List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7615984/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advantages of nanoscale bioactive glass as inorganic filler in alginate hydrogels for drug delivery and biofabrication. European Journal of Materials, 2022, 2, 33-53.	2.6	3
2	Hydrogen Peroxide Versus Sodium Hypochlorite: All a Matter of pH?. Journal of Endodontics, 2021, 47, 297-302.	3.1	4
3	Polymerization and shrinkage stress formation of experimental resin composites doped with nano- <i>vs.</i> micron-sized bioactive glasses. Dental Materials Journal, 2021, 40, 110-115.	1.8	10
4	Short- and Long-Term Dentin Bond Strength of Bioactive Glass-Modified Dental Adhesives. Nanomaterials, 2021, 11, 1894.	4.1	7
5	Polymerization shrinkage behaviour of resin composites functionalized with unsilanized bioactive glass fillers. Scientific Reports, 2020, 10, 15237.	3.3	17
6	Buffer Solution Reduces Acidic Toothpaste Abrasivity Measured in Standardized Tests. Frontiers in Dental Medicine, 2020, 1, .	1.4	2
7	Bioactivity and Physico-Chemical Properties of Dental Composites Functionalized with Nano- vs. Micro-Sized Bioactive Glass. Journal of Clinical Medicine, 2020, 9, 772.	2.4	36
8	Directing Stem Cell Commitment by Amorphous Calcium Phosphate Nanoparticles Incorporated in PLGA: Relevance of the Free Calcium Ion Concentration. International Journal of Molecular Sciences, 2020, 21, 2627.	4.1	15
9	Curing potential of experimental resin composites filled with bioactive glass: A comparison between Bis-EMA and UDMA based resin systems. Dental Materials, 2020, 36, 711-723.	3.5	35
10	Dentine decalcification and smear layer removal by different ethylenediaminetetraacetic acid and 1â€hydroxyethaneâ€1,1â€diphosphonic acid species. International Endodontic Journal, 2019, 52, 237-243.	5.0	16
11	Effects of endodontic irrigants on blood and blood-stained dentin. Heliyon, 2019, 5, e01794.	3.2	5
12	Chemical, cytotoxic and genotoxic analysis of etidronate in sodium hypochlorite solution. International Endodontic Journal, 2019, 52, 1228-1234.	5.0	20
13	Light Transmittance and Polymerization of Bulk-Fill Composite Materials Doped with Bioactive Micro-Fillers. Materials, 2019, 12, 4087.	2.9	17
14	Modification of silicone elastomers with Bioglass 45S5® increases in ovo tissue biointegration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1180-1188.	3.4	8
15	Shortâ€ŧerm storage stability of Na <scp>OC</scp> l solutions when combined with Dual Rinse <scp>HEDP</scp> . International Endodontic Journal, 2018, 51, 691-696.	5.0	41
16	Soy protein isolate/bioactive glass composite membranes: Processing and properties. European Polymer Journal, 2018, 106, 232-241.	5.4	17
17	Effect of endodontic irrigants on biofilm matrix polysaccharides. International Endodontic Journal, 2017, 50, 153-160.	5.0	43
18	Bioactive glass containing silicone composites for left ventricular assist device drivelines: role of Bioglass 45S5® particle size on mechanical properties and cytocompatibility. Journal of Materials Science, 2017, 52, 9023-9038.	3.7	18

#	Article	IF	CITATIONS
19	Interactions between the Tetrasodium Salts of EDTA and 1-Hydroxyethane 1,1-Diphosphonic Acid with Sodium Hypochlorite Irrigants. Journal of Endodontics, 2017, 43, 657-661.	3.1	36
20	Highly elastomeric poly(3-hydroxyoctanoate) based natural polymer composite for enhanced keratinocyte regeneration. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 326-335.	3.4	22
21	Bioactivity and properties of a dental adhesive functionalized with polyhedral oligomeric silsesquioxanes (POSS) and bioactive glass. Dental Materials, 2017, 33, 1056-1065.	3.5	33
22	Gene expression in human adipose-derived stem cells: comparison of 2D films, 3D electrospun meshes or co-cultured scaffolds with two-way paracrine effects. , 2017, 34, 232-248.		16
23	Incorporation of particulate bioactive glasses into a dental root canal sealer. Biomedical Glasses, 2016, 2, .	2.4	17
24	Nanoscale bioactive glass activates osteoclastic differentiation of RAW 264.7 cells. Nanomedicine, 2016, 11, 1093-1105.	3.3	15
25	Oral biofilm and caries-infiltrant interactions on enamel. Journal of Dentistry, 2016, 48, 40-45.	4.1	13
26	Preclinical in vivo Performance of Novel Biodegradable, Electrospun Poly(lactic acid) and Poly(lactic-co-glycolic acid) Nanocomposites: A Review. Materials, 2015, 8, 4912-4931.	2.9	22
27	Magnetically deliverable calcium phosphate nanoparticles for localized gene expression. RSC Advances, 2015, 5, 9997-10004.	3.6	10
28	A New Method to Assess Available Chlorine in Small Volumes of Liquid. Journal of Endodontics, 2014, 40, 534-537.	3.1	6
29	In vitro reactivity of Sr-containing bioactive glass (type 1393) nanoparticles. Journal of Non-Crystalline Solids, 2014, 387, 41-46.	3.1	50
30	Regenerable cerium oxide based odor adsorber for indoor air purification from acidic volatile organic compounds. Applied Catalysis B: Environmental, 2014, 147, 965-972.	20.2	6
31	Effect of Low Direct Current on Anaerobic Multispecies Biofilm Adhering to a Titanium Implant Surface. Clinical Implant Dentistry and Related Research, 2014, 16, 552-556.	3.7	18
32	Functionalizing a dentin bonding resin to become bioactive. Dental Materials, 2014, 30, 868-875.	3.5	69
33	Effect of Direct Current on Surface Structure and Cytocompatibility of Titanium Dental Implants. International Journal of Oral and Maxillofacial Implants, 2014, 29, 735-742.	1.4	11
34	Novel strontium-doped bioactive glass nanoparticles enhance proliferation and osteogenic differentiation of human bone marrow stromal cells. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	39
35	pH-dependent antibacterial effects on oral microorganisms through pure PLGA implants and composites with nanosized bioactive glass. Acta Biomaterialia, 2013, 9, 9118-9125.	8.3	32
36	Heatâ€Induced Dry Tailoring of Porosity in Polymer Scaffolds. Macromolecular Materials and Engineering, 2013, 298, 1143-1148.	3.6	2

