <i>Nature Communications</i> , 2016 , 7, 12978	17.4	174
202	Graphene-Based Interfaces Do Not Alter Target Nerve Cells. ACS Nano, 2016, 10, 615-23	16.7	172
201	Graphene-based integrated photonics for next-generation datacom and telecom. <i>Nature Reviews Materials</i> , 2018 , 3, 392-414	73.3	170
200	GrapheneBilicon phase modulators with gigahertz bandwidth. <i>Nature Photonics</i> , 2018 , 12, 40-44	33.9	169
199	Ink-jet printing of carbon nanotube thin film transistors. <i>Journal of Applied Physics</i> , 2007 , 102, 043710	2.5	165
198	Effect of sp2-phase nanostructure on field emission from amorphous carbons. <i>Applied Physics Letters</i> , 2000 , 76, 2627-2629	3.4	163
197	Photoluminescence spectroscopy of carbon nanotube bundles: evidence for exciton energy transfer. <i>Physical Review Letters</i> , 2007 , 99, 137402	7.4	161
196	Resonant Raman spectroscopy of twisted multilayer graphene. <i>Nature Communications</i> , 2014 , 5, 5309	17.4	160
195	Brownian motion of graphene. <i>ACS Nano</i> , 2010 , 4, 7515-23	16.7	160
		10./	
194	Elastic constants of tetrahedral amorphous carbon films by surface Brillouin scattering. <i>Applied Physics Letters</i> , 1999 , 75, 1893-1895	3.4	156
	Elastic constants of tetrahedral amorphous carbon films by surface Brillouin scattering. <i>Applied</i>	3.4	
194	Elastic constants of tetrahedral amorphous carbon films by surface Brillouin scattering. <i>Applied Physics Letters</i> , 1999 , 75, 1893-1895 Development of a universal stress sensor for graphene and carbon fibres. <i>Nature Communications</i> ,	3.4	156
194	Elastic constants of tetrahedral amorphous carbon films by surface Brillouin scattering. <i>Applied Physics Letters</i> , 1999 , 75, 1893-1895 Development of a universal stress sensor for graphene and carbon fibres. <i>Nature Communications</i> , 2011 , 2, Solution-phase exfoliation of graphite for ultrafast photonics. <i>Physica Status Solidi (B): Basic</i>	3.4	156 152
194 193 192	Elastic constants of tetrahedral amorphous carbon films by surface Brillouin scattering. <i>Applied Physics Letters</i> , 1999 , 75, 1893-1895 Development of a universal stress sensor for graphene and carbon fibres. <i>Nature Communications</i> , 2011 , 2, Solution-phase exfoliation of graphite for ultrafast photonics. <i>Physica Status Solidi (B): Basic Research</i> , 2010 , 247, 2953-2957	3·4 17·4 1·3	156 152 152
194 193 192	Elastic constants of tetrahedral amorphous carbon films by surface Brillouin scattering. <i>Applied Physics Letters</i> , 1999 , 75, 1893-1895 Development of a universal stress sensor for graphene and carbon fibres. <i>Nature Communications</i> , 2011 , 2, Solution-phase exfoliation of graphite for ultrafast photonics. <i>Physica Status Solidi (B): Basic Research</i> , 2010 , 247, 2953-2957 Cleaning interfaces in layered materials heterostructures. <i>Nature Communications</i> , 2018 , 9, 5387 Broadband, electrically tunable third-harmonic generation in graphene. <i>Nature Nanotechnology</i> ,	3·4 17·4 1.3	156 152 152
194 193 192 191	Elastic constants of tetrahedral amorphous carbon films by surface Brillouin scattering. <i>Applied Physics Letters</i> , 1999 , 75, 1893-1895 Development of a universal stress sensor for graphene and carbon fibres. <i>Nature Communications</i> , 2011 , 2, Solution-phase exfoliation of graphite for ultrafast photonics. <i>Physica Status Solidi (B): Basic Research</i> , 2010 , 247, 2953-2957 Cleaning interfaces in layered materials heterostructures. <i>Nature Communications</i> , 2018 , 9, 5387 Broadband, electrically tunable third-harmonic generation in graphene. <i>Nature Nanotechnology</i> , 2018 , 13, 583-588 Stabilization and Debundlinglof Single-Wall Carbon Nanotube Dispersions in N-Methyl-2-pyrrolidone (NMP) by Polyvinylpyrrolidone (PVP). <i>Journal of Physical Chemistry C</i> , 2007 ,	3.4 17.4 1.3 17.4 28.7	156 152 152 152

