Harro J Bouwmeester

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7615781/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strigolactone inhibition of shoot branching. Nature, 2008, 455, 189-194.	27.8	1,910
2	The Path from β-Carotene to Carlactone, a Strigolactone-Like Plant Hormone. Science, 2012, 335, 1348-1351.	12.6	809
3	Strigolactones, a Novel Carotenoid-Derived Plant Hormone. Annual Review of Plant Biology, 2015, 66, 161-186.	18.7	658
4	The Strigolactone Germination Stimulants of the Plant-Parasitic Striga and Orobanche spp. Are Derived from the Carotenoid Pathway. Plant Physiology, 2005, 139, 920-934.	4.8	569
5	Physiological Effects of the Synthetic Strigolactone Analog GR24 on Root System Architecture in Arabidopsis: Another Belowground Role for Strigolactones? Â Â Â. Plant Physiology, 2011, 155, 721-734.	4.8	534
6	A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature, 2012, 483, 341-344.	27.8	502
7	Identification of the SAAT Gene Involved in Strawberry Flavor Biogenesis by Use of DNA Microarrays. Plant Cell, 2000, 12, 647-661.	6.6	496
8	Genetic Engineering of Terpenoid Metabolism Attracts Bodyguards to Arabidopsis. Science, 2005, 309, 2070-2072.	12.6	482
9	Metabolomics in the Rhizosphere: Tapping into Belowground Chemical Communication. Trends in Plant Science, 2016, 21, 256-265.	8.8	470
10	Terpenoid Metabolism in Wild-Type and Transgenic Arabidopsis Plants[W]. Plant Cell, 2003, 15, 2866-2884.	6.6	461
11	Gain and Loss of Fruit Flavor Compounds Produced by Wild and Cultivated Strawberry Species. Plant Cell, 2004, 16, 3110-3131.	6.6	427
12	Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytologist, 2008, 178, 863-874.	7.3	419
13	Rhizosphere communication of plants, parasitic plants and AM fungi. Trends in Plant Science, 2007, 12, 224-230.	8.8	418
14	Strigolactones Are Transported through the Xylem and Play a Key Role in Shoot Architectural Response to Phosphate Deficiency in Nonarbuscular Mycorrhizal Host Arabidopsis Â. Plant Physiology, 2011, 155, 974-987.	4.8	417
15	Biosynthesis, regulation, and domestication of bitterness in cucumber. Science, 2014, 346, 1084-1088.	12.6	388
16	Volatile science? Metabolic engineering of terpenoids in plants. Trends in Plant Science, 2005, 10, 594-602.	8.8	361
17	Secondary metabolite signalling in host–parasitic plant interactions. Current Opinion in Plant Biology, 2003, 6, 358-364.	7.1	360
18	The seco-iridoid pathway from Catharanthus roseus. Nature Communications, 2014, 5, 3606.	12.8	355

#	Article	IF	CITATIONS
19	Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nature Chemical Biology, 2014, 10, 1028-1033.	8.0	340
20	The biology of strigolactones. Trends in Plant Science, 2013, 18, 72-83.	8.8	318
21	Functional Characterization of Enzymes Forming Volatile Esters from Strawberry and Banana. Plant Physiology, 2004, 135, 1865-1878.	4.8	315
22	Strigolactone Biosynthesis in <i>Medicago</i> Â <i>truncatula</i> and Rice Requires the Symbiotic GRAS-Type Transcription Factors NSP1 and NSP2 Â. Plant Cell, 2011, 23, 3853-3865.	6.6	291
23	Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis. Phytochemistry, 1999, 52, 843-854.	2.9	263
24	Standards for plant synthetic biology: a common syntax for exchange of <scp>DNA</scp> parts. New Phytologist, 2015, 208, 13-19.	7.3	263
25	Molecular Cloning, Expression, and Characterization of Amorpha-4,11-diene Synthase, a Key Enzyme of Artemisinin Biosynthesis in Artemisia annua L Archives of Biochemistry and Biophysics, 2000, 381, 173-180.	3.0	257
26	The tomato <i><scp>CAROTENOID CLEAVAGE DIOXYGENASE</scp>8</i> (<i><scp>S</scp>l<scp>CCD</scp>8</i>) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytologist, 2012, 196, 535-547.	7.3	250
27	System-wide molecular evidence for phenotypic buffering in Arabidopsis. Nature Genetics, 2009, 41, 166-167.	21.4	249
28	Does abscisic acid affect strigolactone biosynthesis?. New Phytologist, 2010, 187, 343-354.	7.3	243
29	SICCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. Plant Journal, 2010, 61, 300-311.	5.7	227
30	Amorpha-4,11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin. Planta, 2001, 212, 460-465.	3.2	223
31	Composition of Human Skin Microbiota Affects Attractiveness to Malaria Mosquitoes. PLoS ONE, 2011, 6, e28991.	2.5	208
32	Expression of Clarkia S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-β-d-glucopyranoside. Plant Journal, 2001, 27, 315-324.	5.7	200
33	(+)-Germacrene A Biosynthesis. Plant Physiology, 1998, 117, 1381-1392.	4.8	191
34	The role of volatiles in plant communication. Plant Journal, 2019, 100, 892-907.	5.7	180
35	Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress. Planta, 2015, 241, 1435-1451.	3.2	178
36	Mutation in sorghum <i>LOW GERMINATION STIMULANT 1</i> alters strigolactones and causes <i>Striga</i> resistance. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4471-4476.	7.1	172