#	Article	IF	CITATIONS
37	Nanocomposites of high-density polyethylene with amorphous calcium phosphate: <i>in vitro</i> biomineralization and cytocompatibility of human mesenchymal stem cells. Biomedical Materials (Bristol), 2012, 7, 054103.	3.3	7
38	Bioactive glass (type 45S5) nanoparticles: in vitro reactivity on nanoscale and biocompatibility. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	114
39	Use of NIR light and upconversion phosphors in light-curable polymers. Dental Materials, 2012, 28, 304-311.	3.5	76
40	Two-layer membranes of calcium phosphate/collagen/PLGA nanofibres: in vitro biomineralisation and osteogenic differentiation of human mesenchymal stem cells. Nanoscale, 2011, 3, 401-409.	5.6	61
41	Reactivity of calcium phosphate nanoparticles prepared by flame spray synthesis as precursors for calcium phosphate cements. Journal of Materials Chemistry, 2011, 21, 13963.	6.7	26
42	Electrochemical Disinfection of Dental Implants $\hat{a} \in $ a Proof of Concept. PLoS ONE, 2011, 6, e16157.	2.5	40
43	Optimization of Bioglass [®] Scaffold Fabrication Process. Journal of the American Ceramic Society, 2011, 94, 4184-4190.	3.8	34
44	Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function. Biomaterials, 2011, 32, 8915-8926.	11.4	176
45	Incorporation of reactive silverâ€ŧricalcium phosphate nanoparticles into polyamide 6 allows preparation of selfâ€disinfecting fibers. Polymer Engineering and Science, 2011, 51, 71-77.	3.1	14
46	Biocompatibility and Bone Formation of Flexible, Cotton Wool-like PLGA/Calcium Phosphate Nanocomposites in Sheep. The Open Orthopaedics Journal, 2011, 5, 63-71.	0.2	42
47	Polymer/bioactive glass nanocomposites for biomedical applications: A review. Composites Science and Technology, 2010, 70, 1764-1776.	7.8	451
48	Light-curable polymer/calcium phosphate nanocomposite glue for bone defect treatment. Acta Biomaterialia, 2010, 6, 2704-2710.	8.3	28
49	Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications. Biomaterials, 2010, 31, 2806-2815.	11.4	149
50	Spherical calcium phosphate nanoparticle fillers allow polymer processing of bone fixation devices with high bioactivity. Polymer Engineering and Science, 2010, 50, 952-960.	3.1	21
51	Radioâ€opaque nanosized bioactive glass for potential root canal application: evaluation of radiopacity, bioactivity and alkaline capacity. International Endodontic Journal, 2010, 43, 210-217.	5.0	73
52	Composites made of flameâ€sprayed bioactive glass 45S5 and polymers: bioactivity and immediate sealing properties. International Endodontic Journal, 2010, 43, 1037-1046.	5.0	43
53	Sintering of core–shell Ag/glass nanoparticles: metal percolation at the glass transition temperature yields metal/glass/ceramic composites. Journal of Materials Chemistry, 2010, 20, 7769.	6.7	9
54	Effect of nanoparticulate bioactive glass particles on bioactivity and cytocompatibility of poly(3-hydroxybutyrate) composites. Journal of the Royal Society Interface, 2010, 7, 453-465.	3.4	134

#	Article	IF	CITATIONS
55	Elastomeric nanocomposites as cell delivery vehicles and cardiac support devices. Soft Matter, 2010, 6, 4715.	2.7	65
56	Fine-tuning of Bioactive Glass for Root Canal Disinfection. Journal of Dental Research, 2009, 88, 235-238.	5.2	72
57	Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass® composites. Biomaterials, 2008, 29, 1750-1761.	11.4	305