186	Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers. Advanced Materials, 2008, 20, 4040-4	0 <u>4</u> β	129
185	Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening. <i>Physical Review B</i> , 2013 , 88,	3.3	128
184	Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 17267-17285	3.8	125
183	Photothermoelectric and photoelectric contributions to light detection in metal-graphene-metal photodetectors. <i>Nano Letters</i> , 2014 , 14, 3733-42	11.5	124
182	High performance bilayer-graphene terahertz detectors. <i>Applied Physics Letters</i> , 2014 , 104, 061111	3.4	124
181	Ultra-strong nonlinear optical processes and trigonal warping in MoS layers. <i>Nature Communications</i> , 2017 , 8, 893	17.4	123
180	Surface Plasmon Polariton Graphene Photodetectors. <i>Nano Letters</i> , 2016 , 16, 8-20	11.5	119
179	Molar Extinction Coefficient of Single-Wall Carbon Nanotubes. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 14682-14686	3.8	117
178	Nanosecond-pulse fiber lasers mode-locked with nanotubes. <i>Applied Physics Letters</i> , 2009 , 95, 111108	3.4	115
177	Influence of nitrogen and temperature on the deposition of tetrahedrally bonded amorphous carbon. <i>Journal of Applied Physics</i> , 2000 , 88, 1149-1157	2.5	115
176	Charge-tuneable biexciton complexes in monolayer WSe. <i>Nature Communications</i> , 2018 , 9, 3721	17.4	113
175	Ultrafast stretched-pulse fiber laser mode-locked by carbon nanotubes. <i>Nano Research</i> , 2010 , 3, 404-41	110	111
174	Electron and Phonon Properties of Graphene: Their Relationship with Carbon Nanotubes. <i>Topics in Applied Physics</i> , 2007 , 673-709	0.5	106
173	Interface Coupling in Twisted Multilayer Graphene by Resonant Raman Spectroscopy of Layer Breathing Modes. <i>ACS Nano</i> , 2015 , 9, 7440-9	16.7	105
172	Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance. <i>Nature Communications</i> , 2017 , 8, 14311	17.4	101
171	2 En solid-state laser mode-locked by single-layer graphene. <i>Applied Physics Letters</i> , 2013 , 102, 013113	3.4	101
170	74-fs nanotube-mode-locked fiber laser. <i>Applied Physics Letters</i> , 2012 , 101, 153107	3.4	101
169	1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler. <i>Optics Express</i> , 2013 , 21, 7943-50	3.3	98

