Hongqi Sun

List of Publications by Citations

Source: https://exaly.com/author-pdf/7615920/hongqi-sun-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 290
 23,215
 88
 144

 papers
 citations
 h-index
 g-index

 295
 28,584
 10.7
 7.62

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
290	Metal-Free Carbocatalysis in Advanced Oxidation Reactions. <i>Accounts of Chemical Research</i> , 2018 , 51, 678-687	24.3	573
289	N-Doping-Induced Nonradical Reaction on Single-Walled Carbon Nanotubes for Catalytic Phenol Oxidation. <i>ACS Catalysis</i> , 2015 , 5, 553-559	13.1	525
288	Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants. <i>ACS Applied Materials & ACS Applied Materials & ACS Applied</i>	9.5	517
287	Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. <i>Chemical Engineering Journal</i> , 2013 , 226, 336-347	14.7	508
286	Synthesis, characterization, and adsorption properties of magnetic Fe3O4@graphene nanocomposite. <i>Chemical Engineering Journal</i> , 2012 , 184, 326-332	14.7	477
285	Nitrogen-doped graphene for generation and evolution of reactive radicals by metal-free catalysis. <i>ACS Applied Materials & Damp; Interfaces</i> , 2015 , 7, 4169-78	9.5	471
284	Insights into Heterogeneous Catalysis of Persulfate Activation on Dimensional-Structured Nanocarbons. <i>ACS Catalysis</i> , 2015 , 5, 4629-4636	13.1	450
283	Sulfur and Nitrogen Co-Doped Graphene for Metal-Free Catalytic Oxidation Reactions. <i>Small</i> , 2015 , 11, 3036-44	11	412
282	Nonradical reactions in environmental remediation processes: Uncertainty and challenges. <i>Applied Catalysis B: Environmental</i> , 2018 , 224, 973-982	21.8	397
281	Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation. <i>Applied Catalysis B: Environmental</i> , 2016 , 188, 98-105	21.8	386
280	A review on photocatalysis for air treatment: From catalyst development to reactor design. <i>Chemical Engineering Journal</i> , 2017 , 310, 537-559	14.7	335
279	Different crystallographic one-dimensional MnO2 nanomaterials and their superior performance in catalytic phenol degradation. <i>Environmental Science & Environmental Science &</i>	10.3	335
278	Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals. <i>Applied Catalysis B: Environmental</i> , 2014 , 154-155, 134-141	21.8	333
277	Activated carbon supported cobalt catalysts for advanced oxidation of organic contaminants in aqueous solution. <i>Applied Catalysis B: Environmental</i> , 2010 , 100, 529-534	21.8	324
276	Manganese oxides at different oxidation states for heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions. <i>Applied Catalysis B: Environmental</i> , 2013, 142-143, 729-735	21.8	308
275	Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds. <i>Applied Catalysis B: Environmental</i> , 2016 , 194, 7-15	21.8	277
274	3D-hierarchically structured MnO2 for catalytic oxidation of phenol solutions by activation of peroxymonosulfate: Structure dependence and mechanism. <i>Applied Catalysis B: Environmental</i> , 2015 , 164, 159-167	21.8	274

273	Insights into perovskite-catalyzed peroxymonosulfate activation: Maneuverable cobalt sites for promoted evolution of sulfate radicals. <i>Applied Catalysis B: Environmental</i> , 2018 , 220, 626-634	21.8	274	
272	An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: formation mechanism and generation of singlet oxygen from peroxymonosulfate. <i>Environmental Science: Nano</i> , 2017 , 4, 315-324	7.1	272	
271	Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: a historic review. <i>Catalysis Science and Technology</i> , 2016 , 6, 7002-7023	5.5	271	
270	Facile synthesis of nitrogen doped reduced graphene oxide as a superior metal-free catalyst for oxidation. <i>Chemical Communications</i> , 2013 , 49, 9914-6	5.8	248	
269	Facile assembly of Bi2O3/Bi2S3/MoS2 n-p heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic water oxidation and pollutant degradation. <i>Applied Catalysis B: Environmental</i> , 2017 , 200, 47-55	21.8	234	
268	Nanocarbons in different structural dimensions (0BD) for phenol adsorption and metal-free catalytic oxidation. <i>Applied Catalysis B: Environmental</i> , 2015 , 179, 352-362	21.8	220	
267	0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution. <i>Applied Catalysis B: Environmental</i> , 2018 , 228, 64-74	21.8	220	
266	Unveiling the active sites of graphene-catalyzed peroxymonosulfate activation. <i>Carbon</i> , 2016 , 107, 371	-317884	219	
265	Hydrothermal Synthesis of Co3O4©raphene for Heterogeneous Activation of Peroxymonosulfate for Decomposition of Phenol. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 14958-14965	3.9	213	
264	Facile synthesis of nitrogen-doped graphene via low-temperature pyrolysis: The effects of precursors and annealing ambience on metal-free catalytic oxidation. <i>Carbon</i> , 2017 , 115, 649-658	10.4	209	
263	A new magnetic nano zero-valent iron encapsulated in carbon spheres for oxidative degradation of phenol. <i>Applied Catalysis B: Environmental</i> , 2015 , 172-173, 73-81	21.8	198	
262	Insights into N-doping in single-walled carbon nanotubes for enhanced activation of superoxides: a mechanistic study. <i>Chemical Communications</i> , 2015 , 51, 15249-52	5.8	195	
261	Activation of peroxymonosulfate by carbonaceous oxygen groups: experimental and density functional theory calculations. <i>Applied Catalysis B: Environmental</i> , 2016 , 198, 295-302	21.8	192	
260	Co-SBA-15 for heterogeneous oxidation of phenol with sulfate radical for wastewater treatment. <i>Catalysis Today</i> , 2011 , 175, 380-385	5.3	188	
259	Preparation and Characterization of Visible-Light-Driven CarbonBulfur-Codoped TiO2 Photocatalysts. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 4971-4976	3.9	186	
258	Excellent performance of mesoporous Co3O4/MnO2 nanoparticles in heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions. <i>Applied Catalysis B: Environmental</i> , 2012, 127, 330-335	21.8	185	
257	Magnetic CoFe2O4© raphene Hybrids: Facile Synthesis, Characterization, and Catalytic Properties. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 6044-6051	3.9	185	
256	Fabrication of Fe3O4/SiO2 core/shell nanoparticles attached to graphene oxide and its use as an adsorbent. <i>Journal of Colloid and Interface Science</i> , 2012 , 379, 20-6	9.3	175	