#	Article	IF	CITATIONS
37	Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice. Plant Molecular Biology, 2012, 80, 571-585.	3.9	165
38	Root phenotyping: from component trait in the lab to breeding: Table 1 Journal of Experimental Botany, 2015, 66, 5389-5401.	4.8	163
39	Nicotiana benthamiana as a Production Platform for Artemisinin Precursors. PLoS ONE, 2010, 5, e14222.	2.5	161
40	Monoterpene biosynthesis in lemon (Citrus limon). FEBS Journal, 2002, 269, 3160-3171.	0.2	159
41	No evidence for substantial aerobic methane emission by terrestrial plants: a 13 C″abelling approach. New Phytologist, 2007, 175, 29-35.	7.3	158
42	Biosynthesis of the Monoterpenes Limonene and Carvone in the Fruit of Caraway1. Plant Physiology, 1998, 117, 901-912.	4.8	153
43	Metabolic Engineering of Terpenoid Biosynthesis in Plants. Phytochemistry Reviews, 2006, 5, 49-58.	6.5	147
44	Rhizobium Lipo-chitooligosaccharide Signaling Triggers Accumulation of Cytokinins in Medicago truncatula Roots. Molecular Plant, 2015, 8, 1213-1226.	8.3	146
45	Genetic architecture of plant stress resistance: multiâ€ŧrait genomeâ€wide association mapping. New Phytologist, 2017, 213, 1346-1362.	7.3	144
46	Rhizobacterial community structure differences among sorghum cultivars in different growth stages and soils. FEMS Microbiology Ecology, 2017, 93, .	2.7	143
47	Combined Transcript and Metabolite Analysis Reveals Genes Involved in Spider Mite Induced Volatile Formation in Cucumber Plants. Plant Physiology, 2004, 135, 2012-2024.	4.8	140
48	Natural variation of rice strigolactone biosynthesis is associated with the deletion of two <i>MAX1</i> orthologs. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2379-2384.	7.1	138
49	Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. Journal of Plant Physiology, 2011, 168, 294-297.	3.5	137
50	Biotechnological production of limonene in microorganisms. Applied Microbiology and Biotechnology, 2016, 100, 2927-2938.	3.6	136
51	The interaction between strigolactones and other plant hormones in the regulation of plant development. Frontiers in Plant Science, 2013, 4, 199.	3.6	126
52	Increased and Altered Fragrance of Tobacco Plants after Metabolic Engineering Using Three Monoterpene Synthases from Lemon. Plant Physiology, 2004, 134, 510-519.	4.8	125
53	The dual role of temperature in the regulation of the seasonal changes in dormancy and germination of seeds of Polygonum persicaria L Oecologia, 1992, 90, 88-94.	2.0	122
54	The effects of auxin and strigolactones on tuber initiation and stolon architecture in potato. Journal of Experimental Botany, 2012, 63, 4539-4547.	4.8	121

#	Article	IF	CITATIONS
55	AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling. Journal of Experimental Botany, 2016, 67, 3383-3396.	4.8	121
56	Cultured skin microbiota attracts malaria mosquitoes. Malaria Journal, 2009, 8, 302.	2.3	120
57	Spider Mite-Induced (3S)-(E)-Nerolidol Synthase Activity in Cucumber and Lima Bean. The First Dedicated Step in Acyclic C11-Homoterpene Biosynthesis. Plant Physiology, 1999, 121, 173-180.	4.8	119
58	Untargeted Metabolic Quantitative Trait Loci Analyses Reveal a Relationship between Primary Metabolism and Potato Tuber Quality Â. Plant Physiology, 2012, 158, 1306-1318.	4.8	119
59	Isoprenoid biosynthesis in Artemisia annua: Cloning and heterologous expression of a germacrene A synthase from a glandular trichome cDNA library. Archives of Biochemistry and Biophysics, 2006, 448, 3-12.	3.0	117
60	Asymmetric Localizations of the ABC Transporter PaPDR1 Trace Paths of Directional Strigolactone Transport. Current Biology, 2015, 25, 647-655.	3.9	117
61	Valencene synthase from the heartwood of <scp>N</scp> ootka cypress (<i><scp>C</scp>allitropsis) Tj ETQq1 1 12, 174-182.</i>	0.78431 8.3	4 rgBT /Overl 115
62	Structural diversity in the strigolactones. Journal of Experimental Botany, 2018, 69, 2219-2230.	4.8	115
63	CAROTENOID CLEAVAGE DIOXYGENASE 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model legume Lotus japonicus. Journal of Experimental Botany, 2013, 64, 1967-1981.	4.8	114
64	Genetic analysis of metabolome–phenotype interactions: from model to crop species. Trends in Genetics, 2013, 29, 41-50.	6.7	111
65	Biosynthesis of Costunolide, Dihydrocostunolide, and Leucodin. Demonstration of Cytochrome P450-Catalyzed Formation of the Lactone Ring Present in Sesquiterpene Lactones of Chicory. Plant Physiology, 2002, 129, 257-268.	4.8	110
66	Metabolic engineering of volatile isoprenoids in plants and microbes. Plant, Cell and Environment, 2014, 37, 1753-1775.	5.7	110
67	Preâ€attachment <i>Striga hermonthica</i> resistance of New Rice for Africa (NERICA) cultivars based on low strigolactone production. New Phytologist, 2011, 192, 964-975.	7.3	109
68	Trichome Dynamics and Artemisinin Accumulation during Development and Senescence ofArtemisia annuaLeaves. Planta Medica, 2006, 72, 336-345.	1.3	105
69	Gene Coexpression Analysis Reveals Complex Metabolism of the Monoterpene Alcohol Linalool in <i>Arabidopsis</i> Flowers Â. Plant Cell, 2013, 25, 4640-4657.	6.6	104
70	Induction of a leaf specific geranylgeranyl pyrophosphate synthase and emission of (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene in tomato are dependent on both jasmonic acid and salicylic acid signaling pathways. Planta, 2006, 224, 1197-1208.	3.2	103
71	Strigolactones and root infestation by plant-parasitic Striga, Orobanche and Phelipanche spp Plant Science, 2011, 180, 414-420.	3.6	103
72	Detection of Diseased Plants by Analysis of Volatile Organic Compound Emission. Annual Review of Phytopathology, 2011, 49, 157-174.	7.8	101