168	A compact, high power, ultrafast laser mode-locked by carbon nanotubes. <i>Applied Physics Letters</i> , 2009 , 95, 253102	3.4	98
167	Femtonewton force sensing with optically trapped nanotubes. <i>Nano Letters</i> , 2008 , 8, 3211-6	11.5	95
166	Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector. <i>Optics Express</i> , 2013 , 21, 31548-59	3.3	91
165	Deep reactive ion etching as a tool for nanostructure fabrication. <i>Journal of Vacuum Science & Technology B</i> , 2009 , 27, 1520		91
164	L-band ultrafast fiber laser mode locked by carbon nanotubes. <i>Applied Physics Letters</i> , 2008 , 93, 061114	3.4	91
163	Dynamic roughening of tetrahedral amorphous carbon. <i>Physical Review Letters</i> , 2003 , 91, 226104	7.4	90
162	Role of sp2 phase in field emission from nanostructured carbons. <i>Journal of Applied Physics</i> , 2001 , 90, 2024-2032	2.5	90
161	Properties of amorphous carbon lilicon alloys deposited by a high plasma density source. <i>Journal of Applied Physics</i> , 2001 , 90, 5002-5012	2.5	89
160	Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling. <i>Nature Nanotechnology</i> , 2018 , 13, 41-46	28.7	87
159	Rotation detection in light-driven nanorotors. ACS Nano, 2009, 3, 3077-84	16.7	87
158	Light-enhanced liquid-phase exfoliation and current photoswitching in graphene-azobenzene composites. <i>Nature Communications</i> , 2016 , 7, 11090	17.4	85
157	Low-temperature synthesis of ZnSe nanowires and nanosaws by catalyst-assisted molecular-beam epitaxy. <i>Applied Physics Letters</i> , 2005 , 86, 153103	3.4	82
156	Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser. <i>Applied Physics Letters</i> , 2006 , 89, 231115	3.4	79
155	Ion beam doping of silicon nanowires. <i>Nano Letters</i> , 2008 , 8, 2188-93	11.5	77
154	Generation and direct measurement of giant chirp in a passively mode-locked laser. <i>Optics Letters</i> , 2009 , 34, 3526-8	3	76
153	Bonding and mechanical properties of ultrathin diamond-like carbon films. <i>Applied Physics Letters</i> , 2002 , 81, 3804-3806	3.4	75
152	Effect of the sp2 carbon phase on n-type conduction in nanodiamond films. <i>Journal of Applied Physics</i> , 2008 , 104, 073720	2.5	73
151	Thermal and chemical vapor deposition of Si nanowires: Shape control, dispersion, and electrical properties. <i>Journal of Applied Physics</i> , 2007 , 102, 034302	2.5	72

(2020-2013)

150	Raman scattering efficiency of graphene. <i>Physical Review B</i> , 2013 , 87,	3.3	71
149	Ultrafast valley relaxation dynamics in monolayer MoS2 probed by nonequilibrium optical techniques. <i>Physical Review B</i> , 2015 , 92,	3.3	71
148	Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene. <i>Nano Letters</i> , 2010 , 10, 1589-94	11.5	71
147	Optical trapping of nanotubes with cylindrical vector beams. <i>Optics Letters</i> , 2012 , 37, 3381-3	3	71
146	Vertically Illuminated, Resonant Cavity Enhanced, Graphene-Silicon Schottky Photodetectors. <i>ACS Nano</i> , 2017 , 11, 10955-10963	16.7	70
145	High-Mobility, Wet-Transferred Graphene Grown by Chemical Vapor Deposition. <i>ACS Nano</i> , 2019 , 13, 8926-8935	16.7	70
144	Anomalous low-temperature Coulomb drag in graphene-GaAs heterostructures. <i>Nature Communications</i> , 2014 , 5, 5824	17.4	70
143	Terahertz saturable absorbers from liquid phase exfoliation of graphite. <i>Nature Communications</i> , 2017 , 8, 15763	17.4	69
142	Dielectrophoretic assembly of high-density arrays of individual graphene devices for rapid screening. <i>ACS Nano</i> , 2009 , 3, 1729-34	16.7	69
141	Raman Fingerprints of Atomically Precise Graphene Nanoribbons. <i>Nano Letters</i> , 2016 , 16, 3442-7	11.5	67
140	Sorting Nanoparticles by Centrifugal Fields in Clean Media. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 13217-13229	3.8	66
139	Liquid-Phase Exfoliation of Graphite into Single- and Few-Layer Graphene with Functionalized Alkanes. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 2714-21	6.4	64
138	Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA. <i>Optics Express</i> , 2013 , 21, 23261-71	3.3	64
137	Photonics with multiwall carbon nanotube arrays. ACS Nano, 2009, 3, 1238-48	16.7	64
136	p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor. <i>Nature Communications</i> , 2017 , 8, 14024	17.4	62
135	Thermal conductivity of ultrathin tetrahedral amorphous carbon films. <i>Applied Physics Letters</i> , 2008 , 93, 043115	3.4	61
134	Waveguide-Integrated, Plasmonic Enhanced Graphene Photodetectors. <i>Nano Letters</i> , 2019 , 19, 7632-76	544 .5	60
133	Transform-Limited Photons From a Coherent Tin-Vacancy Spin in Diamond. <i>Physical Review Letters</i> , 2020 , 124, 023602	7.4	56