255	Topotactic Transformation of Metal-Organic Frameworks to Graphene-Encapsulated Transition-Metal Nitrides as Efficient Fenton-like Catalysts. <i>ACS Nano</i> , 2016 , 10, 11532-11540	16.7	174
254	Nano-Felencapsulated in microcarbon spheres: synthesis, characterization, and environmental applications. <i>ACS Applied Materials & Samp; Interfaces</i> , 2012 , 4, 6235-41	9.5	166
253	New insights into heterogeneous generation and evolution processes of sulfate radicals for phenol degradation over one-dimensional EMnO2 nanostructures. <i>Chemical Engineering Journal</i> , 2015 , 266, 12-20	14.7	165
252	Synthesis of porous reduced graphene oxide as metal-free carbon for adsorption and catalytic oxidation of organics in water. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 5854	13	164
251	Nitrogen- and Sulfur-Codoped Hierarchically Porous Carbon for Adsorptive and Oxidative Removal of Pharmaceutical Contaminants. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 7184-93	9.5	162
250	A comparative study of reduced graphene oxide modified TiO2, ZnO and Ta2O5 in visible light photocatalytic/photochemical oxidation of methylene blue. <i>Applied Catalysis B: Environmental</i> , 2014 , 146, 162-168	21.8	160
249	Graphene facilitated visible light photodegradation of methylene blue over titanium dioxide photocatalysts. <i>Chemical Engineering Journal</i> , 2013 , 214, 298-303	14.7	160
248	Nanodiamonds in sp2/sp3 configuration for radical to nonradical oxidation: Core-shell layer dependence. <i>Applied Catalysis B: Environmental</i> , 2018 , 222, 176-181	21.8	157
247	Efficient Catalytic Ozonation over Reduced Graphene Oxide for p-Hydroxylbenzoic Acid (PHBA) Destruction: Active Site and Mechanism. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 9710-20	9.5	157
246	Shape-controlled activation of peroxymonosulfate by single crystal \(\text{HMn2O3}\) for catalytic phenol degradation in aqueous solution. <i>Applied Catalysis B: Environmental</i> , 2014 , 154-155, 246-251	21.8	157
245	Low temperature combustion synthesis of nitrogen-doped graphene for metal-free catalytic oxidation. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 3432-3440	13	156
244	2D/2D nano-hybrids of EMnOlbn reduced graphene oxide for catalytic ozonation and coupling peroxymonosulfate activation. <i>Journal of Hazardous Materials</i> , 2016 , 301, 56-64	12.8	153
243	N-Doped Graphene from Metal Drganic Frameworks for Catalytic Oxidation of p-Hydroxylbenzoic Acid: N-Functionality and Mechanism. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 2693-2701	8.3	152
242	A new metal-free carbon hybrid for enhanced photocatalysis. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 16745-54	9.5	144
241	A comparative study of spinel structured Mn3O4, Co3O4 and Fe3O4 nanoparticles in catalytic oxidation of phenolic contaminants in aqueous solutions. <i>Journal of Colloid and Interface Science</i> , 2013 , 407, 467-73	9.3	143
240	Nanosized Co3O4/SiO2 for heterogeneous oxidation of phenolic contaminants in waste water. <i>Separation and Purification Technology</i> , 2011 , 77, 230-236	8.3	143
239	Excellent performance of copper based metal organic framework in adsorptive removal of toxic sulfonamide antibiotics from wastewater. <i>Journal of Colloid and Interface Science</i> , 2016 , 478, 344-52	9.3	142
238	Nitrogen-doped bamboo-like carbon nanotubes with Ni encapsulation for persulfate activation to remove emerging contaminants with excellent catalytic stability. <i>Chemical Engineering Journal</i> , 2018 , 332, 398-408	14.7	141

(2013-2018)

237	carbons for oxidative degradation of emerging contaminants. <i>Applied Catalysis B: Environmental</i> , 2018 , 225, 76-83	21.8	141
236	Degradation of Cosmetic Microplastics via Functionalized Carbon Nanosprings. <i>Matter</i> , 2019 , 1, 745-758	812.7	140
235	Adsorptive removal of antibiotic sulfonamide by UiO-66 and ZIF-67 for wastewater treatment. Journal of Colloid and Interface Science, 2017, 500, 88-95	9.3	137
234	Carbocatalytic activation of persulfate for removal of antibiotics in water solutions. <i>Chemical Engineering Journal</i> , 2016 , 288, 399-405	14.7	135
233	Heteroatom (N or N-S)-Doping Induced Layered and Honeycomb Microstructures of Porous Carbons for CO2 Capture and Energy Applications. <i>Advanced Functional Materials</i> , 2016 , 26, 8651-8661	15.6	133
232	Magnetic Fe3O4/carbon sphere/cobalt composites for catalytic oxidation of phenol solutions with sulfate radicals. <i>Chemical Engineering Journal</i> , 2014 , 245, 1-9	14.7	133
231	Facile synthesis of hierarchically structured magnetic MnO2/ZnFe2O4 hybrid materials and their performance in heterogeneous activation of peroxymonosulfate. <i>ACS Applied Materials & Interfaces</i> , 2014 , 6, 19914-23	9.5	132
230	Halogen element modified titanium dioxide for visible light photocatalysis. <i>Chemical Engineering Journal</i> , 2010 , 162, 437-447	14.7	131
229	Surface aging behaviour of Fe-based amorphous alloys as catalysts during heterogeneous photo Fenton-like process for water treatment. <i>Applied Catalysis B: Environmental</i> , 2017 , 204, 537-547	21.8	130
228	Physical and chemical activation of reduced graphene oxide for enhanced adsorption and catalytic oxidation. <i>Nanoscale</i> , 2014 , 6, 766-71	7.7	129
227	Co3O4 nanocrystals with predominantly exposed facets: synthesis, environmental and energy applications. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 14427	13	128
226	Adsorption and heterogeneous advanced oxidation of phenolic contaminants using Fe loaded mesoporous SBA-15 and H2O2. <i>Chemical Engineering Journal</i> , 2010 , 164, 255-260	14.7	127
225	Surface-tailored nanodiamonds as excellent metal-free catalysts for organic oxidation. <i>Carbon</i> , 2016 , 103, 404-411	10.4	127
224	Rational Catalyst Design for N2 Reduction under Ambient Conditions: Strategies toward Enhanced Conversion Efficiency. <i>ACS Catalysis</i> , 2020 , 10, 6870-6899	13.1	126
223	Ferric carbide nanocrystals encapsulated in nitrogen-doped carbon nanotubes as an outstanding environmental catalyst. <i>Environmental Science: Nano</i> , 2017 , 4, 170-179	7.1	125
222	Effects of nitrogen-, boron-, and phosphorus-doping or codoping on metal-free graphene catalysis. <i>Catalysis Today</i> , 2015 , 249, 184-191	5.3	123
221	Porous Carbons: Structure-Oriented Design and Versatile Applications. <i>Advanced Functional Materials</i> , 2020 , 30, 1909265	15.6	119
220	One-pot hydrothermal synthesis of ZnO-reduced graphene oxide composites using Zn powders for enhanced photocatalysis. <i>Chemical Engineering Journal</i> , 2013 , 229, 533-539	14.7	119

