
Sara S. Nunes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7615511/publications.pdf Version: 2024-02-01

SADA S NUMES

#	Article	IF	CITATIONS
1	Cell-based therapies for vascular regeneration: Past, present and future. , 2022, 231, 107976.		9
2	GP2-enriched pancreatic progenitors give rise to functional beta cells inÂvivo and eliminate the risk of teratoma formation. Stem Cell Reports, 2022, 17, 964-978.	2.3	19
3	State of the field: cellular and exosomal therapeutic approaches in vascular regeneration. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H647-H680.	1.5	13
4	Generation of mature compact ventricular cardiomyocytes from human pluripotent stem cells. Nature Communications, 2021, 12, 3155.	5.8	93
5	Microvessels support engraftment and functionality of human islets and hESC-derived pancreatic progenitors in diabetes models. Cell Stem Cell, 2021, 28, 1936-1949.e8.	5.2	47
6	A 3-D human model of complex cardiac arrhythmias. Acta Biomaterialia, 2021, 132, 149-161.	4.1	15
7	Compounding effects of diabetes in vessel formation in microvessel fragment–based engineered constructs. , 2021, , 375-387.		1
8	209.5: Microvessels Support the In Vivo Engraftment and Function of Pancreatic Cells in Cell Replacement Therapy. Transplantation, 2021, 105, S15-S15.	0.5	0
9	Engineered Human Cardiac Microtissues: The State-of-the-(He)art. Stem Cells, 2021, 39, 1008-1016.	1.4	8
10	Human cardiac fibrosis-on-a-chip model recapitulates disease hallmarks and can serve as a platform for drug testing. Biomaterials, 2020, 233, 119741.	5.7	111
11	Endothelium-mediated contributions to fibrosis. Seminars in Cell and Developmental Biology, 2020, 101, 78-86.	2.3	50
12	Transplanted microvessels improve pluripotent stem cell–derived cardiomyocyte engraftment and cardiac function after infarction in rats. Science Translational Medicine, 2020, 12, .	5.8	56
13	Type I Diabetes Delays Perfusion and Engraftment of 3D Constructs by Impinging on Angiogenesis; Which can be Rescued by Hepatocyte Growth Factor Supplementation. Cellular and Molecular Bioengineering, 2019, 12, 443-454.	1.0	13
14	Human Stem Cell-Derived Cardiac Model of Chronic Drug Exposure. ACS Biomaterials Science and Engineering, 2017, 3, 1911-1921.	2.6	20
15	Diabetes impairs arterio-venous specification in engineered vascular tissues in a perivascular cell recruitment-dependent manner. Biomaterials, 2017, 119, 23-32.	5.7	17
16	Maturation of Human Stem Cell-derived Cardiomyocytes in Biowires Using Electrical Stimulation. Journal of Visualized Experiments, 2017, , .	0.2	17
17	Bioengineering Approaches to Mature Human Pluripotent Stem Cell-Derived Cardiomyocytes. Frontiers in Cell and Developmental Biology, 2017, 5, 19.	1.8	31
18	Vascularization strategies of engineered tissues and their application in cardiac regeneration. Advanced Drug Delivery Reviews, 2016, 96, 183-194.	6.6	116

SARA S. NUNES

#	Article	IF	CITATIONS
19	Biowire platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Methods, 2016, 101, 21-26.	1.9	58
20	Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nature Materials, 2016, 15, 669-678.	13.3	471
21	Overview of hydrogel-based strategies for application in cardiac tissue regeneration. Biomedical Materials (Bristol), 2015, 10, 034005.	1.7	24
22	Blood Vessel Maturation in Health and Disease and its Implications for Vascularization of Engineered Tissues. Critical Reviews in Biomedical Engineering, 2015, 43, 433-454.	0.5	11
23	The Role of Tissue Engineering and Biomaterials in Cardiac Regenerative Medicine. Canadian Journal of Cardiology, 2014, 30, 1307-1322.	0.8	49
24	Bioreactor for modulation of cardiac microtissue phenotype by combined static stretch and electrical stimulation. Biofabrication, 2014, 6, 024113.	3.7	53
25	Design and Fabrication of Biological Wires. Methods in Molecular Biology, 2014, 1181, 157-165.	0.4	1
26	Topological and electrical control of cardiac differentiation and assembly. Stem Cell Research and Therapy, 2013, 4, 14.	2.4	36
27	Dissecting the Role of Human Embryonic Stem Cell–Derived Mesenchymal Cells in Human Umbilical Vein Endothelial Cell Network Stabilization in Three-Dimensional Environments. Tissue Engineering - Part A, 2013, 19, 211-223.	1.6	17
28	Biowire: a platform for maturation of human pluripotent stem cell–derived cardiomyocytes. Nature Methods, 2013, 10, 781-787.	9.0	784
29	Maturation of stem cell-derived human heart tissue by mimicking fetal heart rate. Future Cardiology, 2013, 9, 751-754.	0.5	6
30	Engineering Cardiac Tissues from Pluripotent Stem Cells for Drug Screening and Studies of Cell Maturation. Israel Journal of Chemistry, 2013, 53, 680-694.	1.0	1
31	Generation of a functional liver tissue mimic using adipose stromal vascular fraction cell-derived vasculatures. Scientific Reports, 2013, 3, 2141.	1.6	50
32	Fusible Core Molding for the Fabrication of Branched, Perfusable, Three-Dimensional Microvessels for Vascular Tissue Engineering. International Journal of Artificial Organs, 2013, 36, 159-165.	0.7	6
33	Manipulating the Microvasculature and Its Microenvironment. Critical Reviews in Biomedical Engineering, 2013, 41, 91-123.	0.5	22
34	Determinants of Microvascular Network Topologies in Implanted Neovasculatures. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 5-14.	1.1	80
35	Cardiac tissue engineering: current state and perspectives. Frontiers in Bioscience - Landmark, 2012, 17, 1533.	3.0	47
36	Vessel Arterial-Venous Plasticity in Adult Neovascularization. PLoS ONE, 2011, 6, e27332.	1.1	33

SARA S. NUNES

#	Article	IF	CITATIONS
37	Tenascin-C in the extracellular matrix promotes the selection of highly proliferative and tubulogenesis-defective endothelial cells. Experimental Cell Research, 2011, 317, 2073-2085.	1.2	22
38	Stem Cell-Based Cardiac Tissue Engineering. Journal of Cardiovascular Translational Research, 2011, 4, 592-602.	1.1	43
39	Microvascular Mural Cell Functionality of Human Embryonic Stem Cell-Derived Mesenchymal Cells. Tissue Engineering - Part A, 2011, 17, 1537-1548.	1.6	27
40	Angiogenic potential of microvessel fragments is independent of the tissue of origin and can be influenced by the cellular composition of the implants. Microcirculation, 2010, 17, no-no.	1.0	49
41	Angiogenesis in a Microvascular Construct for Transplantation Depends on the Method of Chamber Circulation. Tissue Engineering - Part A, 2010, 16, 795-805.	1.6	32
42	Implanted microvessels progress through distinct neovascularization phenotypes. Microvascular Research, 2010, 79, 10-20.	1.1	81
43	Syndecanâ€4 contributes to endothelial tubulogenesis through interactions with two motifs inside the proâ€angiogenic Nâ€terminal domain of thrombospondinâ€1. Journal of Cellular Physiology, 2008, 214, 828-837.	2.0	51