Harro J Bouwmeester

List of Publications by Citations

Source: https://exaly.com/author-pdf/7615781/harro-j-bouwmeester-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

246 papers

19,509 citations

74 h-index 134 g-index

267 ext. papers

23,314 ext. citations

7.6 avg, IF

6.77 L-index

#	Paper	IF	Citations
246	Strigolactone inhibition of shoot branching. <i>Nature</i> , 2008 , 455, 189-94	50.4	1492
245	The path from Etarotene to carlactone, a strigolactone-like plant hormone. <i>Science</i> , 2012 , 335, 1348-51	33.3	579
244	The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. <i>Plant Physiology</i> , 2005 , 139, 920-34	6.6	489
243	Strigolactones, a novel carotenoid-derived plant hormone. <i>Annual Review of Plant Biology</i> , 2015 , 66, 16	1 3 867	451
242	Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. <i>Plant Cell</i> , 2000 , 12, 647-62	11.6	439
241	Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. <i>Science</i> , 2005 , 309, 2070-2	33.3	417
240	A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. <i>Nature</i> , 2012 , 483, 341-4	50.4	398
239	Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. <i>Plant Cell</i> , 2003 , 15, 2866-84	11.6	395
238	Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones?. <i>Plant Physiology</i> , 2011 , 155, 721-34	6.6	387
237	Rhizosphere communication of plants, parasitic plants and AM fungi. <i>Trends in Plant Science</i> , 2007 , 12, 224-30	13.1	368
236	Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. <i>New Phytologist</i> , 2008 , 178, 863-874	9.8	342
235	Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. <i>Plant Cell</i> , 2004 , 16, 3110-31	11.6	342
234	Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. <i>Plant Physiology</i> , 2011 , 155, 974-87	6.6	337
233	Secondary metabolite signalling in host-parasitic plant interactions. <i>Current Opinion in Plant Biology</i> , 2003 , 6, 358-64	9.9	322
232	Metabolomics in the Rhizosphere: Tapping into Belowground Chemical Communication. <i>Trends in Plant Science</i> , 2016 , 21, 256-265	13.1	313
231	Volatile science? Metabolic engineering of terpenoids in plants. <i>Trends in Plant Science</i> , 2005 , 10, 594-60	0 2 3.1	294
230	Functional characterization of enzymes forming volatile esters from strawberry and banana. <i>Plant Physiology</i> , 2004 , 135, 1865-78	6.6	258

(2002-2014)

229	Plant science. Biosynthesis, regulation, and domestication of bitterness in cucumber. <i>Science</i> , 2014 , 346, 1084-8	33.3	254
228	The seco-iridoid pathway from Catharanthus roseus. <i>Nature Communications</i> , 2014 , 5, 3606	17.4	250
227	The biology of strigolactones. <i>Trends in Plant Science</i> , 2013 , 18, 72-83	13.1	245
226	Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. <i>Nature Chemical Biology</i> , 2014 , 10, 1028-33	11.7	230
225	Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. <i>Plant Cell</i> , 2011 , 23, 3853-65	11.6	220
224	Molecular cloning, expression, and characterization of amorpha-4,11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L. <i>Archives of Biochemistry and Biophysics</i> , 2000 , 381, 173-	4 0 ¹	220
223	Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis. <i>Phytochemistry</i> , 1999 , 52, 843-54	4	211
222	System-wide molecular evidence for phenotypic buffering in Arabidopsis. <i>Nature Genetics</i> , 2009 , 41, 166	5 3 76.3	205
221	Amorpha-4,11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin. <i>Planta</i> , 2001 , 212, 460-5	4.7	200
220	The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SICCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. <i>New Phytologist</i> , 2012 , 196, 535-547	9.8	189
219	SICCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. <i>Plant Journal</i> , 2010 , 61, 300-11	6.9	185
218	Standards for plant synthetic biology: a common syntax for exchange of DNA parts. <i>New Phytologist</i> , 2015 , 208, 13-9	9.8	167
217	(+)-Germacrene A biosynthesis . The committed step in the biosynthesis of bitter sesquiterpene lactones in chicory. <i>Plant Physiology</i> , 1998 , 117, 1381-92	6.6	166
216	Expression of Clarkia S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-beta-D-glucopyranoside. <i>Plant Journal</i> , 2001 , 27, 315-24	6.9	161
215	Composition of human skin microbiota affects attractiveness to malaria mosquitoes. <i>PLoS ONE</i> , 2011 , 6, e28991	3.7	157
214	Does abscisic acid affect strigolactone biosynthesis?. <i>New Phytologist</i> , 2010 , 187, 343-354	9.8	152
213	No evidence for substantial aerobic methane emission by terrestrial plants: a 13C-labelling approach. <i>New Phytologist</i> , 2007 , 175, 29-35	9.8	139
212	Monoterpene biosynthesis in lemon (Citrus limon). cDNA isolation and functional analysis of four monoterpene synthases. <i>FEBS Journal</i> , 2002 , 269, 3160-71		130