219	Disordered Atomic Packing Structure of Metallic Glass: Toward Ultrafast Hydroxyl Radicals Production Rate and Strong Electron Transfer Ability in Catalytic Performance. <i>Advanced Functional Materials</i> , 2017 , 27, 1702258	15.6	118
218	One-pot synthesis of N-doped graphene for metal-free advanced oxidation processes. <i>Carbon</i> , 2016 , 102, 279-287	10.4	115
217	EMnO2 activation of peroxymonosulfate for catalytic phenol degradation in aqueous solutions. <i>Catalysis Communications</i> , 2012 , 26, 144-148	3.2	108
216	Boosting Fenton-Like Reactions via Single Atom Fe Catalysis. <i>Environmental Science & Environmental Sc</i>	10.3	105
215	Phosphorous doped carbon nitride nanobelts for photodegradation of emerging contaminants and hydrogen evolution. <i>Applied Catalysis B: Environmental</i> , 2019 , 257, 117931	21.8	105
214	Coal fly ash supported Co3O4 catalysts for phenol degradation using peroxymonosulfate. <i>RSC Advances</i> , 2012 , 2, 5645	3.7	104
213	Photocatalytic degradation of 4-chlorophenol with combustion synthesized TiO2 under visible light irradiation. <i>Chemical Engineering Journal</i> , 2007 , 128, 127-133	14.7	102
212	Oxygen Vacancies in Shape Controlled CuO/Reduced Graphene Oxide/InO Hybrid for Promoted Photocatalytic Water Oxidation and Degradation of Environmental Pollutants. <i>ACS Applied Materials & Materials</i>	9.5	101
211	Flower-like MoS2 on graphitic carbon nitride for enhanced photocatalytic and electrochemical hydrogen evolutions. <i>Applied Catalysis B: Environmental</i> , 2018 , 239, 334-344	21.8	100
210	Research Advances in the Synthesis of Nanocarbon-Based Photocatalysts and Their Applications for Photocatalytic Conversion of Carbon Dioxide to Hydrocarbon Fuels. <i>Energy & Dioxide</i> , 2014, 28, 22-36	4.1	99
209	Monodisperse Co3O4 quantum dots on porous carbon nitride nanosheets for enhanced visible-light-driven water oxidation. <i>Applied Catalysis B: Environmental</i> , 2018 , 223, 2-9	21.8	97
208	Metal-free activation of persulfate by cubic mesoporous carbons for catalytic oxidation via radical and nonradical processes. <i>Catalysis Today</i> , 2018 , 307, 140-146	5.3	91
207	Oxygen functional groups in graphitic carbon nitride for enhanced photocatalysis. <i>Journal of Colloid and Interface Science</i> , 2016 , 468, 176-182	9.3	91
206	Laves phase precipitation in Ti-Zr-Fe-Cr alloys with high strength and large plasticity. <i>Materials and Design</i> , 2018 , 154, 228-238	8.1	89
205	Visible-light-driven TiO2 catalysts doped with low-concentration nitrogen species. <i>Solar Energy Materials and Solar Cells</i> , 2008 , 92, 76-83	6.4	89
204	Magnetic Ni-Co alloy encapsulated N-doped carbon nanotubes for catalytic membrane degradation of emerging contaminants. <i>Chemical Engineering Journal</i> , 2019 , 362, 251-261	14.7	89
203	UV-assisted construction of 3D hierarchical rGO/Bi2MoO6 composites for enhanced photocatalytic water oxidation. <i>Chemical Engineering Journal</i> , 2017 , 313, 1447-1453	14.7	88
202	Activated carbons as green and effective catalysts for generation of reactive radicals in degradation of aqueous phenol. <i>RSC Advances</i> , 2013 , 3, 21905	3.7	88

(2018-2019)

201	Manganese oxide integrated catalytic ceramic membrane for degradation of organic pollutants using sulfate radicals. <i>Water Research</i> , 2019 , 167, 115110	12.5	86
200	Template-free synthesis of N-doped carbon with pillared-layered pores as bifunctional materials for supercapacitor and environmental applications. <i>Carbon</i> , 2017 , 118, 98-105	10.4	85
199	Design and engineering heterojunctions for the photoelectrochemical monitoring of environmental pollutants: A review. <i>Applied Catalysis B: Environmental</i> , 2019 , 248, 405-422	21.8	85
198	Synthesis of Co oxide doped carbon aerogel catalyst and catalytic performance in heterogeneous oxidation of phenol in water. <i>Chemical Engineering Journal</i> , 2011 , 174, 376-382	14.7	84
197	One-pot synthesis of binary metal organic frameworks (HKUST-1 and UiO-66) for enhanced adsorptive removal of water contaminants. <i>Journal of Colloid and Interface Science</i> , 2017 , 490, 685-694	9.3	80
196	Red mud and fly ash supported Co catalysts for phenol oxidation. <i>Catalysis Today</i> , 2012 , 190, 68-72	5.3	80
195	Tailored synthesis of active reduced graphene oxides from waste graphite: Structural defects and pollutant-dependent reactive radicals in aqueous organics decontamination. <i>Applied Catalysis B: Environmental</i> , 2018 , 229, 71-80	21.8	77
194	Visible light responsive titania photocatalysts codoped by nitrogen and metal (Fe, Ni, Ag, or Pt) for remediation of aqueous pollutants. <i>Chemical Engineering Journal</i> , 2013 , 231, 18-25	14.7	77
193	Understanding of the Oxidation Behavior of Benzyl Alcohol by Peroxymonosulfate via Carbon Nanotubes Activation. <i>ACS Catalysis</i> , 2020 , 10, 3516-3525	13.1	76
192	Titanate supported cobalt catalysts for photochemical oxidation of phenol under visible light irradiations. <i>Separation and Purification Technology</i> , 2011 , 80, 626-634	8.3	76
191	Submicron sized water-stable metal organic framework (bio-MOF-11) for catalytic degradation of pharmaceuticals and personal care products. <i>Chemosphere</i> , 2018 , 196, 105-114	8.4	70
190	Room-light-induced indoor air purification using an efficient Pt/N-TiO2 photocatalyst. <i>Applied Catalysis B: Environmental</i> , 2011 , 108-109, 127-133	21.8	68
189	Effects of amino functionality on uptake of CO2, CH4 and selectivity of CO2/CH4 on titanium based MOFs. <i>Fuel</i> , 2015 , 160, 318-327	7.1	67
188	Flower-like Cobalt Hydroxide/Oxide on Graphitic Carbon Nitride for Visible-Light-Driven Water Oxidation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 35203-35212	9.5	65
187	Photochemical degradation of phenol solutions on Co3O4 nanorods with sulfate radicals. <i>Catalysis Today</i> , 2015 , 258, 576-584	5.3	64
186	Novel polyoxometalate@g-CNIhybrid photocatalysts for degradation of dyes and phenolics. <i>Journal of Colloid and Interface Science</i> , 2015 , 456, 15-21	9.3	63
185	Interfacial-engineered cobalt@carbon hybrids for synergistically boosted evolution of sulfate radicals toward green oxidation. <i>Applied Catalysis B: Environmental</i> , 2019 , 256, 117795	21.8	62
184	High-strength & Labilized Ti-Nb-Fe-Cr alloys with large plasticity. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2018 , 732, 368-377	5.3	62