132	Double-wall carbon nanotubes for wide-band, ultrafast pulse generation. ACS Nano, 2014, 8, 4836-47	16.7	54
131	Ultrafast Raman laser mode-locked by nanotubes. <i>Optics Letters</i> , 2011 , 36, 3996-8	3	52
130	Intravalley Spin-Flip Relaxation Dynamics in Single-Layer WS. <i>Nano Letters</i> , 2018 , 18, 6882-6891	11.5	50
129	Enhanced performance of polymer:fullerene bulk heterojunction solar cells upon graphene addition. <i>Applied Physics Letters</i> , 2014 , 105, 083306	3.4	49
128	The Preparation, Characterization and Tribological Properties of TA-C:H Deposited Using an Electron Cyclotron Wave Resonance Plasma Beam Source. <i>Physica Status Solidi A</i> , 1999 , 172, 79-90		48
127	Raman spectroscopy of graphene under ultrafast laser excitation. <i>Nature Communications</i> , 2018 , 9, 308	17.4	47
126	320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber. <i>Applied Physics Letters</i> , 2010 , 97, 111114	3.4	46
125	Effect of graphitic inclusions on the optical gap of tetrahedral amorphous carbon films. <i>Journal of Applied Physics</i> , 2001 , 89, 3706-3710	2.5	46
124	Multiwall nanotubes, multilayers, and hybrid nanostructures: new frontiers for technology and Raman spectroscopy. <i>ACS Nano</i> , 2013 , 7, 1838-44	16.7	45
123	Scanning gate microscopy of current-annealed single layer graphene. <i>Applied Physics Letters</i> , 2010 , 96, 113501	3.4	44
122	Characterization of carbon nanotubeEhermotropic nematic liquid crystal composites. <i>Journal Physics D: Applied Physics</i> , 2008 , 41, 125106	3	44
121	Polymer-Assisted Isolation of Single Wall Carbon Nanotubes in Organic Solvents for Optical-Quality Nanotube B olymer Composites. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 20227-20232	3.8	44
120	Electron field emission from cluster-assembled carbon thin films. <i>Europhysics Letters</i> , 1999 , 46, 245-250	1.6	44
119	Raman scattering on silicon nanowires: The thermal conductivity of the environment determines the optical phonon frequency. <i>Applied Physics Letters</i> , 2006 , 88, 233114	3.4	42
118	Spider silk reinforced by graphene or carbon nanotubes. 2D Materials, 2017, 4, 031013	5.9	40
117	Role of Cooperative Interactions in the Intercalation of Heteroatoms between Graphene and a Metal Substrate. <i>Journal of the American Chemical Society</i> , 2015 , 137, 7099-103	16.4	38
116	Raman Radiation Patterns of Graphene. ACS Nano, 2016 , 10, 1756-63	16.7	38
115	Ultrafast pseudospin dynamics in graphene. <i>Physical Review B</i> , 2015 , 92,	3.3	38

(2016-2006)