211	Biosynthesis of the monoterpenes limonene and carvone in the fruit of caraway. I. Demonstration Of enzyme activities and their changes with development. <i>Plant Physiology</i> , 1998 , 117, 901-12	6.6	127
21 0	Combined transcript and metabolite analysis reveals genes involved in spider mite induced volatile formation in cucumber plants. <i>Plant Physiology</i> , 2004 , 135, 2012-24	6.6	125
209	Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress. <i>Planta</i> , 2015 , 241, 1435-51	4.7	124
208	Root phenotyping: from component trait in the lab to breeding. <i>Journal of Experimental Botany</i> , 2015 , 66, 5389-401	7	120
207	Nicotiana benthamiana as a production platform for artemisinin precursors. <i>PLoS ONE</i> , 2010 , 5, e14222	3.7	119
206	Metabolic Engineering of Terpenoid Biosynthesis in Plants. <i>Phytochemistry Reviews</i> , 2006 , 5, 49-58	7.7	118
205	Mutation in sorghum alters strigolactones and causes resistance. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 4471-4476	11.5	113
204	Increased and altered fragrance of tobacco plants after metabolic engineering using three monoterpene synthases from lemon. <i>Plant Physiology</i> , 2004 , 134, 510-9	6.6	112
203	Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice. <i>Plant Molecular Biology</i> , 2012 , 80, 571-85	4.6	111
202	Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. <i>Journal of Plant Physiology</i> , 2011 , 168, 294-7	3.6	103
201	Spider mite-induced (3S)-(E)-nerolidol synthase activity in cucumber and lima bean. The first dedicated step in acyclic C11-homoterpene biosynthesis. <i>Plant Physiology</i> , 1999 , 121, 173-80	6.6	103
2 00	Isoprenoid biosynthesis in Artemisia annua: cloning and heterologous expression of a germacrene A synthase from a glandular trichome cDNA library. <i>Archives of Biochemistry and Biophysics</i> , 2006 , 448, 3-12	4.1	102
199	The dual role of temperature in the regulation of the seasonal changes in dormancy and germination of seeds of Polygonum persicaria L. <i>Oecologia</i> , 1992 , 90, 88-94	2.9	102
198	Untargeted metabolic quantitative trait loci analyses reveal a relationship between primary metabolism and potato tuber quality. <i>Plant Physiology</i> , 2012 , 158, 1306-18	6.6	101
197	The interaction between strigolactones and other plant hormones in the regulation of plant development. <i>Frontiers in Plant Science</i> , 2013 , 4, 199	6.2	100
196	Genetic architecture of plant stress resistance: multi-trait genome-wide association mapping. <i>New Phytologist</i> , 2017 , 213, 1346-1362	9.8	99
195	Cultured skin microbiota attracts malaria mosquitoes. <i>Malaria Journal</i> , 2009 , 8, 302	3.6	97
194	Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport. <i>Current Biology</i> , 2015 , 25, 647-55	6.3	96

(2008-2014)

193	Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 2379-84	11.5	96
192	Biosynthesis of costunolide, dihydrocostunolide, and leucodin. Demonstration of cytochrome p450-catalyzed formation of the lactone ring present in sesquiterpene lactones of chicory. <i>Plant Physiology</i> , 2002 , 129, 257-68	6.6	95
191	Metabolic engineering of volatile isoprenoids in plants and microbes. <i>Plant, Cell and Environment</i> , 2014 , 37, 1753-75	8.4	92
190	Rhizobacterial community structure differences among sorghum cultivars in different growth stages and soils. <i>FEMS Microbiology Ecology</i> , 2017 , 93,	4.3	90
189	Genetic analysis of metabolome-phenotype interactions: from model to crop species. <i>Trends in Genetics</i> , 2013 , 29, 41-50	8.5	89
188	Rhizobium Lipo-chitooligosaccharide Signaling Triggers Accumulation of Cytokinins in Medicago truncatula Roots. <i>Molecular Plant</i> , 2015 , 8, 1213-26	14.4	88
187	Pre-attachment Striga hermonthica resistance of New Rice for Africa (NERICA) cultivars based on low strigolactone production. <i>New Phytologist</i> , 2011 , 192, 964-975	9.8	88
186	Trichome dynamics and artemisinin accumulation during development and senescence of Artemisia annua leaves. <i>Planta Medica</i> , 2006 , 72, 336-45	3.1	87
185	Carotenoid cleavage dioxygenase 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model legume Lotus japonicus. <i>Journal of Experimental Botany</i> , 2013 , 64, 1967-81	7	84
184	Strigolactones: ecological significance and use as a target for parasitic plant control. <i>Pest Management Science</i> , 2009 , 65, 471-7	4.6	83
183	Circadian rhythmicity in emission of volatile compounds by flowers of Rosa hybrida L. cv. Honesty. <i>Planta</i> , 1998 , 207, 88-95	4.7	81
182	Annual changes in dormancy and germination in seeds of Sisymbrium officinale (L.) Scop <i>New Phytologist</i> , 1993 , 124, 179-191	9.8	81
181	Biotechnological production of limonene in microorganisms. <i>Applied Microbiology and Biotechnology</i> , 2016 , 100, 2927-38	5.7	80
180	Valencene synthase from the heartwood of Nootka cypress (Callitropsis nootkatensis) for biotechnological production of valencene. <i>Plant Biotechnology Journal</i> , 2014 , 12, 174-82	11.6	80
179	Gene coexpression analysis reveals complex metabolism of the monoterpene alcohol linalool in Arabidopsis flowers. <i>Plant Cell</i> , 2013 , 25, 4640-57	11.6	80
178	Strigolactones and root infestation by plant-parasitic Striga, Orobanche and Phelipanche spp. <i>Plant Science</i> , 2011 , 180, 414-20	5.3	79
177	Detection of diseased plants by analysis of volatile organic compound emission. <i>Annual Review of Phytopathology</i> , 2011 , 49, 157-74	10.8	77
176	Biosynthetic considerations could assist the structure elucidation of host plant produced rhizosphere signalling compounds (strigolactones) for arbuscular mycorrhizal fungi and parasitic plants. <i>Plant Physiology and Biochemistry</i> , 2008 , 46, 617-626	5.4	77