183	Improved Corrosion Resistance on Selective Laser Melting Produced Ti-5Cu Alloy after Heat Treatment. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 2633-2642	5.5	60
182	Ultra-sustainable FeSiB metallic glass as a catalyst for activation of persulfate on methylene blue degradation under UV-Vis light. <i>Scientific Reports</i> , 2016 , 6, 38520	4.9	60
181	Metal-free graphene-carbon nitride hybrids for photodegradation of organic pollutants in water. <i>Catalysis Today</i> , 2015 , 258, 668-675	5.3	58
180	Metal-free melem/g-C3N4 hybrid photocatalysts for water treatment. <i>Journal of Colloid and Interface Science</i> , 2016 , 464, 10-7	9.3	58
179	Photocatalysis of C, N-doped ZnO derived from ZIF-8 for dye degradation and water oxidation. <i>RSC Advances</i> , 2016 , 6, 95903-95909	3.7	58
178	Egg-shaped core/shell & Mn2O3@ & MnO2 as heterogeneous catalysts for decomposition of phenolics in aqueous solutions. <i>Chemosphere</i> , 2016 , 159, 351-358	8.4	54
177	Synthesis of magnetic core/shell carbon nanosphere supported manganese catalysts for oxidation of organics in water by peroxymonosulfate. <i>Journal of Colloid and Interface Science</i> , 2014 , 433, 68-75	9.3	54
176	Size dependence of uniformed carbon spheres in promoting graphitic carbon nitride toward enhanced photocatalysis. <i>Applied Catalysis B: Environmental</i> , 2017 , 204, 358-364	21.8	52
175	Preparation of cobalt/carbon-xerogel for heterogeneous oxidation of phenol. <i>Catalysis Today</i> , 2012 , 186, 63-68	5.3	52
174	Size-Tailored Porous Spheres of Manganese Oxides for Catalytic Oxidation via Peroxymonosulfate Activation. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 16871-16878	3.8	52
173	Adsorption of cerium (III) by HKUST-1 metal-organic framework from aqueous solution. <i>Journal of Colloid and Interface Science</i> , 2019 , 542, 421-428	9.3	51
172	Hierarchical shape-controlled mixed-valence calcium manganites for catalytic ozonation of aqueous phenolic compounds. <i>Catalysis Science and Technology</i> , 2016 , 6, 2918-2929	5.5	51
171	Supported cobalt catalysts by one-pot aqueous combustion synthesis for catalytic phenol degradation. <i>Journal of Colloid and Interface Science</i> , 2013 , 394, 394-400	9.3	51
170	Heterostructured WO3@CoWO4 bilayer nanosheets for enhanced visible-light photo, electro and photoelectro-chemical oxidation of water. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 6265-6272	13	50
169	sp2/sp3 Framework from Diamond Nanocrystals: A Key Bridge of Carbonaceous Structure to Carbocatalysis. <i>ACS Catalysis</i> , 2019 , 9, 7494-7519	13.1	50
168	Mechanism of Nitrogen-Concentration Dependence on pH Value: Experimental and Theoretical Studies on Nitrogen-Doped TiO2. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 13304-13309	3.8	50
167	Mini-Review on Char Catalysts for Tar Reforming during Biomass Gasification: The Importance of Char Structure. <i>Energy & Documents</i> 2020, 34, 1219-1229	4.1	50
166	Bifunctionalized Metal Organic Frameworks, UiO-66-NO2-N (N = -NH2, -(OH)2, -(COOH)2), for Enhanced Adsorption and Selectivity of CO2 and N2. <i>Journal of Chemical & Data</i> , 2015 , 60, 2152-2161	2.8	49

165	Metal-free catalytic ozonation on surface-engineered graphene: Microwave reduction and heteroatom doping. <i>Chemical Engineering Journal</i> , 2019 , 355, 118-129	14.7	49	
164	Resemblance in Corrosion Behavior of Selective Laser Melted and Traditional Monolithic II Ti-24Nb-4Zr-8Sn Alloy. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 1141-1149	5.5	49	
163	Improved deformation behavior in Ti-Zr-Fe-Mn alloys comprising the C14 type Laves and Iphases. <i>Materials and Design</i> , 2018 , 160, 1059-1070	8.1	49	
162	Unzipping carbon nanotubes to nanoribbons for revealing the mechanism of nonradical oxidation by carbocatalysis. <i>Applied Catalysis B: Environmental</i> , 2020 , 276, 119146	21.8	48	
161	Superior performance of FeVO@CeO uniform core-shell nanostructures in heterogeneous Fenton-sonophotocatalytic degradation of 4-nitrophenol. <i>Journal of Hazardous Materials</i> , 2020 , 382, 121059	12.8	48	
160	Enhanced performance of g-C3N4/TiO2 photocatalysts for degradation of organic pollutants under visible light. <i>Chinese Journal of Chemical Engineering</i> , 2015 , 23, 1326-1334	3.2	47	
159	Efficient photocatalytic overall water splitting on metal-free 1D SWCNT/2D ultrathin C3N4 heterojunctions via novel non-resonant plasmonic effect. <i>Applied Catalysis B: Environmental</i> , 2020 , 278, 119312	21.8	46	
158	Catalysis of a Single Transition Metal Site for Water Oxidation: From Mononuclear Molecules to Single Atoms. <i>Advanced Materials</i> , 2020 , 32, e1904037	24	46	
157	Engineered Graphitic Carbon Nitride-Based Photocatalysts for Visible-Light-Driven Water Splitting: A Review. <i>Energy & Driven Splitting</i> : A Review. <i>Energy & Driven Splitting</i>	4.1	46	
156	Preparation of a p-n heterojunction BiFeO3@TiO2 photocatalyst with a core@hell structure for visible-light photocatalytic degradation. <i>Chinese Journal of Catalysis</i> , 2017 , 38, 1052-1062	11.3	45	
155	Integrated oxygen-doping and dye sensitization of graphitic carbon nitride for enhanced visible light photodegradation. <i>Journal of Colloid and Interface Science</i> , 2016 , 476, 193-199	9.3	45	
154	New insight to the role of edges and heteroatoms in nanocarbons for oxygen reduction reaction. <i>Nano Energy</i> , 2019 , 66, 104096	17.1	44	
153	Deformation and strength characteristics of Laves phases in titanium alloys. <i>Materials and Design</i> , 2019 , 179, 107891	8.1	44	
152	Ag2MoO4 nanoparticles encapsulated in g-C3N4 for sunlight photodegradation of pollutants. <i>Catalysis Today</i> , 2018 , 315, 205-212	5.3	44	
151	Photocatalytic decomposition of 4-chlorophenol over an efficient N-doped TiO2 under sunlight irradiation. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2009 , 201, 15-22	4.7	44	
150	Pyrolysis of palm kernel shell with internal recycling of heavy oil. <i>Bioresource Technology</i> , 2019 , 272, 77	-8121	44	
149	Long non-coding RNA Linc00675 suppresses cell proliferation and metastasis in colorectal cancer via acting on miR-942 and Wnt/Etatenin signaling. <i>Biomedicine and Pharmacotherapy</i> , 2018 , 101, 769-77	6 7·5	43	
148	Cobalt@nitrogen-doped bamboo-structured carbon nanotube to boost photocatalytic hydrogen evolution on carbon nitride. <i>Applied Catalysis B: Environmental</i> , 2019 , 254, 443-451	21.8	42	

