Michael R Hayden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/76154/publications.pdf

Version: 2024-02-01

765 papers 72,901 citations

131 h-index 227 g-index

793 all docs

793 docs citations

times ranked

793

41418 citing authors

#	Article	IF	Citations
1	Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nature Genetics, 1999, 22, 336-345.	21.4	1,609
2	Loss of Huntingtin-Mediated BDNF Gene Transcription in Huntington's Disease. Science, 2001, 293, 493-498.	12.6	1,191
3	Huntington disease. Nature Reviews Disease Primers, 2015, 1, 15005.	30.5	1,031
4	The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nature Genetics, 1993, 4, 398-403.	21.4	1,002
5	Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines. Nature Neuroscience, 2002, 5, 731-736.	14.8	925
6	Mutations in HFE2 cause iron overload in chromosome 1q–linked juvenile hemochromatosis. Nature Genetics, 2004, 36, 77-82.	21.4	900
7	Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nature Genetics, 2003, 35, 76-83.	21.4	807
8	A YAC Mouse Model for Huntington's Disease with Full-Length Mutant Huntingtin, Cytoplasmic Toxicity, and Selective Striatal Neurodegeneration. Neuron, 1999, 23, 181-192.	8.1	789
9	Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell, 1995, 81, 811-823.	28.9	758
10	A new model for prediction of the age of onset and penetrance for Huntington's disease based on CAG length. Clinical Genetics, 2004, 65, 267-277.	2.0	738
11	Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Human Molecular Genetics, 2003, 12, 1555-1567.	2.9	713
12	Detection of Huntington's disease decades before diagnosis: the Predict-HD study. Journal of Neurology, Neurosurgery and Psychiatry, 2008, 79, 874-880.	1.9	696
13	A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nature Genetics, 2001, 29, 166-173.	21.4	635
14	Cleavage at the Caspase-6 Site Is Required for Neuronal Dysfunction and Degeneration Due to Mutant Huntingtin. Cell, 2006, 125, 1179-1191.	28.9	600
15	A Worldwide Study of the Huntington's Disease Mutation: The Sensitivity and Specificity of Measuring CAG Repeats. New England Journal of Medicine, 1994, 330, 1401-1406.	27.0	563
16	A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease. Journal of Experimental Medicine, 2008, 205, 1869-1877.	8.5	559
17	Increased Sensitivity to N-Methyl-D-Aspartate Receptor-Mediated Excitotoxicity in a Mouse Model of Huntington's Disease. Neuron, 2002, 33, 849-860.	8.1	553
18	Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nature Genetics, 1996, 13, 442-449.	21.4	545

#	Article	IF	CITATIONS
19	Caspase Cleavage of Gene Products Associated with Triplet Expansion Disorders Generates Truncated Fragments Containing the Polyglutamine Tract. Journal of Biological Chemistry, 1998, 273, 9158-9167.	3.4	499
20	Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nature Medicine, 2011, 17, 377-382.	30.7	467
21	Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nature Genetics, 1998, 18, 150-154.	21.4	456
22	Mutant Huntingtin Impairs Axonal Trafficking in Mammalian Neurons In Vivo and In Vitro. Molecular and Cellular Biology, 2004, 24, 8195-8209.	2.3	454
23	Early Increase in Extrasynaptic NMDA Receptor Signaling and Expression Contributes to Phenotype Onset in Huntington's Disease Mice. Neuron, 2010, 65, 178-190.	8.1	448
24	The Psychological Consequences of Predictive Testing for Huntington's Disease. New England Journal of Medicine, 1992, 327, 1401-1405.	27.0	447
25	Intestinal ABCA1 directly contributes to HDL biogenesis in vivo. Journal of Clinical Investigation, 2006, 116, 1052-1062.	8.2	447
26	Huntingtin and Huntingtin-Associated Protein 1 Influence Neuronal Calcium Signaling Mediated by Inositol-(1,4,5) Triphosphate Receptor Type 1. Neuron, 2003, 39, 227-239.	8.1	442
27	Mutant frizzled-4 disrupts retinal angiogenesis in familial exudative vitreoretinopathy. Nature Genetics, 2002, 32, 326-330.	21.4	409
28	Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I. Journal of Clinical Investigation, 2005, 115, 1333-1342.	8.2	407
29	Lossâ€ofâ€function mutations in the Na _v 1.7 gene underlie congenital indifference to pain in multiple human populations. Clinical Genetics, 2007, 71, 311-319.	2.0	404
30	Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature, 2004, 429, 75-79.	27.8	395
31	Somatic and gonadal mosaicism of the Huntington disease gene CAG repeat in brain and sperm. Nature Genetics, 1994, 6, 409-414.	21.4	383
32	Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nature Medicine, 2009, 15, 1407-1413.	30.7	381
33	\hat{l}^2 -cell ABCA1 influences insulin secretion, glucose homeostasis and response to thiazolidinedione treatment. Nature Medicine, 2007, 13, 340-347.	30.7	366
34	HIP1, a human homologue of S. cerevisiae Sla2p, interacts with membrane-associated huntingtin in the brain. Nature Genetics, 1997, 16, 44-53.	21.4	353
35	Wild-Type Huntingtin Protects from Apoptosis Upstream of Caspase-3. Journal of Neuroscience, 2000, 20, 3705-3713.	3.6	349
36	Mutations in the ABC 1 gene in familial HDL deficiency with defective cholesterol efflux. Lancet, The, 1999, 354, 1341-1346.	13.7	345