175	Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCD1) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions. <i>Planta</i> , 2008 , 228, 789-801	4.7	77
174	Induction of a leaf specific geranylgeranyl pyrophosphate synthase and emission of (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene in tomato are dependent on both jasmonic acid and salicylic acid signaling pathways. <i>Planta</i> , 2006 , 224, 1197-208	4.7	75
173	Isolation and characterization of two germacrene A synthase cDNA clones from chicory. <i>Plant Physiology</i> , 2002 , 129, 134-44	6.6	75
172	Biosynthesis and localization of parthenolide in glandular trichomes of feverfew (Tanacetum parthenium L. Schulz Bip.). <i>Phytochemistry</i> , 2011 , 72, 1739-50	4	74
171	The effects of auxin and strigolactones on tuber initiation and stolon architecture in potato. <i>Journal of Experimental Botany</i> , 2012 , 63, 4539-47	7	73
170	Metabolic engineering of monoterpene biosynthesis: two-step production of (+)-trans-isopiperitenol by tobacco. <i>Plant Journal</i> , 2004 , 39, 135-45	6.9	73
169	Detoxification of £comatine by Cladosporium fulvum is required for full virulence on tomato. <i>New Phytologist</i> , 2013 , 198, 1203-1214	9.8	72
168	Reconstitution of the costunolide biosynthetic pathway in yeast and Nicotiana benthamiana. <i>PLoS ONE</i> , 2011 , 6, e23255	3.7	70
167	Biosynthesis of germacrene A carboxylic acid in chicory roots. Demonstration of a cytochrome P450 (+)-germacrene a hydroxylase and NADP+-dependent sesquiterpenoid dehydrogenase(s) involved in sesquiterpene lactone biosynthesis. <i>Plant Physiology</i> , 2001 , 125, 1930-40	6.6	70
166	A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene. <i>FEBS Letters</i> , 2011 , 585, 178-82	3.8	69
165	The role of volatiles in plant communication. <i>Plant Journal</i> , 2019 , 100, 892-907	6.9	66
164	ABA-deficiency results in reduced plant and fruit size in tomato. <i>Journal of Plant Physiology</i> , 2012 , 169, 878-83	3.6	66
163	Natural variation in herbivore-induced volatiles in Arabidopsis thaliana. <i>Journal of Experimental Botany</i> , 2010 , 61, 3041-56	7	66
162	Colonization by Arbuscular Mycorrhizal Fungi of Sorghum Leads to Reduced Germination and Subsequent Attachment and Emergence of Striga hermonthica. <i>Plant Signaling and Behavior</i> , 2007 , 2, 58-62	2.5	66
161	Metabolic engineering of geranic acid in maize to achieve fungal resistance is compromised by novel glycosylation patterns. <i>Metabolic Engineering</i> , 2011 , 13, 414-25	9.7	65
160	Herbivore-mediated effects of glucosinolates on different natural enemies of a specialist aphid. Journal of Chemical Ecology, 2012 , 38, 100-15	2.7	63
159	Geraniol hydroxylase and hydroxygeraniol oxidase activities of the CYP76 family of cytochrome P450 enzymes and potential for engineering the early steps of the (seco)iridoid pathway. <i>Metabolic Engineering</i> , 2013 , 20, 221-32	9.7	63
158	Variation in herbivory-induced volatiles among cucumber (Cucumis sativus L.) varieties has consequences for the attraction of carnivorous natural enemies. <i>Journal of Chemical Ecology</i> , 2011 , 37, 150-60	2.7	63

(2014-2016)

157	AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling. <i>Journal of Experimental Botany</i> , 2016 , 67, 3383-96	7	62
156	Zealactones. Novel natural strigolactones from maize. <i>Phytochemistry</i> , 2017 , 137, 123-131	4	61
155	Structural diversity in the strigolactones. Journal of Experimental Botany, 2018, 69, 2219-2230	7	60
154	Changes in the sensitivity of parasitic weed seeds to germination stimulants. <i>Seed Science Research</i> , 2004 , 14, 335-344	1.3	58
153	Characterization of two geraniol synthases from Valeriana officinalis and Lippia dulcis: similar activity but difference in subcellular localization. <i>Metabolic Engineering</i> , 2013 , 20, 198-211	9.7	57
152	The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice. <i>Nature Communications</i> , 2020 , 11, 2114	17.4	56
151	Transient production of artemisinin in Nicotiana benthamiana is boosted by a specific lipid transfer protein from A. annua. <i>Metabolic Engineering</i> , 2016 , 38, 159-169	9.7	56
150	Engineering the plant rhizosphere. Current Opinion in Biotechnology, 2015, 32, 136-142	11.4	56
149	Enantiospecific (+)- and (-)-germacrene D synthases, cloned from goldenrod, reveal a functionally active variant of the universal isoprenoid-biosynthesis aspartate-rich motif. <i>Archives of Biochemistry and Biophysics</i> , 2004 , 432, 136-44	4.1	56
148	The metabolite chemotype of Nicotiana benthamiana transiently expressing artemisinin biosynthetic pathway genes is a function of CYP71AV1 type and relative gene dosage. <i>New Phytologist</i> , 2013 , 199, 352-366	9.8	55
147	Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae. <i>Yeast</i> , 2015 , 32, 159-71	3.4	53
146	A simulation model for seasonal changes in dormancy and germination of weed seeds. <i>Seed Science Research</i> , 2001 , 11, 77-92	1.3	53
145	OsJAR1 is required for JA-regulated floret opening and anther dehiscence in rice. <i>Plant Molecular Biology</i> , 2014 , 86, 19-33	4.6	52
144	Natural products - modifying metabolite pathways in plants. <i>Biotechnology Journal</i> , 2013 , 8, 1159-71	5.6	52
143	Germacrenes from fresh costus roots. <i>Phytochemistry</i> , 2001 , 58, 481-7	4	52
142	Ecological relevance of strigolactones in nutrient uptake and other abiotic stresses, and in plant-microbe interactions below-ground. <i>Plant and Soil</i> , 2015 , 394, 1-19	4.2	51
141	Association mapping of plant resistance to insects. <i>Trends in Plant Science</i> , 2012 , 17, 311-9	13.1	51
140	Elucidation and in planta reconstitution of the parthenolide biosynthetic pathway. <i>Metabolic Engineering</i> , 2014 , 23, 145-53	9.7	50