#	Article	IF	CITATIONS
73	The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice. Nature Communications, 2020, 11, 2114.	12.8	101
74	Circadian rhythmicity in emission of volatile compounds by flowers of Rosa hybrida L. cv. Honesty. Planta, 1998, 207, 88-95.	3.2	100
75	Isolation and Characterization of Two Germacrene A Synthase cDNA Clones from Chicory. Plant Physiology, 2002, 129, 134-144.	4.8	100
76	Strigolactones: ecological significance and use as a target for parasitic plant control. Pest Management Science, 2009, 65, 471-477.	3.4	99
77	Detoxification of αâ€ŧomatine by <i><scp>C</scp>ladosporium fulvum</i> is required for full virulence on tomato. New Phytologist, 2013, 198, 1203-1214.	7.3	99
78	Zealactones. Novel natural strigolactones from maize. Phytochemistry, 2017, 137, 123-131.	2.9	98
79	ABA-deficiency results in reduced plant and fruit size in tomato. Journal of Plant Physiology, 2012, 169, 878-883.	3.5	97
80	Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCD1) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions. Planta, 2008, 228, 789-801.	3.2	96
81	Reconstitution of the Costunolide Biosynthetic Pathway in Yeast and Nicotiana benthamiana. PLoS ONE, 2011, 6, e23255.	2.5	96
82	A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene. FEBS Letters, 2011, 585, 178-182.	2.8	92
83	Biosynthesis and localization of parthenolide in glandular trichomes of feverfew (Tanacetum) Tj ETQq1 1 0.7843	14.rgBT /C	Dverlock 10 T
84	Annual changes in dormancy and germination in seeds of Sisymbrium officinale (L.) Scop New Phytologist, 1993, 124, 179-191.	7.3	87
85	Variation in Herbivory-induced Volatiles Among Cucumber (Cucumis sativus L.) Varieties has Consequences for the Attraction of Carnivorous Natural Enemies. Journal of Chemical Ecology, 2011, 37, 150-160.	1.8	85
86	OsJAR1 is required for JA-regulated floret opening and anther dehiscence in rice. Plant Molecular Biology, 2014, 86, 19-33.	3.9	85
87	Ecological relevance of strigolactones in nutrient uptake and other abiotic stresses, and in plant-microbe interactions below-ground. Plant and Soil, 2015, 394, 1-19.	3.7	84
88	Transient production of artemisinin in Nicotiana benthamiana is boosted by a specific lipid transfer protein from A. annua. Metabolic Engineering, 2016, 38, 159-169.	7.0	84
89	Biosynthetic considerations could assist the structure elucidation of host plant produced rhizosphere signalling compounds (strigolactones) for arbuscular mycorrhizal fungi and parasitic plants. Plant Physiology and Biochemistry, 2008, 46, 617-626.	5.8	83
90	Characterization of two geraniol synthases from Valeriana officinalis and Lippia dulcis: Similar activity but difference in subcellular localization. Metabolic Engineering, 2013, 20, 198-211.	7.0	82

#	Article	IF	CITATIONS
91	Colonization by Arbuscular Mycorrhizal Fungi of Sorghum Leads to Reduced Germination and Subsequent Attachment and Emergence of <i>Striga hermonthica</i> . Plant Signaling and Behavior, 2007, 2, 58-62.	2.4	81
92	Geraniol hydroxylase and hydroxygeraniol oxidase activities of the CYP76 family of cytochrome P450 enzymes and potential for engineering the early steps of the (seco)iridoid pathway. Metabolic Engineering, 2013, 20, 221-232.	7.0	80
93	The interaction of strigolactones with abscisic acid during the drought response in rice. Journal of Experimental Botany, 2018, 69, 2403-2414.	4.8	80
94	Metabolic engineering of monoterpene biosynthesis: two-step production of (+)-trans-isopiperitenol by tobacco. Plant Journal, 2004, 39, 135-145.	5.7	79
95	Biosynthesis of Germacrene A Carboxylic Acid in Chicory Roots. Demonstration of a Cytochrome P450 (+)-Germacrene A Hydroxylase and NADP+-Dependent Sesquiterpenoid Dehydrogenase(s) Involved in Sesquiterpene Lactone Biosynthesis. Plant Physiology, 2001, 125, 1930-1940.	4.8	78
96	Changes in the sensitivity of parasitic weed seeds to germination stimulants. Seed Science Research, 2004, 14, 335-344.	1.7	77
97	Natural variation in herbivore-induced volatiles in Arabidopsis thaliana. Journal of Experimental Botany, 2010, 61, 3041-3056.	4.8	77
98	Metabolic engineering of geranic acid in maize to achieve fungal resistance is compromised by novel glycosylation patterns. Metabolic Engineering, 2011, 13, 414-425.	7.0	77
99	Herbivore-Mediated Effects of Glucosinolates on Different Natural Enemies of a Specialist Aphid. Journal of Chemical Ecology, 2012, 38, 100-115.	1.8	77
100	Genome-Wide Association Mapping and Genomic Prediction Elucidate the Genetic Architecture of Morphological Traits in Arabidopsis. Plant Physiology, 2016, 170, 2187-2203.	4.8	77
101	Enantiospecific (+)- and (â^')-germacrene D synthases, cloned from goldenrod, reveal a functionally active variant of the universal isoprenoid-biosynthesis aspartate-rich motif. Archives of Biochemistry and Biophysics, 2004, 432, 136-144.	3.0	75
102	The metabolite chemotype of <i><scp>N</scp>icotiana benthamiana</i> transiently expressing artemisinin biosynthetic pathway genes is a function of <i><scp>CYP</scp>71<scp>AV</scp>1</i> type and relative gene dosage. New Phytologist, 2013, 199, 352-366.	7.3	71
103	Biomarkers for grain yield stability in rice under drought stress. Journal of Experimental Botany, 2020, 71, 669-683.	4.8	71
104	Natural products – modifying metabolite pathways in plants. Biotechnology Journal, 2013, 8, 1159-1171.	3.5	70
105	Engineering the plant rhizosphere. Current Opinion in Biotechnology, 2015, 32, 136-142.	6.6	70
106	Genetic variation in strigolactone production and tillering in rice and its effect on Striga hermonthica infection. Planta, 2012, 235, 473-484.	3.2	69
107	Elucidation and in planta reconstitution of the parthenolide biosynthetic pathway. Metabolic Engineering, 2014, 23, 145-153.	7.0	68
108	The Sexual Advantage of Looking, Smelling, and Tasting Good: The Metabolic Network that Produces Signals for Pollinators. Trends in Plant Science, 2017, 22, 338-350.	8.8	67