147	One-step synthesis of flour-derived functional nanocarbons with hierarchical pores for versatile environmental applications. <i>Chemical Engineering Journal</i> , 2018 , 347, 432-439	14.7	42
146	Effects of -NO2 and -NH2 functional groups in mixed-linker Zr-based MOFs on gas adsorption of CO2 and CH4. <i>Progress in Natural Science: Materials International</i> , 2018 , 28, 160-167	3.6	42
145	Combination of adsorption, photochemical and photocatalytic degradation of phenol solution over supported zinc oxide: Effects of support and sulphate oxidant. <i>Chemical Engineering Journal</i> , 2011 , 170, 270-277	14.7	42
144	Graphitic Carbon Nitride-Based Z-Scheme Structure for Photocatalytic CO2 Reduction. <i>Energy & Energy Fuels</i> , 2021 , 35, 7-24	4.1	42
143	Functionalized UiO-66 by Single and Binary (OH)2 and NO2 Groups for Uptake of CO2 and CH4. <i>Industrial & Diagram of Chemistry Research</i> , 2016 , 55, 7924-7932	3.9	40
142	Temperature dependent photocatalysis of g-CN, TiO and ZnO: Differences in photoactive mechanism. <i>Journal of Colloid and Interface Science</i> , 2018 , 532, 321-330	9.3	40
141	Heterogeneous Catalytic Oxidation of Aqueous Phenol on Red Mud-Supported Cobalt Catalysts. <i>Industrial & Discourse Chemistry Research</i> , 2012 , 51, 15351-15359	3.9	40
140	Biomass-derived functional porous carbons for adsorption and catalytic degradation of binary micropollutants in water. <i>Journal of Hazardous Materials</i> , 2020 , 389, 121881	12.8	40
139	Core/shell FeVO4@BiOCl heterojunction as a durable heterogeneous Fenton catalyst for the efficient sonophotocatalytic degradation of p-nitrophenol. <i>Separation and Purification Technology</i> , 2020 , 231, 115915	8.3	39
138	Spontaneous Formation of Noble- and Heavy-Metal-Free Alloyed Semiconductor Quantum Rods for Efficient Photocatalysis. <i>Advanced Materials</i> , 2018 , 30, e1803351	24	38
137	Solution combustion synthesis of Co oxide-based catalysts for phenol degradation in aqueous solution. <i>Journal of Colloid and Interface Science</i> , 2012 , 372, 58-62	9.3	38
136	Coupling hydrothermal and photothermal single-atom catalysis toward excellent water splitting to hydrogen. <i>Applied Catalysis B: Environmental</i> , 2021 , 283, 119660	21.8	38
135	Green Synthesis of Carbon Quantum Dots for Sensitized Solar Cells. <i>ChemPhotoChem</i> , 2017 , 1, 116-119	3.3	37
134	Electrochemical synthesis of graphene/MnO 2 in an architecture of bilayer microtubes as micromotors. <i>Chemical Engineering Journal</i> , 2017 , 324, 251-258	14.7	37
133	Three-Dimensional BiOI/BiOX (X = Cl or Br) Nanohybrids for Enhanced Visible-Light Photocatalytic Activity. <i>Nanomaterials</i> , 2017 , 7,	5.4	37
132	Fundamental Advances in Biomass Autothermal/Oxidative Pyrolysis: A Review. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 11888-11905	8.3	37
131	Improved trade-off between strength and plasticity in titanium based metastable beta type Ti-Zr-Fe-Sn alloys. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2019 , 766, 138340	5.3	36
130	Nanocarbon-Based Catalytic Ozonation for Aqueous Oxidation: Engineering Defects for Active Sites and Tunable Reaction Pathways. <i>ACS Catalysis</i> , 2020 , 10, 13383-13414	13.1	36

129	High-speed graphene@Ag-MnO micromotors at low peroxide levels. <i>Journal of Colloid and Interface Science</i> , 2018 , 528, 271-280	9.3	36	
128	Sustainable redox processes induced by peroxymonosulfate and metal doping on amorphous manganese dioxide for nonradical degradation of water contaminants. <i>Applied Catalysis B: Environmental</i> , 2021 , 286, 119903	21.8	35	
127	Carbon microspheres supported cobalt catalysts for phenol oxidation with peroxymonosulfate. <i>Chemical Engineering Research and Design</i> , 2015 , 101, 15-21	5.5	34	
126	Origins of boron catalysis in peroxymonosulfate activation and advanced oxidation. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 23904-23913	13	33	
125	Crystal transformation of 2D tungstic acid HWO to WO for enhanced photocatalytic water oxidation. <i>Journal of Colloid and Interface Science</i> , 2018 , 514, 576-583	9.3	33	
124	One-pot hydrothermal synthesis of Co(OH)2 nanoflakes on graphene sheets and their fast catalytic oxidation of phenol in liquid phase. <i>Journal of Colloid and Interface Science</i> , 2013 , 402, 230-6	9.3	33	
123	Structural-Phase Catalytic Redox Reactions in Energy and Environmental Applications. <i>Advanced Materials</i> , 2020 , 32, e1905739	24	31	
122	Zn phthalocyanine/carbon nitride heterojunction for visible light photoelectrocatalytic conversion of CO2 to methanol. <i>Journal of Catalysis</i> , 2019 , 371, 214-223	7.3	30	
121	Quasi single cobalt sites in nanopores for superior catalytic oxidation of organic pollutants. <i>Environmental Science: Nano</i> , 2018 , 5, 2842-2852	7.1	30	
120	Dual-metal zeolitic imidazolate frameworks and their derived nanoporous carbons for multiple environmental and electrochemical applications. <i>Chemical Engineering Journal</i> , 2018 , 351, 641-649	14.7	30	
119	Catalytic degradation of antibiotics by metal-free catalysis over nitrogen-doped graphene. <i>Catalysis Today</i> , 2020 , 357, 341-349	5.3	29	
118	Novel two-dimensional crystalline carbon nitrides beyond g-C3N4: structure and applications. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 17-33	13	29	
117	Metal-free hybrids of graphitic carbon nitride and nanodiamonds for photoelectrochemical and photocatalytic applications. <i>Journal of Colloid and Interface Science</i> , 2017 , 493, 275-280	9.3	28	
116	Rigorous and reliable operations for electrocatalytic nitrogen reduction. <i>Applied Catalysis B: Environmental</i> , 2020 , 278, 119325	21.8	28	
115	Quasi-MOF derivative-based electrode for efficient electro-Fenton oxidation. <i>Journal of Hazardous Materials</i> , 2021 , 401, 123423	12.8	28	
114	Nitrogen-doped Carbon Nanospheres-Modified Graphitic Carbon Nitride with Outstanding Photocatalytic Activity. <i>Nano-Micro Letters</i> , 2020 , 12, 24	19.5	27	
113	Worm-like FeS2/TiO2 Nanotubes for Photoelectrocatalytic Reduction of CO2 to Methanol under Visible Light. <i>Energy & Documents</i> 2018, 32, 4357-4363	4.1	27	
112	Photocatalytic oxidation of water and air contaminants with metal doped BiTaO4 irradiated with visible light. <i>Catalysis Today</i> , 2012 , 192, 203-212	5.3	27	