139	Bidirectional secretions from glandular trichomes of pyrethrum enable immunization of seedlings. <i>Plant Cell</i> , 2012 , 24, 4252-65	11.6	50
138	The interaction of strigolactones with abscisic acid during the drought response in rice. <i>Journal of Experimental Botany</i> , 2018 , 69, 2403-2414	7	49
137	Genetic variation in strigolactone production and tillering in rice and its effect on Striga hermonthica infection. <i>Planta</i> , 2012 , 235, 473-84	4.7	48
136	Genome-Wide Association Mapping and Genomic Prediction Elucidate the Genetic Architecture of Morphological Traits in Arabidopsis. <i>Plant Physiology</i> , 2016 , 170, 2187-203	6.6	47
135	Mechanisms of the biosynthesis of sesquiterpene enantiomers (+)- and (pgermacrene D in Solidago canadensis. <i>Chirality</i> , 1999 , 11, 353-362	2.1	45
134	Hydroxylation of sesquiterpenes by enzymes from chicory (Cichorium intybus L.) roots. <i>Tetrahedron</i> , 2003 , 59, 409-418	2.4	44
133	Biosynthesis of sesquiterpene lactones in pyrethrum (Tanacetum cinerariifolium). <i>PLoS ONE</i> , 2013 , 8, e65030	3.7	43
132	The Sexual Advantage of Looking, Smelling, and Tasting Good: The Metabolic Network that Produces Signals for Pollinators. <i>Trends in Plant Science</i> , 2017 , 22, 338-350	13.1	42
131	New strigolactone mimics: structure-activity relationship and mode of action as germinating stimulants for parasitic weeds. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2013 , 23, 5182-6	2.9	42
130	Cytochrome P450s from Cynara cardunculus L. CYP71AV9 and CYP71BL5, catalyze distinct hydroxylations in the sesquiterpene lactone biosynthetic pathway. <i>Plant Science</i> , 2014 , 223, 59-68	5.3	39
129	Stable Production of the Antimalarial Drug Artemisinin in the Moss. <i>Frontiers in Bioengineering and Biotechnology</i> , 2017 , 5, 47	5.8	39
128	Tailor-made fructan synthesis in plants: a review. <i>Carbohydrate Polymers</i> , 2013 , 93, 48-56	10.3	38
127	Identification of Volatile Potato Sesquiterpenoids and Their Olfactory Detection by the Two-spotted Stinkbug Perillus bioculatus. <i>Journal of Chemical Ecology</i> , 2000 , 26, 1433-1445	2.7	38
126	(+)-Valencene production in Nicotiana benthamiana is increased by down-regulation of competing pathways. <i>Biotechnology Journal</i> , 2015 , 10, 180-9	5.6	37
125	Valencene oxidase CYP706M1 from Alaska cedar (Callitropsis nootkatensis). <i>FEBS Letters</i> , 2014 , 588, 1001-7	3.8	37
124	Sink filling, inulin metabolizing enzymes and carbohydrate status in field grown chicory (Cichorium intybus L.). <i>Journal of Plant Physiology</i> , 2012 , 169, 1520-9	3.6	37
123	Striga hermonthica MAX2 restores branching but not the Very Low Fluence Response in the Arabidopsis thaliana max2 mutant. <i>New Phytologist</i> , 2014 , 202, 531-541	9.8	36
122	Genetic engineering of plant volatile terpenoids: effects on a herbivore, a predator and a parasitoid. <i>Pest Management Science</i> , 2013 , 69, 302-11	4.6	36

(2015-2010)