#	Article	IF	CITATIONS
109	An analysis of characterized plant sesquiterpene synthases. Phytochemistry, 2019, 158, 157-165.	2.9	67
110	A CLE–SUNN module regulates strigolactone content and fungal colonization in arbuscular mycorrhiza. Nature Plants, 2019, 5, 933-939.	9.3	65
111	Germacrenes from fresh costus roots. Phytochemistry, 2001, 58, 481-487.	2.9	63
112	Association mapping of plant resistance to insects. Trends in Plant Science, 2012, 17, 311-319.	8.8	63
113	Bidirectional Secretions from Glandular Trichomes of Pyrethrum Enable Immunization of Seedlings. Plant Cell, 2012, 24, 4252-4265.	6.6	62
114	Capturing of the monoterpene olefin limonene produced inSaccharomyces cerevisiae. Yeast, 2014, 32, n/a-n/a.	1.7	62
115	Combined transcriptome and metabolome analysis identifies defence responses in spider mite-infested pepper (Capsicum annuum). Journal of Experimental Botany, 2020, 71, 330-343.	4.8	61
116	A simulation model for seasonal changes in dormancy and germination of weed seeds. Seed Science Research, 2001, 11, 77-92.	1.7	60
117	Science and application of strigolactones. New Phytologist, 2020, 227, 1001-1011.	7.3	60
118	Monoterpene biosynthesis potential of plant subcellular compartments. New Phytologist, 2016, 209, 679-690.	7.3	59
119	β-caryophyllene emitted from a transgenic Arabidopsis or chemical dispenser repels Diaphorina citri, vector of Candidatus Liberibacters. Scientific Reports, 2017, 7, 5639.	3.3	59
120	Biosynthesis of Sesquiterpene Lactones in Pyrethrum (Tanacetum cinerariifolium). PLoS ONE, 2013, 8, e65030.	2.5	57
121	Cytochrome P450s from Cynara cardunculus L. CYP71AV9 and CYP71BL5, catalyze distinct hydroxylations in the sesquiterpene lactone biosynthetic pathway. Plant Science, 2014, 223, 59-68.	3.6	55
122	The tomato <i>MAX1</i> homolog, <i>SIMAX1</i> , is involved in the biosynthesis of tomato strigolactones from carlactone. New Phytologist, 2018, 219, 297-309.	7.3	55
123	(+)â€Valencene production in <i>Nicotiana benthamiana</i> is increased by downâ€regulation of competing pathways. Biotechnology Journal, 2015, 10, 180-189.	3.5	54
124	Stable Production of the Antimalarial Drug Artemisinin in the Moss Physcomitrella patens. Frontiers in Bioengineering and Biotechnology, 2017, 5, 47.	4.1	54
125	Strigolactones: Plant Hormones with Promising Features. Angewandte Chemie - International Edition, 2019, 58, 12778-12786.	13.8	54
126	Mechanisms of the biosynthesis of sesquiterpene enantiomers (+)- and (?)-germacrene D inSolidago canadensis. Chirality, 1999, 11, 353-362.	2.6	53