111	A comparative study of metal (Ni, Co, or Mn)-borate catalysts and their photodeposition on rGO/ZnO nanoarrays for photoelectrochemical water splitting. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 24149-24156	13	27
110	Nickel in hierarchically structured nitrogen-doped graphene for robust and promoted degradation of antibiotics. <i>Journal of Cleaner Production</i> , 2019 , 218, 202-211	10.3	26
109	2D Transition Metal Dichalcogenides and Graphene-Based Ternary Composites for Photocatalytic Hydrogen Evolution and Pollutants Degradation. <i>Nanomaterials</i> , 2017 , 7,	5.4	26
108	Comparative Investigation of Photocatalytic Degradation of Toluene on Nitrogen Doped Ta2O5 and Nb2O5 Nanoparticles. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 3320-3328	3.9	26
107	Enhanced CO2 Adsorption and Selectivity of CO2/N2 on Amino-MIL-53(Al) Synthesized by Polar Co-solvents. <i>Energy & Co-solvents</i> , 2018, 32, 4502-4510	4.1	25
106	Co@C/CoOx coupled with N-doped layer-structured carbons for excellent CO2 capture and oxygen reduction reaction. <i>Carbon</i> , 2018 , 133, 306-315	10.4	25
105	Magnetically steerable iron oxides-manganese dioxide core-shell micromotors for organic and microplastic removals. <i>Journal of Colloid and Interface Science</i> , 2021 , 588, 510-521	9.3	25
104	Surface engineering of hollow carbon nitride microspheres for efficient photoredox catalysis. <i>Chemical Engineering Journal</i> , 2020 , 381, 122593	14.7	25
103	Chapter 6:Catalytic oxidation of organic pollutants in aqueous solution using sulfate radicals. <i>Catalysis</i> ,209-247	1.6	24
102	Graphitic Carbon Nitride Decorated with CoP Nanocrystals for Enhanced Photocatalytic and Photoelectrochemical H2 Evolution. <i>Energy & Description (Note of State of S</i>	4.1	23
101	Wet-Chemical Synthesis of InTaO4 for Photocatalytic Decomposition of Organic Contaminants in Air and Water with UVIIis Light. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 1563-1569	3.9	23
100	Solar Photocatalytic Water Oxidation and Purification on ZIF-8-Derived CNZnO Composites. <i>Energy & Description on Energy & Des</i>	4.1	22
99	Acidification and bubble template derived porous g-C3N4 for efficient photodegradation and hydrogen evolution. <i>Chinese Chemical Letters</i> , 2020 , 31, 2668-2672	8.1	21
98	Functional carbon nitride materials for water oxidation: from heteroatom doping to interface engineering. <i>Nanoscale</i> , 2020 , 12, 6937-6952	7.7	20
97	Application of Biochar Derived From Pyrolysis of Waste Fiberboard on Tetracycline Adsorption in Aqueous Solution. <i>Frontiers in Chemistry</i> , 2019 , 7, 943	5	20
96	Nitrogen defects/boron dopants engineered tubular carbon nitride for efficient tetracycline hydrochloride photodegradation and hydrogen evolution. <i>Applied Catalysis B: Environmental</i> , 2022 , 303, 120932	21.8	20
95	Cuprous/Vanadium Sites on MIL-101 for Selective CO Adsorption from Gas Mixtures with Superior Stability. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 11284-11292	8.3	19
94	Volatile-char interactions during biomass pyrolysis: Cleavage of C-C bond in a Eb lignin model dimer by amino-modified graphitized carbon nanotube. <i>Bioresource Technology</i> , 2020 , 307, 123192	11	19

93	Pt-Free microengines at extremely low peroxide levels. <i>Chemical Communications</i> , 2018 , 54, 4653-4656	5.8	19
92	Facile synthesis of Co-N-rGO composites as an excellent electrocatalyst for oxygen reduction reaction. <i>Chemical Engineering Science</i> , 2019 , 194, 45-53	4.4	19
91	Corrosion behavior and mechanism of selective laser melted Ti35Nb alloy produced using pre-alloyed and mixed powder in Hank solution. <i>Corrosion Science</i> , 2021 , 189, 109609	6.8	19
90	Atomic-level design of CoOH-hydroxyapatite@C catalysts for superfast degradation of organics via peroxymonosulfate activation. <i>Chemical Communications</i> , 2018 , 54, 4919-4922	5.8	18
89	A Hydrogen-Initiated Chemical Epitaxial Growth Strategy for In-Plane Heterostructured Photocatalyst. <i>ACS Nano</i> , 2020 ,	16.7	18
88	Selective adsorption of rare earth ions from aqueous solution on metal-organic framework HKUST-1. <i>Chemical Engineering Journal Advances</i> , 2020 , 1, 100009	3.6	18
87	Heterogeneous activation of peroxymonosulfate by hierarchically porous cobalt/iron bimetallic oxide nanosheets for degradation of phenol solutions. <i>Chemosphere</i> , 2020 , 256, 127160	8.4	17
86	Cascade applications of robust MIL-96 metal organic frameworks in environmental remediation: Proof of concept. <i>Chemical Engineering Journal</i> , 2018 , 341, 262-271	14.7	17
85	Visible light photocatalytic degradation of organics on nanoparticles of bi-metallic oxides. <i>Separation and Purification Technology</i> , 2012 , 89, 98-106	8.3	17
84	UVC-assisted photocatalytic degradation of carbamazepine by Nd-doped SbO/TiO photocatalyst. <i>Journal of Colloid and Interface Science</i> , 2020 , 562, 461-469	9.3	17
83	Insights into the Adsorption of VOCs on a Cobalt-Adeninate Metal-Organic Framework (Bio-MOF-11). <i>ACS Omega</i> , 2020 , 5, 15402-15408	3.9	16
82	Synthesis of carbon xerogels at varying solgel pHs, dye adsorption and chemical regeneration. <i>Chemical Engineering Journal</i> , 2011 , 171, 1399-1405	14.7	16
81	Graphitic Carbon Nitride Microtubes for Efficient Photocatalytic Overall Water Splitting: The Morphology Derived Electrical Field Enhancement. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 14386-14396	8.3	16
80	Enhanced removals of micropollutants in binary organic systems by biomass derived porous carbon/peroxymonosulfate. <i>Journal of Hazardous Materials</i> , 2021 , 408, 124459	12.8	16
79	Hierarchically porous hydrangea-like InS/InO heterostructures for enhanced photocatalytic hydrogen evolution. <i>Journal of Colloid and Interface Science</i> , 2021 , 587, 876-882	9.3	16
78	Conversion and transformation of N species during pyrolysis of wood-based panels: A review. <i>Environmental Pollution</i> , 2021 , 270, 116120	9.3	16
77	Hematite-based nanomaterials for photocatalytic degradation of pharmaceuticals and personal care products (PPCPs): A short review. <i>Current Opinion in Green and Sustainable Chemistry</i> , 2021 , 28, 100	447	15
76	Cobalt Single Atoms Embedded in Nitrogen-Doped Graphene for Selective Oxidation of Benzyl Alcohol by Activated Peroxymonosulfate. <i>Small</i> , 2021 , 17, e2004579	11	15