The molecular cloning of dihydroartemisinic aldehyde reductase and its implication in artemisinin biosynthesis in Artemisia annua. <i>Planta Medica</i> , 2010 , 76, 1778-83	3.1	36
Biomarkers for grain yield stability in rice under drought stress. <i>Journal of Experimental Botany</i> , 2020 , 71, 669-683	7	36
The tomato MAX1 homolog, SlMAX1, is involved in the biosynthesis of tomato strigolactones from carlactone. <i>New Phytologist</i> , 2018 , 219, 297-309	9.8	35
Genetic mapping and characterization of the globe artichoke (+)-germacrene A synthase gene, encoding the first dedicated enzyme for biosynthesis of the bitter sesquiterpene lactone cynaropicrin. <i>Plant Science</i> , 2012 , 190, 1-8	5.3	35
Cytochrome P-450 dependent (+)-limonene-6-hydroxylation in fruits of caraway (Carum carvi)1Part 2 in the series Biosynthesis of limonene and carvone in fruits of caraway (Carum carvi L.)P (Bouwmeester, Gershenzon, Konings, & Croteau, in press).1. <i>Phytochemistry</i> , 1999 , 50, 243-248	4	35
Characterization of the natural variation in Arabidopsis thaliana metabolome by the analysis of metabolic distance. <i>Metabolomics</i> , 2012 , 8, 131-145	4.7	34
System-wide hypersensitive response-associated transcriptome and metabolome reprogramming in tomato. <i>Plant Physiology</i> , 2013 , 162, 1599-617	6.6	34
Carotenoid inhibitors reduce strigolactone production and Striga hermonthica infection in rice. <i>Archives of Biochemistry and Biophysics</i> , 2010 , 504, 123-31	4.1	34
Susceptibility of the tomato mutant high pigment-2dg (hp-2dg) to Orobanche spp. infection. <i>Journal of Agricultural and Food Chemistry</i> , 2008 , 56, 6326-32	5.7	34
Fine-tuning regulation of strigolactone biosynthesis under phosphate starvation. <i>Plant Signaling and Behavior</i> , 2008 , 3, 963-5	2.5	34
Monoterpene biosynthesis potential of plant subcellular compartments. <i>New Phytologist</i> , 2016 , 209, 679-90	9.8	34
Natural products ll earning chemistry from plants. <i>Biotechnology Journal</i> , 2014 , 9, 326-36	5.6	33
Expression of plant flavor genes in Lactococcus lactis. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 1544-52	4.8	33
Genetic variation in jasmonic acid- and spider mite-induced plant volatile emission of cucumber accessions and attraction of the predator Phytoseiulus persimilis. <i>Journal of Chemical Ecology</i> , 2010 , 36, 500-12	2.7	32
Etaryophyllene emitted from a transgenic Arabidopsis or chemical dispenser repels Diaphorina citri, vector of Candidatus Liberibacters. <i>Scientific Reports</i> , 2017 , 7, 5639	4.9	31
Artemisinin and sesquiterpene precursors in dead and green leaves of Artemisia annua L. crops. <i>Planta Medica</i> , 2007 , 73, 1133-9	3.1	31
Domain swapping of Citrus limon monoterpene synthases: impact on enzymatic activity and product specificity. <i>Archives of Biochemistry and Biophysics</i> , 2003 , 411, 196-203	4.1	31
The importance of a sterile rhizosphere when phenotyping for root exudation. <i>Plant and Soil</i> , 2015 , 387, 131-142	4.2	30
	biosynthesis in Artemisia annua. Planta Medica, 2010, 76, 1778-83 Biomarkers for grain yield stability in rice under drought stress. Journal of Experimental Botany, 2020, 71, 669-683 The tomato MAX1 homolog, SIMAX1, is involved in the biosynthesis of tomato strigolactones from carlactone. New Phytologist, 2018, 219, 297-309 Genetic mapping and characterization of the globe artichoke (+)-germacrene A synthase gene, encoding the first dedicated enzyme for biosynthesis of the bitter sesquiterpene lactone cynaropicrin. Plant Science, 2012, 190, 1-8 Cytochrome P-450 dependent (+)-limonene-6-hydroxylation in fruits of caraway (Carum carvil.)P art 2 in the series IBiosynthesis of limonene and carvone in fruits of caraway (Carum carvil.)P (Bouwneester, Gershenzon, Konings, & Croteau, in press).1. Phytochemistry, 1999, 50, 243-248 Characterization of the natural variation in Arabidopsis thaliana metabolome by the analysis of metabolic distance. Metabolomics, 2012, 8, 131-145 System-wide hypersensitive response-associated transcriptome and metabolome reprogramming in tomato. Plant Physiology, 2013, 162, 1599-617 Carotenoid inhibitors reduce strigolactone production and Striga hermonthica infection in rice. Archives of Biochemistry and Biophysics, 2010, 504, 123-31 Susceptibility of the tomato mutant high pigment-2dg (hp-2dg) to Orobanche spp. infection. Journal of Agricultural and Food Chemistry, 2008, 56, 6326-32 Fine-tuning regulation of strigolactone biosynthesis under phosphate starvation. Plant Signaling and Behavior, 2008, 3, 963-5 Monoterpene biosynthesis potential of plant subcellular compartments. New Phytologist, 2016, 209, 679-90 Natural products Bearning chemistry from plants. Biotechnology Journal, 2014, 9, 326-36 Expression of plant flavor genes in Lactococcus lactis. Applied and Environmental Microbiology, 2007, 73, 1544-52 Earyophyllene emitted from a transgenic Arabidopsis or chemical dispenser repels Diaphorina citri, vector of Candidatus Liberibacters. Scientific Reports, 2017, 7, 5639 Ar	Biomarkers for grain yield stability in rice under drought stress. Journal of Experimental Botany, 2020, 71, 669-683 The tomato MAX1 homolog, SIMAX1, is involved in the biosynthesis of tomato strigolactones from carlactone. New Phytologist, 2018, 219, 297-309 Genetic mapping and characterization of the globe artichoke (4)-germacrene A synthase gene, encoding the first dedicated enzyme for biosynthesis of the bitter sesquiterpene lactone cynaropictin. Plant Science, 2012, 190, 1-8 Cytochrome P-450 dependent (+)-limonene-6-hydroxylation in fruits of caraway (Carum carvi)1Part 2 in the series IBiosynthesis of limonene and carvone in fruits of caraway (Carum carvi L.)P (Bouwmeester, Gershenzon, Konings, & Croteau, in press).1. Phytochemistry, 1999, 50, 243-248 Characterization of the natural variation in Arabidopsis thaliana metabolome by the analysis of metabolic distance. Metabolomics, 2012, 8, 131-145 System-wide hypersensitive response-associated transcriptome and metabolome reprogramming in tomato. Plant Physiology, 2013, 162, 1599-617 Carotenoid inhibitors reduce strigolactone production and Striga hermonthica infection in rice. Archives of Biochemistry and Biophysics, 2010, 504, 123-31 Susceptibility of the tomato mutant high pigment-2dg (hp-2dg) to Orobanche spp. infection. Journal of Agricultural and Food Chemistry, 2008, 56, 6326-32 Fine-tuning regulation of strigolactone biosynthesis under phosphate starvation. Plant Signaling and Behavior, 2008, 3, 963-5 Monoterpene biosynthesis potential of plant subcellular compartments. New Phytologist, 2016, 209, 679-90 Natural products Bearning chemistry from plants. Biotechnology Journal, 2014, 9, 326-36 Expression of plant flavor genes in Lactococcus lactis. Applied and Environmental Microbiology, 2007, 73, 1544-52 Genetic variation in jasmonic acid- and spider mite-induced plant volatile emission of cucumber accessions and attraction of the predator Phytoseiulus persimilis. Journal of Chemical Ecology, 2010, 36, 500-12 Etaryophyllene emitted from a