#	Article	IF	CITATIONS
127	Carotenoid inhibitors reduce strigolactone production and Striga hermonthica infection in rice. Archives of Biochemistry and Biophysics, 2010, 504, 123-131.	3.0	53
128	Title is missing!. Journal of Chemical Ecology, 2000, 26, 1433-1445.	1.8	51
129	Tailor-made fructan synthesis in plants: A review. Carbohydrate Polymers, 2013, 93, 48-56.	10.2	51
130	The Role of Endogenous Strigolactones and Their Interaction with ABA during the Infection Process of the Parasitic Weed Phelipanche ramosa in Tomato Plants. Frontiers in Plant Science, 2017, 8, 392.	3.6	51
131	Abscisic acid influences tillering by modulation of strigolactones in barley. Journal of Experimental Botany, 2018, 69, 3883-3898.	4.8	51
132	Sink filling, inulin metabolizing enzymes and carbohydrate status in field grown chicory (Cichorium) Tj ETQq0 0 C) rgBT /Ov	erlggk 10 Tf 5
133	New strigolactone mimics: Structure–activity relationship and mode of action as germinating stimulants for parasitic weeds. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5182-5186.	2.2	50
134	Valencene oxidase CYP706M1 from Alaska cedar (<i>Callitropsis nootkatensis</i>). FEBS Letters, 2014, 588, 1001-1007.	2.8	50
135	Hydroxylation of sesquiterpenes by enzymes from chicory (Cichorium intybus L.) roots. Tetrahedron, 2003, 59, 409-418.	1.9	49
136	Adaptation of the parasitic plant lifecycle: germination is controlled by essential host signaling molecules. Plant Physiology, 2021, 185, 1292-1308.	4.8	48
137	Genetic mapping and characterization of the globe artichoke (+)-germacrene A synthase gene, encoding the first dedicated enzyme for biosynthesis of the bitter sesquiterpene lactone cynaropicrin. Plant Science, 2012, 190, 1-8.	3.6	45
138	Genetic engineering of plant volatile terpenoids: effects on a herbivore, a predator and a parasitoid. Pest Management Science, 2013, 69, 302-311.	3.4	43
139	Natural products – learning chemistry from plants. Biotechnology Journal, 2014, 9, 326-336.	3.5	43
140	The importance of a sterile rhizosphere when phenotyping for root exudation. Plant and Soil, 2015, 387, 131-142.	3.7	43
141	Genetic Variation in Jasmonic Acid- and Spider Mite-Induced Plant Volatile Emission of Cucumber Accessions and Attraction of the Predator Phytoseiulus persimilis. Journal of Chemical Ecology, 2010, 36, 500-512.	1.8	41
142	The Molecular Cloning of Dihydroartemisinic Aldehyde Reductase and its Implication in Artemisinin Biosynthesis in <i>Artemisia annua</i> . Planta Medica, 2010, 76, 1778-1783.	1.3	41
143	Relation between HLA genes, human skin volatiles and attractiveness of humans to malaria mosquitoes. Infection, Genetics and Evolution, 2013, 18, 87-93.	2.3	41
144	System-Wide Hypersensitive Response-Associated Transcriptome and Metabolome Reprogramming in Tomato Â. Plant Physiology, 2013, 162, 1599-1617.	4.8	41

#	Article	IF	CITATIONS
145	Cytochrome P-450 dependent (+)-limonene-6-hydroxylation in fruits of caraway (Carum carvi)1Part 2 in the series `Biosynthesis of limonene and carvone in fruits of caraway (Carum carvi L.)' (Bouwmeester,) Tj ETQq1	1 027984314	r g® T ∕Overl
146	Artemisinin and Sesquiterpene Precursors in Dead and Green Leaves of <i>Artemisia annua</i> L. Crops. Planta Medica, 2007, 73, 1133-1139.	1.3	40
147	<i><scp>S</scp>triga hermonthica <scp>MAX</scp>2</i> restores branching but not the <scp>V</scp> ery <scp>L</scp> ow <scp>F</scp> luence <scp>R</scp> esponse in the <i><scp>A</scp>rabidopsis thaliana max2</i> mutant. New Phytologist, 2014, 202, 531-541.	7.3	40
148	Fine-tuning regulation of strigolactone biosynthesis under phosphate starvation. Plant Signaling and Behavior, 2008, 3, 963-965.	2.4	39
149	Susceptibility of the Tomato Mutant <i>High Pigment-2^{dg}</i> (<i>hp-2^{dg}</i>) to <i>Orobanche</i> spp. Infection. Journal of Agricultural and Food Chemistry, 2008, 56, 6326-6332.	5.2	38
150	Characterization of the natural variation in Arabidopsis thaliana metabolome by the analysis of metabolic distance. Metabolomics, 2012, 8, 131-145.	3.0	38
151	SIEVE ELEMENT-LINING CHAPERONE1 Restricts Aphid Feeding on Arabidopsis during Heat Stress. Plant Cell, 2017, 29, 2450-2464.	6.6	38
152	Functional analysis of the HD-Zip transcription factor genes Oshox12 and Oshox14 in rice. PLoS ONE, 2018, 13, e0199248.	2.5	38
153	Domain swapping of Citrus limon monoterpene synthases: impact on enzymatic activity and product specificity. Archives of Biochemistry and Biophysics, 2003, 411, 196-203.	3.0	37
154	Characterization of Low-Strigolactone Germplasm in Pea (<i>Pisum sativum</i> L.) Resistant to Crenate Broomrape (<i>Orobanche crenata</i> Forsk.). Molecular Plant-Microbe Interactions, 2016, 29, 743-749.	2.6	37
155	Role and exploitation of underground chemical signaling in plants. Pest Management Science, 2019, 75, 2455-2463.	3.4	37
156	Expression of Plant Flavor Genes in Lactococcus lactis. Applied and Environmental Microbiology, 2007, 73, 1544-1552.	3.1	36
157	Evaluation of tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) hairy roots for the production of geraniol, the first committed step in terpenoid indole alkaloid pathway. Journal of Biotechnology, 2014, 176, 20-28.	3.8	36
158	Zeapyranolactone â^' A novel strigolactone from maize. Phytochemistry Letters, 2018, 24, 172-178.	1.2	36
159	Three-step pathway engineering results in more incidence rate and higher emission of nerolidol and improved attraction of Diadegma semiclausum. Metabolic Engineering, 2013, 15, 88-97.	7.0	35
160	A carlactonoic acid methyltransferase that contributes to the inhibition of shoot branching in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2111565119.	7.1	35
161	Genetic variation in Sorghum bicolor strigolactones and their role in resistance against Striga hermonthica. Journal of Experimental Botany, 2018, 69, 2415-2430.	4.8	34
162	Biosynthesis of (+)- and (â^)-Germacrene D inSolidago canadensis: Isolation and Characterization of Two Enantioselective Germacrene D Synthases. Angewandte Chemie - International Edition, 1998, 37, 1400-1402.	13.8	33