114	Generation of ultra-fast laser pulses using nanotube mode-lockers. <i>Physica Status Solidi (B): Basic Research</i> , 2006 , 243, 3551-3555	1.3	38
113	Top-gated silicon nanowire transistors in a single fabrication step. ACS Nano, 2009, 3, 1587-93	16.7	37
112	Multi-Valley Superconductivity in Ion-Gated MoS Layers. <i>Nano Letters</i> , 2018 , 18, 4821-4830	11.5	36
111	Synthesis of YBa2Cu3O(7-Dand Y2BaCuO5 nanocrystalline powders for YBCO superconductors using carbon nanotube templates. <i>ACS Nano</i> , 2012 , 6, 5395-403	16.7	35
110	Nanowire lithography on silicon. <i>Nano Letters</i> , 2008 , 8, 1358-62	11.5	35
109	HBN-Encapsulated, Graphene-based, Room-temperature Terahertz Receivers, with High Speed and Low Noise. <i>Nano Letters</i> , 2020 , 20, 3169-3177	11.5	35
108	Few-cycle pulses from a graphene mode-locked all-fiber laser. <i>Applied Physics Letters</i> , 2015 , 106, 25310	13.4	34
107	Atomic force microscope nanolithography of graphene: Cuts, pseudocuts, and tip current measurements. <i>Applied Physics Letters</i> , 2011 , 98, 133120	3.4	34
106	Graphene is on track to deliver on its promises. <i>Nature Nanotechnology</i> , 2019 , 14, 907-910	28.7	34
105	Electron-beam-induced direct etching of graphene. <i>Carbon</i> , 2013 , 64, 84-91	10.4	33
104	Layered material platform for surface plasmon resonance biosensing. Scientific Reports, 2019, 9, 20286	4.9	33
103	Excitonic Emission of Monolayer Semiconductors Near-Field Coupled to High-Q Microresonators. <i>Nano Letters</i> , 2018 , 18, 3138-3146	11.5	32
102	2021 roadmap on lithium sulfur batteries. <i>JPhys Energy</i> , 2021 , 3, 031501	4.9	32
101	Selective growth of ZnSe and ZnCdSe nanowires by molecular beam epitaxy. <i>Nanotechnology</i> , 2005 , 16, S139-S142	3.4	30
100	Stable, Surfactant-Free GrapheneBtyrene Methylmethacrylate Composite for Ultrafast Lasers. <i>Advanced Optical Materials</i> , 2016 , 4, 1088-1097	8.1	29
99	7.8-GHz Graphene-Based 2-th Monolithic Waveguide Laser. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2015 , 21, 395-400	3.8	29
98	Optical phonons of graphene and nanotubes. European Physical Journal: Special Topics, 2007, 148, 159-1	Z 03	29
97	Long Spin Diffusion Length in Few-Layer Graphene Flakes. <i>Physical Review Letters</i> , 2016 , 117, 147201	7.4	29

96	Magnetophonon resonance in graphite: High-field Raman measurements and electron-phonon coupling contributions. <i>Physical Review B</i> , 2012 , 85,	3.3	28
95	Tilted potential induced coupling of localized states in a graphene nanoconstriction. <i>Physical Review B</i> , 2011 , 83,	3.3	27
94	Transport conductivity of graphene at RF and microwave frequencies. 2D Materials, 2016, 3, 015010	5.9	27
93	Measurement of filling-factor-dependent magnetophonon resonances in graphene using Raman spectroscopy. <i>Physical Review Letters</i> , 2013 , 110, 227402	7.4	26
92	Room temperature single electron charging in single silicon nanochains. <i>Journal of Applied Physics</i> , 2008 , 103, 053705	2.5	26
91	Electronic transport in ambipolar silicon nanowires. <i>Physica Status Solidi (B): Basic Research</i> , 2007 , 244, 4161-4164	1.3	26
90	Nanotubes complexed with DNA and proteins for resistive-pulse sensing. ACS Nano, 2013, 7, 8857-69	16.7	25
89	Sub-100 fs pump-probe spectroscopy of Single Wall Carbon Nanotubes with a 100 MHz Er-fiber laser system. <i>Optics Express</i> , 2008 , 16, 11727-34	3.3	25
88	Photoluminescence of CdSe nanowires grown with and without metal catalyst. <i>Nano Research</i> , 2011 , 4, 343-359	10	24
87	Carbon nanotubes for ultrafast photonics. <i>Physica Status Solidi (B): Basic Research</i> , 2007 , 244, 4303-430	71.3	24
86	Ultrafast, Zero-Bias, Graphene Photodetectors with Polymeric Gate Dielectric on Passive Photonic Waveguides. <i>ACS Nano</i> , 2020 , 14, 11190-11204	16.7	24
85	Wafer-Scale Integration of Graphene-Based Photonic Devices. <i>ACS Nano</i> , 2021 , 15, 3171-3187	16.7	24
84	Graphene/Polyelectrolyte Layer-by-Layer Coatings for Electromagnetic Interference Shielding. <i>ACS Applied Nano Materials</i> , 2019 , 2, 5272-5281	5.6	23
83	Fabrication of graphene nanoribbons via nanowire lithography. <i>Physica Status Solidi (B): Basic Research</i> , 2009 , 246, 2514-2517	1.3	23
82	Hot Electrons Modulation of Third-Harmonic Generation in Graphene. ACS Photonics, 2019, 6, 2841-284	196.3	22
81	Plasma restructuring of catalysts for chemical vapor deposition of carbon nanotubes. <i>Journal of Applied Physics</i> , 2009 , 105, 064304	2.5	22
80	Deterministic shape-selective synthesis of nanowires, nanoribbons and nanosaws by steady-state vapour-transport. <i>Nanotechnology</i> , 2006 , 17, 1046-51	3.4	22
79	Covalently interconnected transition metal dichalcogenide networks via defect engineering for high-performance electronic devices. <i>Nature Nanotechnology</i> , 2021 , 16, 592-598	28.7	22