103	Relation between HLA genes, human skin volatiles and attractiveness of humans to malaria mosquitoes. <i>Infection, Genetics and Evolution</i> , 2013 , 18, 87-93	4.5	29
102	Isolation, characterization, and mechanistic studies of (-)-alpha-gurjunene synthase from Solidago canadensis. <i>Archives of Biochemistry and Biophysics</i> , 1999 , 364, 167-77	4.1	29
101	Zeapyranolactone [A novel strigolactone from maize. <i>Phytochemistry Letters</i> , 2018 , 24, 172-178	1.9	27
100	Evaluation of tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) hairy roots for the production of geraniol, the first committed step in terpenoid indole alkaloid pathway. <i>Journal of Biotechnology</i> , 2014 , 176, 20-8	3.7	27
99	OSCILLATOR: A system for analysis of diurnal leaf growth using infrared photography combined with wavelet transformation. <i>Plant Methods</i> , 2012 , 8, 29	5.8	27
98	Biosynthesis of (+)- and (-)-Germacrene D in Solidago canadensis: Isolation and Characterization of Two Enantioselective Germacrene D Synthases. <i>Angewandte Chemie - International Edition</i> , 1998 , 37, 1400-1402	16.4	26
97	A CLE-SUNN module regulates strigolactone content and fungal colonization in arbuscular mycorrhiza. <i>Nature Plants</i> , 2019 , 5, 933-939	11.5	25
96	Strigolactones: Plant Hormones with Promising Features. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12778-12786	16.4	25
95	Induced plant volatiles allow sensitive monitoring of plant health status in greenhouses. <i>Plant Signaling and Behavior</i> , 2009 , 4, 824-9	2.5	25
94	The influence of monoterpene synthase transformation on the odour of tobacco. <i>Journal of Biotechnology</i> , 2003 , 106, 15-21	3.7	25
93	Characterization of Low-Strigolactone Germplasm in Pea (Pisum sativum L.) Resistant to Crenate Broomrape (Orobanche crenata Forsk.). <i>Molecular Plant-Microbe Interactions</i> , 2016 , 29, 743-749	3.6	25
92	Combined transcriptome and metabolome analysis identifies defence responses in spider mite-infested pepper (Capsicum annuum). <i>Journal of Experimental Botany</i> , 2020 , 71, 330-343	7	25
91	SIEVE ELEMENT-LINING CHAPERONE1 Restricts Aphid Feeding on Arabidopsis during Heat Stress. <i>Plant Cell</i> , 2017 , 29, 2450-2464	11.6	23
90	Evaluation of field resistance to Striga hermonthica (Del.) Benth. in Sorghum bicolor (L.) Moench. The relationship with strigolactones. <i>Pest Management Science</i> , 2016 , 72, 2082-2090	4.6	23
89	Thermoperiodic control of hypocotyl elongation depends on auxin-induced ethylene signaling that controls downstream PHYTOCHROME INTERACTING FACTOR3 activity. <i>Plant Physiology</i> , 2015 , 167, 517	, <u>4</u> 6	22
88	Science and application of strigolactones. <i>New Phytologist</i> , 2020 , 227, 1001-1011	9.8	22
87	Antiphase light and temperature cycles affect PHYTOCHROME B-controlled ethylene sensitivity and biosynthesis, limiting leaf movement and growth of Arabidopsis. <i>Plant Physiology</i> , 2013 , 163, 882-95	5 6.6	22
86	Strigolactones: a new musician in the orchestra of plant hormones. <i>Botany</i> , 2011 , 89, 827-840	1.3	22

(2010-1995)

85	Physiological limitations to carvone yield in caraway (Carum carvi L.). <i>Industrial Crops and Products</i> , 1995 , 4, 39-51	5.9	22	
84	Genetic variation in Sorghum bicolor strigolactones and their role in resistance against Striga hermonthica. <i>Journal of Experimental Botany</i> , 2018 , 69, 2415-2430	7	21	
83	Comparison of plant-based expression platforms for the heterologous production of geraniol. <i>Plant Cell, Tissue and Organ Culture</i> , 2014 , 117, 373	2.7	21	
82	18-Hydroxydolabella-3,7-diene synthase - a diterpene synthase from. <i>Beilstein Journal of Organic Chemistry</i> , 2017 , 13, 1770-1780	2.5	20	
81	Abscisic acid influences tillering by modulation of strigolactones in barley. <i>Journal of Experimental Botany</i> , 2018 , 69, 3883-3898	7	20	
80	Improvement of caraway essential oil and carvone production in The Netherlands. <i>Industrial Crops and Products</i> , 1992 , 1, 295-301	5.9	20	
79	Three-step pathway engineering results in more incidence rate and higher emission of nerolidol and improved attraction of Diadegma semiclausum. <i>Metabolic Engineering</i> , 2013 , 15, 88-97	9.7	19	
78	Removal of phytotoxic compounds from torrefied grass fibres by plant-beneficial microorganisms. <i>FEMS Microbiology Ecology</i> , 2008 , 66, 158-66	4.3	19	
77	An analysis of characterized plant sesquiterpene synthases. <i>Phytochemistry</i> , 2019 , 158, 157-165	4	19	
76	Artemisinin production and precursor ratio in full grown Artemisia annua L. plants subjected to external stress. <i>Planta</i> , 2013 , 237, 955-66	4.7	18	
75	Tomato strigolactones: a more detailed look. Plant Signaling and Behavior, 2013, 8, e22785	2.5	18	
74	Low-Phosphate Induction of Plastidal Stromules Is Dependent on Strigolactones But Not on the Canonical Strigolactone Signaling Component MAX2. <i>Plant Physiology</i> , 2016 , 172, 2235-2244	6.6	18	
73	A trichome-specific linoleate lipoxygenase expressed during pyrethrin biosynthesis in pyrethrum. <i>Lipids</i> , 2013 , 48, 1005-15	1.6	17	
72	Relationship Between Assimilate Supply and Essential Oil Accumulation in Annual and Biennial Caraway (Carum carvi L.). <i>Journal of Essential Oil Research</i> , 1993 , 5, 143-152	2.3	17	
71	Induction of Germination 2013 , 167-194		17	
70	Functional analysis of the HD-Zip transcription factor genes Oshox12 and Oshox14 in rice. <i>PLoS ONE</i> , 2018 , 13, e0199248	3.7	15	
69	The Role of Endogenous Strigolactones and Their Interaction with ABA during the Infection Process of the Parasitic Weed in Tomato Plants. <i>Frontiers in Plant Science</i> , 2017 , 8, 392	6.2	15	
68	Automated signal processing applied to volatile-based inspection of greenhouse crops. <i>Sensors</i> , 2010 , 10, 7122-33	3.8	15	