#	Article	IF	CITATIONS
163	Thermoperiodic Control of Hypocotyl Elongation Depends on Auxin-Induced Ethylene Signaling That Controls Downstream <i>PHYTOCHROME INTERACTING FACTOR3</i> Activity. Plant Physiology, 2015, 167, 517-530.	4.8	33
164	Association mapping and genetic dissection of drought-induced canopy temperature differences in rice. Journal of Experimental Botany, 2020, 71, 1614-1627.	4.8	33
165	Isolation, Characterization, and Mechanistic Studies of (â^)-α-Gurjunene Synthase fromSolidago canadensis. Archives of Biochemistry and Biophysics, 1999, 364, 167-177.	3.0	31
166	OSCILLATOR: A system for analysis of diurnal leaf growth using infrared photography combined with wavelet transformation. Plant Methods, 2012, 8, 29.	4.3	31
167	18-Hydroxydolabella-3,7-diene synthase – a diterpene synthase from <i>Chitinophaga pinensis</i> . Beilstein Journal of Organic Chemistry, 2017, 13, 1770-1780.	2.2	31
168	An improved strategy to analyse strigolactones in complex sample matrices using UHPLC–MS/MS. Plant Methods, 2020, 16, 125.	4.3	31
169	Plant host and drought shape the root associated fungal microbiota in rice. PeerJ, 2019, 7, e7463.	2.0	31
170	Induced plant volatiles allow sensitive monitoring of plant health status in greenhouses. Plant Signaling and Behavior, 2009, 4, 824-829.	2.4	30
171	Improvement of caraway essential oil and carvone production in The Netherlands. Industrial Crops and Products, 1992, 1, 295-301.	5.2	29
172	The influence of monoterpene synthase transformation on the odour of tobacco. Journal of Biotechnology, 2003, 106, 15-21.	3.8	29
173	Phosphate Suppression of Arbuscular Mycorrhizal Symbiosis Involves Gibberellic Acid Signaling. Plant and Cell Physiology, 2021, 62, 959-970.	3.1	29
174	Effect of strigolactones on recruitment of the rice root-associated microbiome. FEMS Microbiology Ecology, 2022, 98, .	2.7	29
175	Physiological limitations to carvone yield in caraway (Carum carvi L.). Industrial Crops and Products, 1995, 4, 39-51.	5.2	28
176	Antiphase Light and Temperature Cycles Affect PHYTOCHROME B-Controlled Ethylene Sensitivity and Biosynthesis, Limiting Leaf Movement and Growth of Arabidopsis. Plant Physiology, 2013, 163, 882-895.	4.8	28
177	Comparison of plant-based expression platforms for the heterologous production of geraniol. Plant Cell, Tissue and Organ Culture, 2014, 117, 373.	2.3	28
178	Evaluation of field resistance to <i>Striga hermonthica</i> (Del.) Benth. in <i>Sorghum bicolor</i> (L.) Moench. The relationship with strigolactones. Pest Management Science, 2016, 72, 2082-2090.	3.4	28
179	Strigolactones: a new musician in the orchestra of plant hormones. Botany, 2011, 89, 827-840.	1.0	27
180	Tomato strigolactones. Plant Signaling and Behavior, 2013, 8, e22785.	2.4	26

#	Article	IF	CITATIONS
181	Transcriptional and metabolite analysis reveal a shift in direct and indirect defences in response to spider-mite infestation in cucumber (Cucumis sativus). Plant Molecular Biology, 2020, 103, 489-505.	3.9	26
182	Kauniolide synthase is a P450 with unusual hydroxylation and cyclization-elimination activity. Nature Communications, 2018, 9, 4657.	12.8	24
183	Metabolic interactions in beneficial microbe recruitment by plants. Current Opinion in Biotechnology, 2021, 70, 241-247.	6.6	24
184	Engineering the essence of plants. Nature Biotechnology, 2006, 24, 1359-1361.	17.5	23
185	Low-Phosphate Induction of Plastidal Stromules Is Dependent on Strigolactones But Not on the Canonical Strigolactone Signaling Component MAX2. Plant Physiology, 2016, 172, 2235-2244.	4.8	23
186	Engineering storage capacity for volatile sesquiterpenes in <i>Nicotiana benthamiana</i> leaves. Plant Biotechnology Journal, 2018, 16, 1997-2006.	8.3	23
187	Distinct roles for strigolactones in cyst nematode parasitism of Arabidopsis roots. European Journal of Plant Pathology, 2019, 154, 129-140.	1.7	23
188	A Trichomeâ€6pecific Linoleate Lipoxygenase Expressed During Pyrethrin Biosynthesis in Pyrethrum. Lipids, 2013, 48, 1005-1015.	1.7	22
189	Strigolactones and parasitic weed management 50 years after the discovery of the first natural strigolactone <i>strigol</i> : status and outlook. Pest Management Science, 2016, 72, 2013-2015.	3.4	22
190	Removal of phytotoxic compounds from torrefied grass fibres by plant-beneficial microorganisms. FEMS Microbiology Ecology, 2008, 66, 158-166.	2.7	21
191	Artemisinin production and precursor ratio in full grown Artemisia annua L. plants subjected to external stress. Planta, 2013, 237, 955-966.	3.2	21
192	Induction of Germination. , 2013, , 167-194.		21
193	Integration of omics data to unravel root microbiome recruitment. Current Opinion in Biotechnology, 2021, 70, 255-261.	6.6	20
194	The sesquiterpene α-copaene is induced in tomato leaves infected byBotrytis cinerea. Journal of Plant Interactions, 2005, 1, 163-170.	2.1	19
195	Automated Signal Processing Applied to Volatile-Based Inspection of Greenhouse Crops. Sensors, 2010, 10, 7122-7133.	3.8	19
196	Comparative antifeedant activities of polygodial and pyrethrins against whiteflies (<i>Bemisia) Tj ETQq0 0 0 rgB1</i>	Qverlock	₹ 10 Tf 50 14
197	Large-Scale Evolutionary Analysis of Genes and Supergene Clusters from Terpenoid Modular Pathways Provides Insights into Metabolic Diversification in Flowering Plants. PLoS ONE, 2015, 10, e0128808.	2.5	19