#	Article	IF	CITATIONS
37	Caspase Cleavage of Mutant Huntingtin Precedes Neurodegeneration in Huntington's Disease. Journal of Neuroscience, 2002, 22, 7862-7872.	3.6	344
38	IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. Journal of Cell Biology, 2009, 187, 1083-1099.	5.2	343
39	Pharmacogenomic Prediction of Anthracycline-Induced Cardiotoxicity in Children. Journal of Clinical Oncology, 2012, 30, 1422-1428.	1.6	341
40	Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington's disease. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2602-2607.	7.1	336
41	More Codeine Fatalities After Tonsillectomy in North American Children. Pediatrics, 2012, 129, e1343-e1347.	2.1	334
42	Deficiency of ABCA1 Impairs Apolipoprotein E Metabolism in Brain. Journal of Biological Chemistry, 2004, 279, 41197-41207.	3.4	321
43	Inhibiting Caspase Cleavage of Huntingtin Reduces Toxicity and Aggregate Formation in Neuronal and Nonneuronal Cells. Journal of Biological Chemistry, 2000, 275, 19831-19838.	3.4	320
44	Relationship between stearoyl-CoA desaturase activity and plasma triglycerides in human and mouse hypertriglyceridemia. Journal of Lipid Research, 2002, 43, 1899-1907.	4.2	318
45	Huntingtin Is Ubiquitinated and Interacts with a Specific Ubiquitin-conjugating Enzyme. Journal of Biological Chemistry, 1996, 271, 19385-19394.	3.4	313
46	Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage. Human Molecular Genetics, 2007, 16, 1845-1861.	2.9	304
47	CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology, 2012, 78, 690-695.	1.1	303
48	The Influence of Huntingtin Protein Size on Nuclear Localization and Cellular Toxicity. Journal of Cell Biology, 1998, 141, 1097-1105.	5.2	300
49	Age and residual cholesterol efflux affect HDL cholesterol levels and coronary artery disease in ABCA1 heterozygotes. Journal of Clinical Investigation, 2000, 106, 1263-1270.	8.2	295
50	A one-hit model of cell death in inherited neuronal degenerations. Nature, 2000, 406, 195-199.	27.8	294
51	Cell death attenuation by `Usurpin', a mammalian DED-caspase homologue that precludes caspase-8 recruitment and activation by the CD-95 (Fas, APO-1) receptor complex. Cell Death and Differentiation, 1998, 5, 271-288.	11.2	293
52	Preparing for Preventive Clinical Trials. Archives of Neurology, 2006, 63, 883.	4.5	292
53	CAGâ€repeat length and the age of onset in Huntington disease (HD): A review and validation study of statistical approaches. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 397-408.	1.7	289
54	Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. Nature Genetics, 2009, 41, 1345-1349.	21.4	287