67	Strigolactones affect development in primitive plants. The missing link between plants and arbuscular mycorrhizal fungi?. <i>New Phytologist</i> , 2012 , 195, 730-733	9.8	14
66	The sesquiterpene Ecopaene is induced in tomato leaves infected by Botrytis cinerea. <i>Journal of Plant Interactions</i> , 2005 , 1, 163-170	3.8	14
65	An improved strategy to analyse strigolactones in complex sample matrices using UHPLC-MS/MS. <i>Plant Methods</i> , 2020 , 16, 125	5.8	14
64	The ⊞erpineol to 1,8-Cineole Cyclization Reaction of Tobacco Terpene Synthases. <i>Plant Physiology</i> , 2016 , 172, 2120-2131	6.6	14
63	Kauniolide synthase is a P450 with unusual hydroxylation and cyclization-elimination activity. <i>Nature Communications</i> , 2018 , 9, 4657	17.4	13
62	Distinct roles for strigolactones in cyst nematode parasitism of Arabidopsis roots. <i>European Journal of Plant Pathology</i> , 2019 , 154, 129-140	2.1	12
61	Engineering storage capacity for volatile sesquiterpenes in Nicotiana benthamiana leaves. <i>Plant Biotechnology Journal</i> , 2018 , 16, 1997-2006	11.6	12
60	Comparative antifeedant activities of polygodial and pyrethrins against whiteflies (Bemisia tabaci) and aphids (Myzus persicae). <i>Pest Management Science</i> , 2014 , 70, 682-8	4.6	12
59	Genetical, developmental and spatial factors influencing parthenolide and its precursor costunolide in feverfew (Tanacetum parthenium L. Schulz Bip.). <i>Industrial Crops and Products</i> , 2013 , 47, 270-276	5.9	12
58	Large-Scale Evolutionary Analysis of Genes and Supergene Clusters from Terpenoid Modular Pathways Provides Insights into Metabolic Diversification in Flowering Plants. <i>PLoS ONE</i> , 2015 , 10, e012	2 <i>8</i> 808	12
57	Emission index for evaluation of volatile organic compounds emitted from tomato plants in greenhouses. <i>Biosystems Engineering</i> , 2012 , 113, 220-228	4.8	12
56	Plant host and drought shape the root associated fungal microbiota in rice. <i>PeerJ</i> , 2019 , 7, e7463	3.1	12
55	Adaptation of the parasitic plant lifecycle: germination is controlled by essential host signaling molecules. <i>Plant Physiology</i> , 2021 , 185, 1292-1308	6.6	12
54	Substrate promiscuity of enzymes from the sesquiterpene biosynthetic pathways from Artemisia annua and Tanacetum parthenium allows for novel combinatorial sesquiterpene production. <i>Metabolic Engineering</i> , 2019 , 54, 12-23	9.7	12
53	Differential activity of Striga hermonthica seed germination stimulants and Gigaspora rosea hyphal branching factors in rice and their contribution to underground communication. <i>PLoS ONE</i> , 2014 , 9, e10	042701	11
52	Production of guaianolides in Agrobacterium rhizogenes - transformed chicory regenerants flowering in vitro. <i>Industrial Crops and Products</i> , 2014 , 60, 52-59	5.9	11
51	Association mapping and genetic dissection of drought-induced canopy temperature differences in rice. <i>Journal of Experimental Botany</i> , 2020 , 71, 1614-1627	7	11
50	Design, Synthesis and Biological Evaluation of Strigolactone and Strigolactam Derivatives for Potential Crop Enhancement Applications in Modern Agriculture. <i>Chimia</i> , 2019 , 73, 549-560	1.3	10

49	Role and exploitation of underground chemical signaling in plants. <i>Pest Management Science</i> , 2019 , 75, 2455-2463	4.6	10
48	Strigolactone Biosynthesis and Signal Transduction 2019 , 1-45		10
47	SNARE-RNAi results in higher terpene emission from ectopically expressed caryophyllene synthase in Nicotiana benthamiana. <i>Molecular Plant</i> , 2015 , 8, 454-66	14.4	10
46	Molecular cloning and characterization of a broad substrate terpenoid oxidoreductase from Artemisia annua. <i>Plant and Cell Physiology</i> , 2010 , 51, 1219-28	4.9	10
45	Parasitic Plants <i>Striga</i> and <i>Phelipanche</i> Dependent upon Exogenous Strigolactones for Germination Have Retained Genes for Strigolactone Biosynthesis. <i>American Journal of Plant Sciences</i> , 2015 , 06, 1151-1166	0.5	9
44	Agrobacterium rhizogenes transformed calli of the holoparasitic plant Phelipanche ramosa maintain parasitic competence. <i>Plant Cell, Tissue and Organ Culture</i> , 2018 , 135, 321-329	2.7	9
43	Insights into Heterologous Biosynthesis of Arteannuin B and Artemisinin in. Molecules, 2019, 24,	4.8	9
42	Communication in the Rhizosphere, a Target for Pest Management 2012 , 109-133		9
41	Identification of the SAAT Gene Involved in Strawberry Flavor Biogenesis by Use of DNA Microarrays. <i>Plant Cell</i> , 2000 , 12, 647	11.6	9
40	GERMINATION OF STRIGA AND CHEMICAL SIGNALING INVOLVED: A TARGET FOR CONTROL METHODS 2007 , 47-60		9
39	Phosphate Suppression of Arbuscular Mycorrhizal Symbiosis Involves Gibberellic Acid Signaling. <i>Plant and Cell Physiology</i> , 2021 , 62, 959-970	4.9	9
38	Transcriptional and metabolite analysis reveal a shift in direct and indirect defences in response to spider-mite infestation in cucumber (Cucumis sativus). <i>Plant Molecular Biology</i> , 2020 , 103, 489-505	4.6	9
37	Identification of a drimenol synthase and drimenol oxidase from Persicaria hydropiper, involved in the biosynthesis of insect deterrent drimanes. <i>Plant Journal</i> , 2017 , 90, 1052-1063	6.9	8
36	Identification of the Bisabolol Synthase in the Endangered Candeia Tree ((DC) McLeisch). <i>Frontiers in Plant Science</i> , 2018 , 9, 1340	6.2	8
35	Novel routes towards bioplastics from plants: elucidation of the methylperillate biosynthesis pathway from Salvia dorisiana trichomes. <i>Journal of Experimental Botany</i> , 2020 , 71, 3052-3065	7	7
34	Engineered Orange Ectopically Expressing the Arabidopsis ECaryophyllene Synthase Is Not Attractive to , the Vector of the Bacterial Pathogen Associated to Huanglongbing. <i>Frontiers in Plant Science</i> , 2021 , 12, 641457	6.2	7
33	Metabolic interactions in beneficial microbe recruitment by plants. <i>Current Opinion in Biotechnology</i> , 2021 , 70, 241-247	11.4	7
32	Strigolactones and Parasitic Plants 2019 , 89-120		6