¹⁹⁸The α-Terpineol to 1,8-Cineole Cyclization Reaction of Tobacco Terpene Synthases. Plant Physiology,
2016, 172, 2120-2131.4.819

#	Article	IF	CITATIONS
199	Insights into Heterologous Biosynthesis of Arteannuin B and Artemisinin in Physcomitrella patens. Molecules, 2019, 24, 3822.	3.8	19
200	The role of strigolactones in P deficiency induced transcriptional changes in tomato roots. BMC Plant Biology, 2021, 21, 349.	3.6	19
201	Terpene synthases in cucumber (<i>Cucumis sativus</i>) and their contribution to herbivoreâ€induced volatile terpenoid emission. New Phytologist, 2022, 233, 862-877.	7.3	19
202	The tomato cytochrome <scp>P450 CYP712G1</scp> catalyses the double oxidation of orobanchol <i>en route</i> to the rhizosphere signalling strigolactone, solanacol. New Phytologist, 2022, 235, 1884-1899.	7.3	19
203	Relationship Between Assimilate Supply and Essential Oil Accumulation in Annual and Biennial Caraway (<i>Carum carvi</i> L.). Journal of Essential Oil Research, 1993, 5, 143-152.	2.7	18
204	Design, Synthesis and Biological Evaluation of Strigolactone and Strigolactam Derivatives for Potential Crop Enhancement Applications in Modern Agriculture. Chimia, 2019, 73, 549.	0.6	17
205	Tissue specific expression and genomic organization of bitter sesquiterpene lactone biosynthesis in Cichorium intybus L. (Asteraceae). Industrial Crops and Products, 2019, 129, 253-260.	5.2	16
206	The Effect of Virulence and Resistance Mechanisms on the Interactions between Parasitic Plants and Their Hosts. International Journal of Molecular Sciences, 2020, 21, 9013.	4.1	16
207	Engineered Orange Ectopically Expressing the Arabidopsis β-Caryophyllene Synthase Is Not Attractive to Diaphorina citri, the Vector of the Bacterial Pathogen Associated to Huanglongbing. Frontiers in Plant Science, 2021, 12, 641457.	3.6	16
208	Strigolactones affect development in primitive plants. The missing link between plants and arbuscular mycorrhizal fungi?. New Phytologist, 2012, 195, 730-733.	7.3	15
209	Communication in the Rhizosphere, a Target for Pest Management. , 2012, , 109-133.		15
210	Genetical, developmental and spatial factors influencing parthenolide and its precursor costunolide in feverfew (Tanacetum parthenium L. Schulz Bip.). Industrial Crops and Products, 2013, 47, 270-276.	5.2	15
211	Identification of a drimenol synthase and drimenol oxidase from <i>Persicaria hydropiper</i> , involved in the biosynthesis of insect deterrent drimanes. Plant Journal, 2017, 90, 1052-1063.	5.7	15
212	Strigolactone Biosynthesis and Signal Transduction. , 2019, , 1-45.		15
213	Emission index for evaluation of volatile organic compounds emitted from tomato plants in greenhouses. Biosystems Engineering, 2012, 113, 220-228.	4.3	14
214	Differential Activity of Striga hermonthica Seed Germination Stimulants and Gigaspora rosea Hyphal Branching Factors in Rice and Their Contribution to Underground Communication. PLoS ONE, 2014, 9, e104201.	2.5	14
215	Production of guaianolides in Agrobacterium rhizogenes - transformed chicory regenerants flowering in vitro. Industrial Crops and Products, 2014, 60, 52-59.	5.2	13

216 Identification of the Bisabolol Synthase in the Endangered Candeia Tree (Eremanthus erythropappus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