(2009-2019)

78	Coherent anti-Stokes Raman spectroscopy of single and multi-layer graphene. <i>Nature Communications</i> , 2019 , 10, 3658	17.4	21
77	Self-assembled nanotube field-effect transistors for label-free protein biosensors. <i>Journal of Applied Physics</i> , 2008 , 104, 074310	2.5	21
76	Electronic properties of chemically modi.ed graphene ribbons. <i>Physica Status Solidi (B): Basic Research</i> , 2008 , 245, 2068-2071	1.3	21
75	Soliton fiber laser mode-locked by a single-wall carbon nanotube-polymer composite. <i>Physica Status Solidi (B): Basic Research</i> , 2008 , 245, 2319-2322	1.3	19
74	Weak localization in electric-double-layer gated few-layer graphene. 2D Materials, 2017, 4, 035006	5.9	18
73	Fiber grating compression of giant-chirped nanosecond pulses from an ultra-long nanotube mode-locked fiber laser. <i>Optics Letters</i> , 2015 , 40, 387-90	3	18
72	Scalar Nanosecond Pulse Generation in a Nanotube Mode-Locked Environmentally Stable Fiber Laser. <i>IEEE Photonics Technology Letters</i> , 2014 , 26, 1672-1675	2.2	18
71	Evanescent-wave coupled right angled buried waveguide: Applications in carbon nanotube mode-locking. <i>Applied Physics Letters</i> , 2013 , 103, 221117	3.4	18
70	Wavelength tunable soliton rains in a nanotube-mode locked Tm-doped fiber laser. <i>Applied Physics Letters</i> , 2018 , 113, 193102	3.4	18
69	Enhanced piezoelectric effect at the edges of stepped molybdenum disulfide nanosheets. <i>Nanoscale</i> , 2017 , 9, 6237-6245	7.7	17
68	CW-pumped short pulsed 1.12 th Raman laser using carbon nanotubes. <i>Laser Physics Letters</i> , 2013 , 10, 015101	1.5	17
67	Temperature dependent separation of metallic and semiconducting carbon nanotubes using gel agarose chromatography. <i>Carbon</i> , 2015 , 93, 574-594	10.4	17
66	High pressure Raman scattering of silicon nanowires. <i>Nanotechnology</i> , 2011 , 22, 195707	3.4	16
65	Raman Signature of Bonding and Disorder in Carbons. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 593, 299		16
64	Strongly Coupled Coherent Phonons in Single-Layer MoS. ACS Nano, 2020, 14, 5700-5710	16.7	15
63	Niobium diselenide superconducting photodetectors. <i>Applied Physics Letters</i> , 2019 , 114, 251103	3.4	13
62	All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser. <i>Applied Physics Letters</i> , 2015 , 107, 241107	3.4	12
61	The morphology of silicon nanowire samples: A Raman study. <i>Physica Status Solidi (B): Basic Research</i> , 2009 , 246, 2809-2812	1.3	12