31	Metabolic Engineering of Terpenoid Biosynthesis in Plants 2007 , 219-236		6
30	Molecular Engineering of Floral Scent 2006 , 321-337		6
29	Floral Volatiles in Parasitic Plants of the Orobanchaceae. Ecological and Taxonomic Implications. <i>Frontiers in Plant Science</i> , 2016 , 7, 312	6.2	6
28	The santalene synthase from Cinnamomum camphora: Reconstruction of a sesquiterpene synthase from a monoterpene synthase. <i>Archives of Biochemistry and Biophysics</i> , 2020 , 695, 108647	4.1	5
27	The Use of Metabolomics to Elucidate Resistance Markers against Damson-Hop Aphid. <i>Journal of Chemical Ecology</i> , 2018 , 44, 711-726	2.7	5
26	Assessment of pleiotropic transcriptome perturbations in Arabidopsis engineered for indirect insect defence. <i>BMC Plant Biology</i> , 2014 , 14, 170	5.3	5
25	Strigolactones regulate sepal senescence in Arabidopsis. <i>Journal of Experimental Botany</i> , 2021 , 72, 5462	2 - 5477	5
24	Functional intron-derived miRNAs and host-gene expression in plants. <i>Plant Methods</i> , 2018 , 14, 83	5.8	5
23	Integration of omics data to unravel root microbiome recruitment. <i>Current Opinion in Biotechnology</i> , 2021 , 70, 255-261	11.4	5
22	Terpenoids in Plant Signaling: Chemical Ecology1		5
21	Terpenoids in Plant Signaling: Chemical Ecology1 Research to Improve Artemisinin Production for use in the Preparation of Anti-Malarial Drugs275-290		5
21	Research to Improve Artemisinin Production for use in the Preparation of Anti-Malarial Drugs275-290	2.7	5
21	Research to Improve Artemisinin Production for use in the Preparation of Anti-Malarial Drugs275-290 The Effect of Host-Root-Derived Chemical Signals on the Germination of Parasitic Plants39-54 Silencing of germacrene A synthase genes reduces guaianolide oxalate content in L. <i>GM Crops and</i>	2.7	5
21 20 19	Research to Improve Artemisinin Production for use in the Preparation of Anti-Malarial Drugs275-290 The Effect of Host-Root-Derived Chemical Signals on the Germination of Parasitic Plants39-54 Silencing of germacrene A synthase genes reduces guaianolide oxalate content in L. <i>GM Crops and Food</i> , 2020, 11, 54-66 The Effect of Virulence and Resistance Mechanisms on the Interactions between Parasitic Plants		5 5 4
21 20 19	Research to Improve Artemisinin Production for use in the Preparation of Anti-Malarial Drugs275-290 The Effect of Host-Root-Derived Chemical Signals on the Germination of Parasitic Plants39-54 Silencing of germacrene A synthase genes reduces guaianolide oxalate content in L. <i>GM Crops and Food</i> , 2020, 11, 54-66 The Effect of Virulence and Resistance Mechanisms on the Interactions between Parasitic Plants and Their Hosts. <i>International Journal of Molecular Sciences</i> , 2020, 21, Tissue specific expression and genomic organization of bitter sesquiterpene lactone biosynthesis in	6.3	5 5 4
21 20 19 18	Research to Improve Artemisinin Production for use in the Preparation of Anti-Malarial Drugs275-290 The Effect of Host-Root-Derived Chemical Signals on the Germination of Parasitic Plants39-54 Silencing of germacrene A synthase genes reduces guaianolide oxalate content in L. <i>GM Crops and Food</i> , 2020, 11, 54-66 The Effect of Virulence and Resistance Mechanisms on the Interactions between Parasitic Plants and Their Hosts. <i>International Journal of Molecular Sciences</i> , 2020, 21, Tissue specific expression and genomic organization of bitter sesquiterpene lactone biosynthesis in Cichorium intybus L. (Asteraceae). <i>Industrial Crops and Products</i> , 2019, 129, 253-260 The role of strigolactones in P deficiency induced transcriptional changes in tomato roots. <i>BMC</i>	6. ₃	5 5 4 4

LIST OF PUBLICATIONS

13	Characterization of maize root microbiome in two different soils by minimizing plant DNA contamination in metabarcoding analysis. <i>Biology and Fertility of Soils</i> , 2021 , 57, 731-737	6.1	3
12	Drought tolerance in selected aerobic and upland rice varieties is driven by different metabolic and antioxidative responses. <i>Planta</i> , 2021 , 254, 13	4.7	3
11	A carlactonoic acid methyltransferase that contributes to the inhibition of shoot branching in <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119, e211156511	9 ^{11.5}	3
10	Strigolactone: Pflanzenhormone mit vielversprechenden Eigenschaften. <i>Angewandte Chemie</i> , 2019 , 131, 12909-12917	3.6	2
9	Are sesquiterpene lactones the elusive KARRIKIN-INSENSITIVE2 ligand?. Planta, 2021, 253, 54	4.7	2
8	UPLC-MS/MS analysis and biological activity of the potato cyst nematode hatching stimulant, solanoeclepin A, in the root exudate of Solanum spp. <i>Planta</i> , 2021 , 254, 112	4.7	1
7	On the role of dauer in the adaptation of nematodes to a parasitic lifestyle. <i>Parasites and Vectors</i> , 2021 , 14, 554	4	1
6	Integrating structure-based machine learning and co-evolution to investigate specificity in plant sesquiterpene synthases. <i>PLoS Computational Biology</i> , 2021 , 17, e1008197	5	1
5	Plant lipids enticed fungi to mutualism. <i>Science</i> , 2021 , 372, 789-790	33.3	1
4	Characterization of growth and development of sorghum genotypes with differential susceptibility to Striga hermonthica. <i>Journal of Experimental Botany</i> , 2021 , 72, 7970-7983	7	1
3	Fructan Biosynthesis Regulation and the Production of Tailor-Made Fructan in Plants 2014 , 1-30		О
2	Can witchweed be wiped out?. <i>Science</i> , 2018 , 362, 1248-1249	33.3	O

Strigolactones: A Cry for Help Results in Fatal Attraction. Is Escape Possible? **2012**, 199-211