#	Article	IF	CITATIONS
55	Choosing an animal model for the study of Huntington's disease. Nature Reviews Neuroscience, 2013, 14, 708-721.	10.2	287
56	Premature Atherosclerosis in Patients with Familial Chylomicronemia Caused by Mutations in the Lipoprotein Lipase Gene. New England Journal of Medicine, 1996, 335, 848-854.	27.0	286
57	Pharmacogenetics of Neonatal Opioid Toxicity Following Maternal Use of Codeine During Breastfeeding: A Case–Control Study. Clinical Pharmacology and Therapeutics, 2009, 85, 31-35.	4.7	284
58	Restoration of Endothelial Function by Increasing High-Density Lipoprotein in Subjects With Isolated Low High-Density Lipoprotein. Circulation, 2003, 107, 2944-2948.	1.6	283
59	Cognitive Dysfunction Precedes Neuropathology and Motor Abnormalities in the YAC128 Mouse Model of Huntington's Disease. Journal of Neuroscience, 2005, 25, 4169-4180.	3.6	282
60	Common Genetic Variation in <i> ABCA1 < /i > Is Associated With Altered Lipoprotein Levels and a Modified Risk for Coronary Artery Disease. Circulation, 2001, 103, 1198-1205.</i>	1.6	280
61	Autophagy in Huntington disease and huntingtin in autophagy. Trends in Neurosciences, 2015, 38, 26-35.	8.6	277
62	Recruitment and activation of caspase-8 by the Huntingtin-interacting protein Hip-1 and a novel partner Hippi. Nature Cell Biology, 2002, 4, 95-105.	10.3	274
63	A Worldwide Assessment of the Frequency of Suicide, Suicide Attempts, or Psychiatric Hospitalization after Predictive Testing for Huntington Disease. American Journal of Human Genetics, 1999, 64, 1293-1304.	6.2	271
64	Huntingtin-Interacting Protein HIP14 Is a Palmitoyl Transferase Involved in Palmitoylation and Trafficking of Multiple Neuronal Proteins. Neuron, 2004, 44, 977-986.	8.1	271
65	Palmitoylation of huntingtin by HIP14is essential for its trafficking and function. Nature Neuroscience, 2006, 9, 824-831.	14.8	266
66	ABCA1 mRNA and Protein Distribution Patterns Predict Multiple Different Roles and Levels of Regulation. Laboratory Investigation, 2002, 82, 273-283.	3.7	265
67	Molecular analysis of new mutations for Huntington's disease: intermediate alleles and sex of origin effects. Nature Genetics, 1993, 5, 174-179.	21.4	248
68	Absence of behavioral abnormalities and neurodegeneration in vivo despite widespread neuronal huntingtin inclusions. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11402-11407.	7.1	247
69	NMDA receptor function in mouse models of Huntington disease. Journal of Neuroscience Research, 2001, 66, 525-539.	2.9	246
70	When good drugs go bad. Nature, 2007, 446, 975-977.	27.8	246
71	Potent and Selective Antisense Oligonucleotides Targeting Single-Nucleotide Polymorphisms in the Huntington Disease Gene / Allele-Specific Silencing of Mutant Huntingtin. Molecular Therapy, 2011, 19, 2178-2185.	8.2	246
72	Huntington's Chorea. , 1981, , .		246

#	Article	IF	CITATIONS
73	Pivotal role of ABCA1 in reverse cholesterol transport influencing HDL levels and susceptibility to atherosclerosis. Journal of Lipid Research, 2001, 42, 1717-1726.	4.2	244
74	Inhibition of Calpain Cleavage of Huntingtin Reduces Toxicity. Journal of Biological Chemistry, 2004, 279, 20211-20220.	3.4	242
75	Deranged neuronal calcium signaling and Huntington disease. Biochemical and Biophysical Research Communications, 2004, 322, 1310-1317.	2.1	236
76	A lipoprotein lipase mutation (Asn291Ser) is associated with reduced HDL cholesterol levels in premature atherosclerosis. Nature Genetics, 1995, 10, 28-34.	21.4	235
77	Efflux and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1322-1332.	2.4	231
78	Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataract. Nature Genetics, 2002, 31, 276-278.	21.4	229
79	Predictive testing for Huntington disease in Canada: Adverse effects and unexpected results in those receiving a decreased risk. American Journal of Medical Genetics Part A, 1992, 42, 508-515.	2.4	225
80	Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I. Journal of Clinical Investigation, 2005, 115, 1333-1342.	8.2	225
81	BDNF Overexpression in the Forebrain Rescues Huntington's Disease Phenotypes in YAC128 Mice. Journal of Neuroscience, 2010, 30, 14708-14718.	3.6	223
82	Increased ABCA1 activity protects against atherosclerosis. Journal of Clinical Investigation, 2002, 110, 35-42.	8.2	216
83	A coding variant in RARG confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer. Nature Genetics, 2015, 47, 1079-1084.	21.4	214
84	Kennedy's Disease. Journal of Neurochemistry, 1999, 72, 185-195.	3.9	211
85	Wild-Type Huntingtin Reduces the Cellular Toxicity of Mutant Huntingtin In Vivo. American Journal of Human Genetics, 2001, 68, 313-324.	6.2	210
86	CAG Expansion in the Huntington Disease Gene Is Associated with a Specific and Targetable Predisposing Haplogroup. American Journal of Human Genetics, 2009, 84, 351-366.	6.2	204
87	The Absence of ABCA1 Decreases Soluble ApoE Levels but Does Not Diminish Amyloid Deposition in Two Murine Models of Alzheimer Disease. Journal of Biological Chemistry, 2005, 280, 43243-43256.	3.4	203
88	An Actin-Binding Protein of the Sla2/Huntingtin Interacting Protein 1 Family Is a Novel Component of Clathrin-Coated Pits and Vesicles. Journal of Cell Biology, 1999, 147, 1503-1518.	5.2	202
89	Intramuscular Administration of AAV1-Lipoprotein Lipase ^{S447X} Lowers Triglycerides in Lipoprotein Lipase–Deficient Patients. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 2303-2304.	2.4	201
90	Expanded polyglutamines in Caenorhabditis elegans cause axonal abnormalities and severe dysfunction of PLM mechanosensory neurons without cell death. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 13318-13323.	7.1	199