60	Structural and Mechanical Properties of Diamond-Like Carbon Films Prepared by Pulsed Laser Deposition With Varying Laser Intensity. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 593, 359		12
59	Photocatalytic activity of exfoliated graphite-TiO nanoparticle composites. <i>Nanoscale</i> , 2019 , 11, 19301	-1 /9 . 3 14	12
58	Efficient phonon cascades in WSe monolayers. <i>Nature Communications</i> , 2021 , 12, 538	17.4	12
57	Self-aligned coupled nanowire transistor. <i>ACS Nano</i> , 2011 , 5, 6910-5	16.7	11
56	Thermoelectric graphene photodetectors with sub-nanosecond response times at terahertz frequencies. <i>Nanophotonics</i> , 2020 , 10, 89-98	6.3	11
55	In Situ Observation of Low-Power Nano-Synaptic Response in Graphene Oxide Using Conductive Atomic Force Microscopy. <i>Small</i> , 2021 , 17, e2101100	11	11
54	Raman spectroscopy of GaSe and InSe post-transition metal chalcogenides layers. <i>Faraday Discussions</i> , 2021 , 227, 163-170	3.6	11
53	Graphene passively Q-switched two-micron fiber lasers 2012 ,		10
52	Terahertz Frequency Combs Exploiting an On-Chip, Solution-Processed, Graphene-Quantum Cascade Laser Coupled-Cavity. <i>ACS Photonics</i> , 2020 , 7, 3489-3498	6.3	10
51	Low-Loss Integrated Nanophotonic Circuits with Layered Semiconductor Materials. <i>Nano Letters</i> , 2021 , 21, 2709-2718	11.5	10
50	High-responsivity graphene photodetectors integrated on silicon microring resonators. <i>Nature Communications</i> , 2021 , 12, 3733	17.4	10
49	Graphene-Driven Revolutions in ICT and Beyond. <i>Procedia Computer Science</i> , 2011 , 7, 30-33	1.6	9
48	Silicon nanowire optical Raman line shapes at cryogenic and elevated temperatures. <i>Physica Status Solidi (B): Basic Research</i> , 2008 , 245, 2090-2093	1.3	9
47	Weak Distance Dependence of Hot-Electron-Transfer Rates at the Interface between Monolayer MoS and Gold. <i>ACS Nano</i> , 2021 , 15, 819-828	16.7	9
46	Exciton-phonon coupling strength in single-layer MoSe at room temperature. <i>Nature Communications</i> , 2021 , 12, 954	17.4	9
45	Electronic transport characterization of Sc@C82 single-wall carbon nanotube peapods. <i>Journal of Applied Physics</i> , 2008 , 104, 083717	2.5	8
44	Density and sp3 Content in Diamond-Like Carbon Films by X-ray Reflectivity and Electron Energy Loss Spectroscopy. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 593, 293		8
43	Electrically Controlled Nano and Micro Actuation in Memristive Switching Devices with On-Chip Gas Encapsulation. <i>Small</i> , 2018 , 14, e1801599	11	7

