
Bonghyuk Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7616006/publications.pdf Version: 2024-02-01

RONCHVILE DADE

#	Article	IF	CITATIONS
1	A Dual-Mode InGaP/GaAs HBT Power Amplifier Using a Low-Loss Parallel Power-Combining Transformer with IMD3 Cancellation Method. Electronics (Switzerland), 2021, 10, 1612.	3.1	1
2	A Simple Printed Cross-Dipole Antenna with Modified Feeding Structure and Dual-Layer Printed Reflector for Direction Finding Systems. Sensors, 2021, 21, 5966.	3.8	1
3	Optimization Technique for High-Gain CMOS Power Amplifier for 5G Applications. Applied Sciences (Switzerland), 2021, 11, 11691.	2.5	3
4	A 2.6-GHz Partial-Envelope Delta–Sigma-Digitized Carrier-Bursting Transmitter. IEEE Microwave and Wireless Components Letters, 2020, 30, 697-700.	3.2	5
5	A 1â€W Kaâ€band power amplifier using 0.15â€Î¼m InGaAs/GaAs Eâ€mode pHEMT technology. Microwave and Optical Technology Letters, 2019, 61, 1706-1711.	1.4	4
6	A miniatured 28-GHz FEM using a 0.15-μ m InGaAs/GaAs E-mode pHEMT process. , 2019, , .		5
7	A miniatured 28-GHz FEM using a 0.15-µm InGaAs/GaAs E-mode pHEMT process. , 2019, , .		1
8	A 28-GHz 28.5-dBm power amplifier using 0.15-µm InGaAs E-mode pHEMT technology. , 2018, , .		6
9	A frequency reconfigurable dipole antenna with solid-state plasma in silicon. Scientific Reports, 2018, 8, 14996.	3.3	14
10	Suitability of S-PIN diodes used in reconfigurable antennas. , 2018, , .		1
11	Delta-sigma-modulated IFoF transmission system assisted by a correlative-level encoding technique. Optics Express, 2018, 26, 29916.	3.4	7
12	Reconfigurable Yagi-Uda antenna based on a silicon reflector with a solid-state plasma. Scientific Reports, 2017, 7, 17232.	3.3	10
13	Design of a 28-GHz low noise amplifier using 0.15-um InGaAs pHEMT E-mode technology. , 2017, , .		4
14	A 21.9-dB Gain 18.9–35.9-GHz low noise amplifier using InGaAs E-mode 0.15-um pHEMT technology. , 2017, ,		7
15	Digital radio-over-fiber system with multi-pulse Manchester encoding-assisted delta-sigma modulation. Optics Express, 2017, 25, 8335.	3.4	20
16	A linear InGaP/GaAs HBT power amplifier for LTE B7 applications. , 2017, , .		0
17	A linear HBT power amplifier with an IMD3 reduction method for LTE-A small-cell base-station applications. , 2016, , .		Ο
18	Investigating the effect of antenna beamwidth on millimeter-wave channel charaterization. , 2016, , .		8

Bonghyuk Park

#	Article	IF	CITATIONS
19	Millimeter-wave channel model parameters for urban microcellular environment based on 28 and 38 GHz measurements. , 2016, , .		26
20	Possibility verification of drone detection radar based on pseudo random binary sequence. , 2016, , .		8
21	Analysis of the effects of stationary clutter on moving target detection radar. , 2016, , .		1
22	Joint probability distribution of power delay profiles based on 28 GHz channel measurements. , 2016, , .		0
23	Optimization of the intrinsic length of a PIN diode for a reconfigurable antenna. , 2016, , .		3
24	Fully-Integrated Two-Stage GaN MMIC Doherty Power Amplifier for LTE Small Cells. IEEE Microwave and Wireless Components Letters, 2016, 26, 918-920.	3.2	31
25	A V-Band Current-Reused LNA With a Double-Transformer-Coupling Technique. IEEE Microwave and Wireless Components Letters, 2016, 26, 942-944.	3.2	22
26	A Linear InGaP/GaAs HBT Power Amplifier Using Parallel-Combined Transistors With IMD3 Cancellation. IEEE Microwave and Wireless Components Letters, 2016, 26, 921-923.	3.2	22
27	Power losses due to steering beam mis-alignment in directional-antenna millimeter-wave systems. , 2016, , .		1
28	Directional multipath propagation characteristics based on 28GHz outdoor channel measurements. , 2016, , .		4
29	A low-power 50-GHz LC-VCO in a 65-nm CMOS technology. , 2015, , .		3
30	An mm-Wave VCO with a high-speed amplitude modulation. , 2015, , .		0
31	Development of an ASM2.0 RF system for maritime communications of high-data-rate in the VHF band. , 2015, , .		1
32	Fully integrated wideband power amplifier in GaN technology. , 2015, , .		0
33	60â€GHz lowâ€power <scp>OOK</scp> transmitter in 65â€ <scp>NM</scp> <scp>CMOS</scp> technology. Microwave and Optical Technology Letters, 2015, 57, 1977-1980.	1.4	4
34	A Fully Integrated High Efficiency RF Power Amplifier for WLAN Application in 40 nm Standard CMOS Process. IEEE Microwave and Wireless Components Letters, 2015, 25, 382-384.	3.2	22
35	GaN HEMT MMIC Doherty Power Amplifier With High Gain and High PAE. IEEE Microwave and Wireless Components Letters, 2015, 25, 187-189.	3.2	21
36	A fully differential injectionâ€locked frequency divider using CMOS technology. Microwave and Optical Technology Letters, 2014, 56, 31-34.	1.4	0