#	Article	IF	CITATIONS
91	Clinical markers of early disease in persons near onset of Huntington's disease. Neurology, 2001, 57, 658-662.	1.1	197
92	Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington's disease. Cell Death and Differentiation, 2004, 11, 424-438.	11.2	193
93	Molecular analysis of juvenile Huntington disease: the major influence on (CAG)n repeat length is the sex of the affected parent. Human Molecular Genetics, 1993, 2, 1535-1540.	2.9	189
94	HIP14, a novel ankyrin domain-containing protein, links huntingtin to intracellular trafficking and endocytosis. Human Molecular Genetics, 2002, 11, 2815-2828.	2.9	189
95	Recommendations for genetic testing to reduce the incidence of anthracyclineâ€induced cardiotoxicity. British Journal of Clinical Pharmacology, 2016, 82, 683-695.	2.4	188
96	Association between increased arterial-wall thickness and impairment in ABCA1-driven cholesterol efflux: an observational study. Lancet, The, 2002, 359, 37-41.	13.7	186
97	Beyond disgust: impaired recognition of negative emotions prior to diagnosis in Huntington's disease. Brain, 2007, 130, 1732-1744.	7.6	181
98	DNA haplotype analysis of Huntington disease reveals clues to the origins and mechanisms of CAG expansion and reasons for geographic variations of prevalence. Human Molecular Genetics, 1994, 3, 2103-2114.	2.9	178
99	Human ABCA1 BAC Transgenic Mice Show Increased High Density Lipoprotein Cholesterol and ApoAl-dependent Efflux Stimulated by an Internal Promoter Containing Liver X Receptor Response Elements in Intron 1. Journal of Biological Chemistry, 2001, 276, 33969-33979.	3.4	176
100	HIP1 Functions in Clathrin-mediated Endocytosis through Binding to Clathrin and Adaptor Protein 2. Journal of Biological Chemistry, 2001, 276, 39271-39276.	3.4	174
101	Mutant Huntingtin Enhances Excitotoxic Cell Death. Molecular and Cellular Neurosciences, 2001, 17, 41-53.	2.2	173
102	Homozygosity for CAG mutation in Huntington disease is associated with a more severe clinical course. Brain, 2003, 126, 946-955.	7.6	173
103	Positron emission tomography in the early diagnosis of Huntington's disease. Neurology, 1986, 36, 888-888.	1.1	171
104	Subtype-Specific Enhancement of NMDA Receptor Currents by Mutant Huntingtin. Journal of Neurochemistry, 2008, 72, 1890-1898.	3.9	166
105	Validation of variants in <i>SLC28A3</i> and <i>UGT1A6</i> as genetic markers predictive of anthracyclineâ€induced cardiotoxicity in children. Pediatric Blood and Cancer, 2013, 60, 1375-1381.	1.5	166
106	Apolipoprotein B gene variants are involved in the determination of serum cholesterol levels: a study in normo- and hypelipidaemic individuals. Atherosclerosis, 1987, 67, 81-89.	0.8	165
107	Predictive testing for Huntington disease in Canada: The experience of those receiving an increased risk. American Journal of Medical Genetics Part A, 1992, 42, 499-507.	2.4	163
108	Macrophage ATP-Binding Cassette Transporter A1 Overexpression Inhibits Atherosclerotic Lesion Progression in Low-Density Lipoprotein Receptor Knockout Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 929-934.	2.4	163