42	Double-wall carbon nanotube Q-switched and mode-locked two-micron fiber lasers 2012,		7
41	Screen-printed and spray coated graphene-based RFID transponders. 2D Materials, 2020, 7, 015019	5.9	7
40	Elastic Constants of Diamond-Like Carbon Films by Surface Brillouin Scattering. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 593, 311		6
39	Tetrahedral amorphous carbon resistive memories with graphene-based electrodes. <i>2D Materials</i> , 2018 , 5, 045028	5.9	6
38	A stable, power scaling, graphene-mode-locked all-fiber oscillator. <i>Applied Physics Letters</i> , 2017 , 110, 243102	3.4	5
37	Effects of electron-electron interactions on the electronic Raman scattering of graphite in high magnetic fields. <i>Physical Review B</i> , 2014 , 89,	3.3	5
36	Nanotube and Graphene Polymer Composites for Photonics and Optoelectronics 2011 , 279-354		5
35	Graphene-Based Interconnects for Stable Dye-Sensitized Solar Modules. <i>ACS Applied Energy Materials</i> , 2021 , 4, 98-110	6.1	5
34	Graphene overcoats for ultra-high storage density magnetic media. <i>Nature Communications</i> , 2021 , 12, 2854	17.4	5
33	Non-equilibrium band broadening, gap renormalization and band inversion in black phosphorus. <i>2D Materials</i> , 2021 , 8, 025020	5.9	5
32	Stable Gain-Guided Soliton Propagation in a Polarized Yb-Doped Mode-Locked Fiber Laser. <i>IEEE Photonics Journal</i> , 2012 , 4, 1058-1064	1.8	4
31	Single-particle probing of edge-state formation in a graphene nanoribbon. <i>Physical Review B</i> , 2012 , 85,	3.3	4
30	Vapor-phase nucleation of individual CdSe nanostructures from shape-engineered nanocrystal seeds. <i>Applied Physics Letters</i> , 2008 , 92, 023106	3.4	4
29	Kohn Anomalies in Graphite and Nanotubes. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 858, 283		4
28	Confinement of long-lived interlayer excitons in WS2/WSe2 heterostructures. <i>Communications Physics</i> , 2021 , 4,	5.4	4
27	Tunnelling anisotropic magnetoresistance at La0.67Sr0.33MnO3-graphene interfaces. <i>Applied Physics Letters</i> , 2016 , 108, 112405	3.4	4
26	Shear and Breathing Modes of Layered Materials. ACS Nano, 2021,	16.7	4
25	Electrically Tunable Nonequilibrium Optical Response of Graphene ACS Nano, 2022,	16.7	4

24	Introduction to the issue on graphene optoelectronics. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2014 , 20, 6-8	,	3
23	X-Ray Reflectivity of Ultra-Thin Diamond-Like Carbon Films. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 675, 1		3
22	Graphene saturable absorber power scaling laser 2014 ,		2
21	Ultrafast Fiber Laser Mode-locked by Graphene Based Saturable Absorber 2010 ,		2
20	Ultrafast Erbium-doped Fiber Laser Mode-locked by a Carbon Nanotube Saturable Absorber 2009,		2
19	Kohn Anomalies and Electron-Phonon Coupling in Carbon Nanotubes. <i>AIP Conference Proceedings</i> , 2005,		2
18	Elastic Constants of Diamond Like Carbon Films by Surface Brillouin Scattering. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 594, 289		2
17	Mode-locking by nanotubes of a Raman laser based on a highly doped GeO2 fiber 2012 ,		2
16	Optoelectronic mixing with high-frequency graphene transistors. <i>Nature Communications</i> , 2021 , 12, 27287	.4	2
15	Tunable broadband light emission from graphene. 2D Materials, 2021 , 8, 035026 5.9		2
14	Mapping the complex refractive index of single layer graphene on semiconductor or polymeric substrates at terahertz frequencies. <i>2D Materials</i> , 2022 , 9, 025018	,	2
13	Graphene saturable absorbers for VECSELs 2014 ,		1
12	Dual-wavelength, carbon nanotube mode-locked fiber laser 2012 ,		1
11	Wavelength Tunable Graphene Modelocked VECSEL 2013 ,		1
10	Sub-100fs pulse generation from a fiber oscillator mode-locked by nanotubes 2011 ,		1
9	Generation of 63-nJ pulses from a fiber oscillator mode-locked by nanotubes 2010 ,		1
8	High-power Ultrafast Solid-state Laser Using Graphene Based Saturable Absorber 2011,		1
7	Amorphous Carbon-Silicon Alloys Prepared by a High Plasma Density Source. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 593, 523		1

Atomically thin quantum light-emitting diodes

6

Characterization of Dynamic Nonlinear Absorption of Carbon Nanotube Saturable Absorber 2010,

Raman spectroscopy of graphene under ultrafast laser excitation. EPJ Web of Conferences, 2019, 205, 05003

Reply to Comment on 'Dynamic Catalyst Restructuring during Carbon Nanotube Growth' IACS Nano, 2011, 5, 686-687

Elastic Constants of Nanometer Thick Diamond-like Carbon Films. Materials Research Society Symposia Proceedings, 2001, 675, 1

High-yield parallel fabrication of quantum-dot monolayer single-electron devices displaying Coulomb staircase, contacted by graphene. Nature Communications, 2021, 12, 4307

1