75	Synergy of NiO quantum dots and temperature on enhanced photocatalytic and thermophoto hydrogen evolution. <i>Chemical Engineering Journal</i> , 2020 , 390, 124634	14.7	14
74	Photocatalytic reforming of biomass for hydrogen production over ZnS nanoparticles modified carbon nitride nanosheets. <i>Journal of Colloid and Interface Science</i> , 2019 , 555, 22-30	9.3	14
73	Heterogeneous electro-Fenton catalysis with self-supporting CFP@MnO-FeO/C cathode for shale gas fracturing flowback wastewater. <i>Journal of Hazardous Materials</i> , 2021 , 412, 125208	12.8	14
72	Kinetics and mechanism of synergistic adsorption and persulfate activation by N-doped porous carbon for antibiotics removals in single and binary solutions. <i>Journal of Hazardous Materials</i> , 2022 , 423, 127083	12.8	14
71	Comment on "Activation of Persulfate by Graphitized Nanodiamonds for Removal of Organic Compounds". <i>Environmental Science & Environmental Science & E</i>	10.3	13
70	Synergy of carbocatalytic and heat activation of persulfate for evolution of reactive radicals toward metal-free oxidation. <i>Catalysis Today</i> , 2020 , 355, 319-324	5.3	13
69	Aligning potential differences within carbon nitride based photocatalysis for efficient solar energy harvesting. <i>Nano Energy</i> , 2021 , 89, 106357	17.1	13
68	Design and Synthesis of a New Mannitol Stearate Ester-Based Aluminum Alkoxide as a Novel Tri-Functional Additive for Poly(Vinyl Chloride) and Its Synergistic Effect with Zinc Stearate. <i>Polymers</i> , 2019 , 11,	4.5	12
67	Ultrathin nickel-cobalt inorganic-organic hydroxide hybrid nanobelts as highly efficient electrocatalysts for oxygen evolution reaction. <i>Electrochimica Acta</i> , 2019 , 318, 966-976	6.7	12
66	Efficient removal of organic pollutants by ceramic hollow fibre supported composite catalyst. <i>Sustainable Materials and Technologies</i> , 2019 , 20, e00108	5.3	12
65	Volatile-char interactions during biomass pyrolysis: Contribution of amino group on graphitized carbon nanotube to xylose evolution based on experimental and theoretical studies. <i>Fuel</i> , 2020 , 282, 118921	7.1	12
64	Removal of Phenol Using Sulphate Radicals Activated by Natural Zeolite-Supported Cobalt Catalysts. <i>Water, Air, and Soil Pollution</i> , 2013 , 224, 1	2.6	12
63	Effect of Preparation Conditions on Visible Photocatalytic Activity of Titania Synthesized by Solution Combustion Method. <i>Chinese Journal of Chemical Engineering</i> , 2007 , 15, 178-183	3.2	12
62	Grand Challenges in Environmental Nanotechnology. Frontiers in Nanotechnology, 2019, 1,	5.5	12
61	Atomically dispersed cobalt on graphitic carbon nitride as a robust catalyst for selective oxidation of ethylbenzene by peroxymonosulfate. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 3029-3035	13	11
60	An efficient and robust exfoliated bentonite/AgPO/AgBr plasmonic photocatalyst for degradation of parabens <i>RSC Advances</i> , 2020 , 10, 16027-16037	3.7	10
59	Confinement of Ag(I) Sites within MIL-101 for Robust Ethylene/Ethane Separation. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 823-830	8.3	10
58	Heterogeneous activation of peroxymonosulfate by Co-doped FeO nanospheres for degradation of p-hydroxybenzoic acid. <i>Journal of Colloid and Interface Science</i> , 2021 , 604, 390-401	9.3	10

57	Temperature-Induced Variations in Photocatalyst Properties and Photocatalytic Hydrogen Evolution: Differences in UV, Visible, and Infrared Radiation. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 7277-7285	8.3	9
56	Facile Synthesis of Di-Mannitol Adipate Ester-Based Zinc Metal Alkoxide as a Bi-Functional Additive for Poly(Vinyl Chloride). <i>Polymers</i> , 2019 , 11,	4.5	8
55	Deformation and toughness behavior of Btype titanium alloys comprising C15-type Laves phase. <i>Materials Today Sustainability</i> , 2020 , 9, 100034	5	8
54	Synthesis of pentaerythritol stearate ester-based zinc alkoxide and its synergistic effect with calcium stearate and zinc stearate on PVC thermal stability. <i>Journal of Vinyl and Additive Technology</i> , 2018 , 24, 314-323	2	8
53	Superstructures with Atomic-Level Arranged Perovskite and Oxide Layers for Advanced Oxidation with an Enhanced Non-Free Radical Pathway. <i>ACS Sustainable Chemistry and Engineering</i> , 2022 , 10, 1899	-9 <mark>9</mark> 09	8
52	Ultrafine copper nanoclusters and single sites for Fenton-like reactions with high atom utilities. <i>Environmental Science: Nano</i> , 2020 , 7, 2595-2606	7.1	8
51	Functional Carbon Nitride Materials in Photo-Fenton-Like Catalysis for Environmental Remediation. <i>Advanced Functional Materials</i> ,2201743	15.6	8
50	Carbon Dots Based Photocatalysis for Environmental Applications. <i>Journal of Environmental Chemical Engineering</i> , 2022 , 10, 107336	6.8	7
49	Enhanced humidity sensing of functionalized reduced graphene oxide with 4-chloro-3-sulfophenylazo groups. <i>Sensors and Actuators B: Chemical</i> , 2019 , 287, 258-266	8.5	7
48	Temperature-dependent evolution of hydroxyl radicals from peroxymonosulfate activation over nitrogen-modified carbon nanotubes. <i>Sustainable Materials and Technologies</i> , 2018 , 18, e00082	5.3	7
47	Synthesis of Magnetic Carbon Supported Manganese Catalysts for Phenol Oxidation by Activation of Peroxymonosulfate. <i>Catalysts</i> , 2017 , 7, 3	4	6
46	Photoelectrochemical Water Oxidation and Longevous Photoelectric Conversion by a Photosystem II Electrode. <i>Advanced Energy Materials</i> , 2021 , 11, 2100911	21.8	6
45	Manganese-Based Micro/Nanomotors: Synthesis, Motion, and Applications. <i>Small</i> , 2021 , e2100927	11	6
44	Porous Carbon: Heteroatom (N or N-S)-Doping Induced Layered and Honeycomb Microstructures of Porous Carbons for CO2 Capture and Energy Applications (Adv. Funct. Mater. 47/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 8650-8650	15.6	6
43	Effects of inter/intralayer adsorption and direct/indirect reaction on photo-removal of pollutants by layered g-C3N4 and BiOBr. <i>Journal of Cleaner Production</i> , 2021 , 322, 129025	10.3	6
42	Synergy of intermolecular Donor-Acceptor and ultrathin structures in crystalline carbon nitride for efficient photocatalytic hydrogen evolution. <i>Journal of Colloid and Interface Science</i> , 2022 , 607, 1603-16	12 ³	6
41	Carbon nitride-based Z-scheme heterojunctions for solar-driven advanced oxidation processes Journal of Hazardous Materials, 2022 , 434, 128866	12.8	6
40	COSMO-based solvent selection and Aspen Plus process simulation for tar absorptive removal. <i>Applied Energy</i> , 2019 , 251, 113314	10.7	5

