Li Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7615743/publications.pdf

Version: 2024-02-01

713013 758635 24 886 12 21 citations h-index g-index papers 25 25 25 1580 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Polygenic Risk Scores have high diagnostic capacity in ankylosing spondylitis. Annals of the Rheumatic Diseases, 2021, 80, 1168-1174.	0.5	49
2	Assessment of Neuropathic Pain in Ankylosing Spondylitis: Prevalence and Characteristics. Pain and Therapy, 2021, 10, 1467-1479.	1.5	4
3	Prehypertension exercise training attenuates hypertension and cardiac hypertrophy accompanied by temporal changes in the levels of angiotensin II and angiotensin (1-7). Hypertension Research, 2019, 42, 1745-1756.	1.5	11
4	FOXC1 upâ€regulates the expression of tollâ€like receptors in myocardial ischaemia. Journal of Cellular and Molecular Medicine, 2019, 23, 7566-7580.	1.6	15
5	Tollâ€ike receptor 3 controls QT interval on the electrocardiogram by targeting the degradation of Kv4.2/4.3 channels in the endoplasmic reticulum. FASEB Journal, 2019, 33, 6197-6208.	0.2	5
6	Differential cardiac hypertrophy and signaling pathways in pressure versus volume overload American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, ajpheart.00212	1.5	67
7	TLR3 contributes to persistent autophagy and heart failure in mice after myocardial infarction. Journal of Cellular and Molecular Medicine, 2018, 22, 395-408.	1.6	34
8	Mechanistic and therapeutic perspectives for cardiac arrhythmias: beyond ion channels. Science China Life Sciences, 2017, 60, 348-355.	2.3	4
9	LRP6 acts as a scaffold protein in cardiac gap junction assembly. Nature Communications, 2016, 7, 11775.	5. 8	30
10	Upâ€regulated <scp>TLR</scp> 4 in cardiomyocytes exacerbates heart failure after longâ€term myocardial infarction. Journal of Cellular and Molecular Medicine, 2015, 19, 2728-2740.	1.6	129
11	miR-134 Modulates the Proliferation of Human Cardiomyocyte Progenitor Cells by Targeting Meis2. International Journal of Molecular Sciences, 2015, 16, 25199-25213.	1.8	23
12	Cold-Inducible RNA-Binding Protein Regulates Cardiac Repolarization by Targeting Transient Outward Potassium Channels. Circulation Research, 2015, 116, 1655-1659.	2.0	42
13	Innate immunity and cardiomyocytes in ischemic heart disease. Life Sciences, 2014, 100, 1-8.	2.0	71
14	Extracellular HSP60 induces inflammation through activating and up-regulating TLRs in cardiomyocytes. Cardiovascular Research, 2013, 98, 391-401.	1.8	95
15	ANGIOTENSIN II TYPE 1 RECEPTOR MEDIATED CARDIOMYOCYTE AUTOPHAGY INDUCED BY MECHANICAL STRESS THROUGH P38 MAPK. Heart, 2012, 98, E31.1-E31.	1.2	O
16	Overexpression of microRNA-378 attenuates ischemia-induced apoptosis by inhibiting caspase-3 expression in cardiac myocytes. Apoptosis: an International Journal on Programmed Cell Death, 2012, 17, 410-423.	2.2	145
17	Reply to "Letter to the Editor: â€~Understanding the WHI gap'― Physiological Genomics, 2012, 44, 330-3	33 0 0	0
18	Increased proâ€inflammatory gene expression in aged ovariectomized female Norwayâ€Brown rat with late estrogen replacement. FASEB Journal, 2010, 24, 1036.10.	0.2	0

#	Article	IF	CITATION
19	HSP60 in heart failure: abnormal distribution and role in cardiac myocyte apoptosis. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H2238-H2247.	1.5	129
20	Urotensin-II activates l-arginine/nitric oxide pathway in isolated rat aortic adventitia. Peptides, 2004, 25, 1977-1984.	1.2	17
21	Effects of endothelin-1 antagonist BQ610 on hypoxia-induced injury and [Ca2+]i changes in cultured neonatal rat cardiomyocytes. Drug Development Research, 2003, 58, 74-78.	1.4	3
22	Effects of endothelin-1 mRNA antisense oligodeoxynucleotides on ischemic arrhythmias in isolated rat hearts. Drug Development Research, 2003, 58, 138-144.	1.4	1
23	Effects of Different Preproendothelin-1 mRNA Anti-Sense Oligodeoxynucleotides on Ischemic Arrhythmias in Rats. Journal of Cardiovascular Pharmacology, 2002, 39, 590-599.	0.8	6
24	Involvement of endothelin-1 in acute ischaemic arrhythmias in cats and rats. Clinical Science, 2002, 103, 228S-232S.	1.8	6