#	Article	IF	CITATIONS
217	Substrate promiscuity of enzymes from the sesquiterpene biosynthetic pathways from Artemisia annua and Tanacetum parthenium allows for novel combinatorial sesquiterpene production. Metabolic Engineering, 2019, 54, 12-23.	7.0	13
218	Novel routes towards bioplastics from plants: elucidation of the methylperillate biosynthesis pathway from Salvia dorisiana trichomes. Journal of Experimental Botany, 2020, 71, 3052-3065.	4.8	13
219	SNARE-RNAi Results in Higher Terpene Emission from Ectopically Expressed Caryophyllene Synthase in Nicotiana benthamiana. Molecular Plant, 2015, 8, 454-466.	8.3	12
220	Parasitic Plants <i>Striga</i> and <i>Phelipanche</i> Dependent upon Exogenous Strigolactones for Germination Have Retained Genes for Strigolactone Biosynthesis. American Journal of Plant Sciences, 2015, 06, 1151-1166.	0.8	12
221	Floral Volatiles in Parasitic Plants of the Orobanchaceae. Ecological and Taxonomic Implications. Frontiers in Plant Science, 2016, 7, 312.	3.6	12
222	Strigolactones and Parasitic Plants. , 2019, , 89-120.		12
223	Agrobacterium rhizogenes transformed calli of the holoparasitic plant Phelipanche ramosa maintain parasitic competence. Plant Cell, Tissue and Organ Culture, 2018, 135, 321-329.	2.3	11
224	Integrating structure-based machine learning and co-evolution to investigate specificity in plant sesquiterpene synthases. PLoS Computational Biology, 2021, 17, e1008197.	3.2	11
225	Strigolactones regulate sepal senescence in Arabidopsis. Journal of Experimental Botany, 2021, 72, 5462-5477.	4.8	11
226	On the role of dauer in the adaptation of nematodes to a parasitic lifestyle. Parasites and Vectors, 2021, 14, 554.	2.5	11
227	Molecular Cloning and Characterization of a Broad Substrate Terpenoid Oxidoreductase from Artemisia annua. Plant and Cell Physiology, 2010, 51, 1219-1228.	3.1	10
228	The santalene synthase from Cinnamomum camphora: Reconstruction of a sesquiterpene synthase from a monoterpene synthase. Archives of Biochemistry and Biophysics, 2020, 695, 108647.	3.0	10
229	Identification of the SAAT Gene Involved in Strawberry Flavor Biogenesis by Use of DNA Microarrays. Plant Cell, 2000, 12, 647.	6.6	9
230	Silencing of germacrene A synthase genes reduces guaianolide oxalate content in <i>Cichorium intybus</i> L GM Crops and Food, 2020, 11, 54-66.	3.8	9
231	Are sesquiterpene lactones the elusive KARRIKIN-INSENSITIVE2 ligand?. Planta, 2021, 253, 54.	3.2	9
232	Drought tolerance in selected aerobic and upland rice varieties is driven by different metabolic and antioxidative responses. Planta, 2021, 254, 13.	3.2	9
233	GERMINATION OF <i>STRIGA</i> AND CHEMICAL SIGNALING INVOLVED: A TARGET FOR CONTROL METHODS., 2007, , 47-60.		9
234	Probing strigolactone perception mechanisms with rationally designed small-molecule agonists stimulating germination of root parasitic weeds. Nature Communications, 2022, 13, .	12.8	9

#	Article	IF	CITATIONS
235	Functional intron-derived miRNAs and host-gene expression in plants. Plant Methods, 2018, 14, 83.	4.3	8
236	Can biochemical traits bridge the gap between genomics and plant performance? A study in rice under drought. Plant Physiology, 2022, 189, 1139-1152.	4.8	8
237	The Effect of Host-Root-Derived Chemical Signals on the Germination of Parasitic Plants. , 0, , 39-54.		7
238	UPLC-MS/MS analysis and biological activity of the potato cyst nematode hatching stimulant, solanoeclepin A, in the root exudate of Solanum spp Planta, 2021, 254, 112.	3.2	7
239	Metabolic Engineering of Terpenoid Biosynthesis in Plants. , 2007, , 219-236.		6
240	Research to Improve Artemisinin Production for use in the Preparation of Anti-Malarial Drugs. , 0, , 275-290.		6
241	Molecular Engineering of Floral Scent. , 2006, , 321-337.		6
242	Assessment of pleiotropic transcriptome perturbations in Arabidopsis engineered for indirect insect defence. BMC Plant Biology, 2014, 14, 170.	3.6	5
243	The Use of Metabolomics to Elucidate Resistance Markers against Damson-Hop Aphid. Journal of Chemical Ecology, 2018, 44, 711-726.	1.8	5
244	Dissecting the pine tree green chemical factory. Journal of Experimental Botany, 2019, 70, 4-6.	4.8	5
245	Parasitic plants: physiology, development, signaling, and ecosystem interactions. Plant Physiology, 2021, 185, 1267-1269.	4.8	5
246	Characterization of maize root microbiome in two different soils by minimizing plant DNA contamination in metabarcoding analysis. Biology and Fertility of Soils, 2021, 57, 731-737.	4.3	5
247	Plant lipids enticed fungi to mutualism. Science, 2021, 372, 789-790.	12.6	4
248	Characterization of growth and development of sorghum genotypes with differential susceptibility to <i>Striga hermonthica</i> . Journal of Experimental Botany, 2021, 72, 7970-7983.	4.8	4
249	Strigolactone: Pflanzenhormone mit vielversprechenden Eigenschaften. Angewandte Chemie, 2019, 131, 12909-12917.	2.0	3
250	Genome-Wide Analysis Reveals Transcription Factors Regulated by Spider-Mite Feeding in Cucumber (Cucumis sativus). Plants, 2020, 9, 1014.	3.5	2
251	High-energy-level metabolism and transport occur at the transition from closed to open flowers. Plant Physiology, 2022, 190, 319-339.	4.8	2
252	Over-expression of a YUCCA-Like Gene Results in Altered Shoot and Stolon Branching and Reduced Potato Tuber Size. Potato Research, 0, , .	2.7	2

#	Article	IF	CITATIONS
253	Can witchweed be wiped out?. Science, 2018, 362, 1248-1249.	12.6	1
254	Editorial overview: Biotechnology to help understand and harness biotic interactions in plants. Current Opinion in Biotechnology, 2021, 70, vi-viii.	6.6	0
255	Strigolactones: A Cry for Help Results in Fatal Attraction. Is Escape Possible?. , 2012, , 199-211.		0