BONGHYUK PARK

#	Article	IF	CITATIONS
37	Adaptive bit truncation and restoration for baseband signal compression. , 2014, , .		2
38	Low latency block scaling for baseband signal compression. , 2014, , .		1
39	A Digitized IF-Over-Fiber Transmission Based on Low-Pass Delta-Sigma Modulation. IEEE Photonics Technology Letters, 2014, 26, 2484-2487.	2.5	28
40	Design of flexible radio unit for distributed antenna systems. , 2014, , .		0
41	Highâ€performance stackedâ€coil transformers with thick metal layers. Electronics Letters, 2014, 50, 1359-1361.	1.0	2
42	A 24-mW 60-GHz OOK RF transceiver for 3-Gbps data communication. , 2014, , .		0
43	GaN MMIC broadband saturated power amplifier. , 2013, , .		1
44	GaN MMIC broadband Doherty power amplifier. , 2013, , .		7
45	A High Voltage Swing Dual-Band Bandpass \$DeltaSigma\$ Modulator for Mobile Base-Station. IEEE Microwave and Wireless Components Letters, 2013, 23, 199-201.	3.2	6
46	A fully integrated pulse width modulator for Class-S power amplifiers. IEICE Electronics Express, 2013, 10, 20120929-20120929.	0.8	0
47	A SiGe BiCMOS high voltage driver for Class-S power amplifier. , 2012, , .		Ο
48	Tunable continuous-time ΔΣ modulator for switching power amplifier. IEICE Electronics Express, 2012, 9, 1714-1719.	0.8	0
49	A fully digital polar modulator for switch mode RF power amplifier. , 2012, , .		0
50	A switch controlled dual-band band pass ΔΣ modulator. Microwave and Optical Technology Letters, 2012, 54, 2784-2787.	1.4	1
51	A triple gain mode digitally controlled amplifier in cmos process. Microwave and Optical Technology Letters, 2012, 54, 1263-1266.	1.4	1
52	Analog predistortion technique in remodulation based radio over high-speed access network for improving sensitivity. , 2011, , .		1
53	PWM based CMOS supply modulator for LTE envelope tracking transmitter. , 2011, , .		2
54	The design of integrated 0.13â€Î¼m CMOS receiver for ultraâ€wideband systems. Microwave and Optical Technology Letters, 2010, 52, 841-845.	1.4	1

BONGHYUK PARK

#	Article	IF	CITATIONS
55	A Low-Noise Amplifier With Tunable Interference Rejection for 3.1- to 10.6-GHz UWB Systems. IEEE Microwave and Wireless Components Letters, 2010, 20, 40-42.	3.2	74
56	An optical AM video/PTZ data transceiver for a video-based surveillance network. , 2009, , .		0
57	A receiver front-end design in 0.13 µm CMOS for multiband OFDM UWB system. , 2009, , .		0
58	A 12-GHz Fully Integrated Cascode CMOS \$LC\$ VCO With \$Q\$-Enhancement Circuit. IEEE Microwave and Wireless Components Letters, 2008, 18, 133-135.	3.2	43
59	A 3.1 to 5 GHz CMOS Transceiver for DS-UWB Systems. ETRI Journal, 2007, 29, 421-429.	2.0	10
60	A 0.18 μm CMOS single-balanced mixer with LO cancellation for MB-OFDM UWB direct conversion receiver applications. Microwave and Optical Technology Letters, 2007, 49, 2555-2558.	1.4	0
61	A 22 GHz cascode CMOS VCO using frequency doubler. Microwave and Optical Technology Letters, 2007, 49, 2870-2873.	1.4	2
62	A 3.1 to 5 GHZ CMOS RF transmitter for direct-sequence code division multiple access applications. Microwave and Optical Technology Letters, 2007, 49, 3140-3145.	1.4	2
63	Transceiver Design Technology for Full Digital DS-UWB Applications. , 2006, , .		1
64	A wideband linear-in-dB VGA using a CMOS in the triode region. Microwave and Optical Technology Letters, 2006, 48, 997-1000.	1.4	1
65	A 3-5 GHz RF Receiver Front-End for UWB Wireless System. , 2006, , .		5
66	Transceiver Design Technology for Full Digital DS-UWB Applications. , 2006, , .		0
67	Which consists of a transmitter, a receiver, the design on rf transceiver at 5 GHz band with package modeling. , 0, , .		0