39	Hydrogenolysis of lignin to phenolic monomers over Ru based catalysts with different metal-support interactions: Effect of partial hydrogenation of C(sp2)-O/C. <i>Fuel</i> , 2021 , 302, 121184	7.1	5
38	Atomic heterojunction-induced accelerated charge transfer for boosted photocatalytic hydrogen evolution over 1D CdS nanorod/2D ZnInS nanosheet composites. <i>Journal of Colloid and Interface Science</i> , 2021 , 604, 500-507	9.3	5
37	Morphology/facet-dependent photo-Fenton-like degradation of pharmaceuticals and personal care products over hematite nanocrystals. <i>Chemical Engineering Journal</i> , 2022 , 432, 134429	14.7	4
36	Effects of pH Values on the Physicochemical Properties and Photocatalytic Activities of Nitrogen-doped TiO2. <i>Wuji Cailiao Xuebao/Journal of Inorganic Materials</i> , 2008 , 23, 387-392	1	4
35	Wastewater Remediation Technologies Using Macroscopic Graphene-Based Materials: A Perspective. <i>Frontiers in Nanotechnology</i> , 2021 , 3,	5.5	4
34	Tailoring collaborative ND functionalities of graphene oxide for enhanced selective oxidation of benzyl alcohol. <i>Carbon</i> , 2021 , 182, 715-715	10.4	4
33	Encapsulation of cuprous/cobalt sites in metal organic framework for enhanced CH/CH separation. <i>Journal of Colloid and Interface Science</i> , 2021 , 583, 605-613	9.3	4
32	van der Waals type II carbon nitride homojunctions for visible light photocatalytic hydrogen evolution. <i>Nano Research</i> ,1	10	4
31	Decomposition of benzyl phenyl ether over char-supported Ni: The effect of char structures. <i>Fuel Processing Technology</i> , 2021 , 221, 106941	7.2	4
30	OneBot synthesis of boron and nitrogen colloped nanocarbons for efficient catalytic reduction of nitrophenols. <i>Chemical Engineering Journal</i> , 2022 , 439, 135733	14.7	4
29	Porous Nitrogen-Defected Carbon Nitride Derived from A Precursor Pretreatment Strategy for Efficient Photocatalytic Degradation and Hydrogen Evolution <i>Langmuir</i> , 2022 ,	4	3
28	Roles of Catalyst Structure and Gas Surface Reaction in the Generation of Hydroxyl Radicals for Photocatalytic Oxidation. <i>ACS Catalysis</i> ,2770-2780	13.1	3
27	Graphitic carbon nitride nanosheets via acid pretreatments for promoted photocatalysis toward degradation of organic pollutants. <i>Journal of Colloid and Interface Science</i> , 2021 , 608, 1334-1347	9.3	3
26	The effect of carbon structure in chars on Fe migration and its catalytic activity for benzyl phenyl ether decomposition. <i>Journal of Analytical and Applied Pyrolysis</i> , 2021 , 154, 105008	6	3
25	Selective oxidation of alcohols by graphene-like carbon with electrophilic oxygen and integrated pyridinic nitrogen active sites. <i>Nanoscale</i> , 2021 , 13, 12979-12990	7.7	3
24	Efficient electro-Fenton catalysis by self-supported CFP@CoFeO electrode. <i>Journal of Hazardous Materials</i> , 2022 , 423, 127033	12.8	3
23	Highly dispersive Ru confined in porous ultrathin g-CN nanosheets as an efficient peroxymonosulfate activator for removal of organic pollutants <i>Journal of Hazardous Materials</i> , 2022 , 435, 128939	12.8	3
22	Challenges in radical/nonradical-based advanced oxidation processes for carbon recycling. <i>Chem Catalysis</i> , 2022 ,		3

(2021-2020)

21	N Evolution and Physiochemical Structure Changes in Chars during Co-Pyrolysis: Effects of Abundance of Glucose in Fiberboard. <i>Energies</i> , 2020 , 13, 5105	3.1	2
20	Carbon Nitride Based Z-scheme Photocatalyst for Non-Sacrificial Overall Water Splitting. <i>Materials Today Energy</i> , 2021 , 23, 100915	7	2
19	Quasi-solid-state self-assembly of 1D-branched ZnSe/ZnS quantum rods into parallel monorail-like continuous films for solar devices. <i>Nano Energy</i> , 2021 , 89, 106348	17.1	2
18	Mechanism of the Doping Species Controlling the UV Photocatalytic Activity of Nitrogen Doped TiO2. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2009, 24, 443-447	1	1
17	Simulated biomass tar removal mechanism by a Quench Coupled with ADsorption Technology (QCADT). <i>Chinese Journal of Chemical Engineering</i> , 2020 , 28, 279-285	3.2	1
16	Direct Z-scheme SiNWs@CoO photocathode with a cocatalyst of sludge-derived carbon quantum dots for efficient photoelectrochemical hydrogen production. <i>Science of the Total Environment</i> , 2021 , 796, 148931	10.2	1
15	Intrinsic Mechanisms of Morphological Engineering and Carbon Doping for Improved Photocatalysis of 2D/2D Carbon Nitride Van Der Waals Heterojunction. <i>Energy and Environmental Materials</i> ,	13	1
14	Enhanced adsorption and visible-light photocatalysis on TiO with in situ formed carbon quantum dots <i>Environmental Science and Pollution Research</i> , 2022 , 1	5.1	1
13	Morphology-dependent photocatalysis of graphitic carbon nitride for sustainable remediation of aqueous pollutants: A mini review. <i>Journal of Environmental Chemical Engineering</i> , 2022 , 10, 107438	6.8	1
12	Regulation of energetic hot carriers on Pt/TiO2 with thermal energy for photothermal catalysis. <i>Applied Catalysis B: Environmental</i> , 2022 , 309, 121263	21.8	1
11	Atomic H* mediated fast decontamination of antibiotics by bubble-propelled magnetic iron-manganese oxides core-shell micromotors. <i>Applied Catalysis B: Environmental</i> , 2022 , 121484	21.8	1
10	Unzipping MWCNTs for controlled edge- and heteroatom-defects in revealing their roles in gas-phase oxidative dehydrogenation of ethanol to acetaldehyde. <i>Chemical Engineering Journal</i> , 2022 , 446, 137150	14.7	1
9	Carbon nitride photocatalysts 2018 , 103-126		О
8	Nano-sized FeVO4[].1H2O and FeVO4 for peroxymonosulfate activation towards enhanced photocatalytic activity. <i>Journal of Environmental Chemical Engineering</i> , 2022 , 10, 107199	6.8	O
7	Controllable synthesis of a hollow Cr2O3 electrocatalyst for enhanced nitrogen reduction toward ammonia synthesis. <i>Chinese Journal of Chemical Engineering</i> , 2022 , 41, 358-365	3.2	O
6	Three-dimensional nitrogen-doped graphene oxide beads for catalytic degradation of aqueous pollutants. <i>Chemical Engineering Journal</i> , 2022 , 446, 137042	14.7	O
5	Sulfate radical-based advanced oxidation processes for water decontamination using biomass-derived carbon as catalysts. <i>Current Opinion in Chemical Engineering</i> , 2022 , 37, 100838	5.4	0
4	Photocatalytic and Photoelectrochemical Nitrogen Fixation 2021 , 301-337		

3 Artificial Photosynthesis and Solar Fuels **2021**, 7-39

Photocatalytic Oxygen Evolution **2021**, 129-162

The Study on the Pathogenesis of Pediatric Lymphoma Based on the Combination of Pseudotargeted and Targeted Metabolomics. *BioMed Research International*, **2021**, 2021, 9984357