#	Article	IF	Citations
109	Genetic and environmental factors affecting the incidence of coronary artery disease in heterozygous familial hypercholesterolemia Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, 1991, 11, 290-297.	3.9	160
110	Age-Dependent Alterations of Corticostriatal Activity in the YAC128 Mouse Model of Huntington Disease. Journal of Neuroscience, 2009, 29, 2414-2427.	3.6	160
111	A highly polymorphic locus very tightly linked to the Huntington's disease gene. Nature, 1988, 332, 734-736.	27.8	159
112	Small Changes, Big Impact. Neuroscientist, 2011, 17, 475-492.	3.5	159
113	Differential effect of the rs4149056 variant in SLCO1B1 on myopathy associated with simvastatin and atorvastatin. Pharmacogenomics Journal, 2012, 12, 233-237.	2.0	158
114	A CCG repeat polymorphism adjacent to the CAG repeat in the Huntington disease gene: implications for diagnostic accuracy and predictive testing. Human Molecular Genetics, 1994, 3, 65-67.	2.9	157
115	Huntingtin Bodies Sequester Vesicle-Associated Proteins by a Polyproline-Dependent Interaction. Journal of Neuroscience, 2004, 24, 269-281.	3.6	157
116	A missense mutation at codon 188 of the human lipoprotein lipase gene is a frequent cause of lipoprotein lipase deficiency in persons of different ancestries Journal of Clinical Investigation, 1990, 86, 728-734.	8.2	157
117	Selective degeneration and nuclear localization of mutant huntingtin in the YAC128 mouse model of Huntington disease. Human Molecular Genetics, 2005, 14, 3823-3835.	2.9	152
118	Potentiation of NMDA receptor-mediated excitotoxicity linked with intrinsic apoptotic pathway in YAC transgenic mouse model of Huntington's disease. Molecular and Cellular Neurosciences, 2004, 25, 469-479.	2.2	151
119	Automated deformation analysis in the YAC128 Huntington disease mouse model. NeuroImage, 2008, 39, 32-39.	4.2	150
120	Loss of wild-type huntingtin influences motor dysfunction and survival in the YAC128 mouse model of Huntington disease. Human Molecular Genetics, 2005, 14, 1379-1392.	2.9	149
121	A Genome Scan for Modifiers of Age at Onset in Huntington Disease: The HD MAPS Study. American Journal of Human Genetics, 2003, 73, 682-687.	6.2	148
122	Interaction of normal and expanded CAG repeat sizes influences age at onset of Huntington disease. , 2003, 119A, 279-282.		146
123	Wild-type huntingtin protects neurons from excitotoxicity. Journal of Neurochemistry, 2006, 96, 1121-1129.	3.9	145
124	Ethyl-EPA in Huntington disease: A double-blind, randomized, placebo-controlled trial. Neurology, 2005, 65, 286-292.	1.1	143
125	Predictive testing for Huntington disease: II. Demographic characteristics, life-style patterns, attitudes, and psychosocial assessments of the first fifty-one test candidates. American Journal of Medical Genetics Part A, 1989, 32, 217-224.	2.4	141
126	Lipoprotein Lipase S447X. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1236-1245.	2.4	140

#	Article	IF	CITATIONS
127	HTT haplotypes contribute to differences in Huntington disease prevalence between Europe and East Asia. European Journal of Human Genetics, 2011, 19, 561-566.	2.8	140
128	Variations on a Gene: Rare and Common Variants in ABCA1 and Their Impact on HDL Cholesterol Levels and Atherosclerosis. Annual Review of Nutrition, 2006, 26, 105-129.	10.1	139
129	Accumulation of N-terminal mutant huntingtin in mouse and monkey models implicated as a pathogenic mechanism in Huntington's disease. Human Molecular Genetics, 2008, 17, 2738-2751.	2.9	139
130	Neuronal palmitoyl acyl transferases exhibit distinct substrate specificity. FASEB Journal, 2009, 23, 2605-2615.	0.5	138
131	Rational design of antisense oligonucleotides targeting single nucleotide polymorphisms for potent and allele selective suppression of mutant Huntingtin in the CNS. Nucleic Acids Research, 2013, 41, 9634-9650.	14.5	138
132	Elevated brain 3-hydroxykynurenine and quinolinate levels in Huntington disease mice. Neurobiology of Disease, 2006, 23, 190-197.	4.4	137
133	Cholesterol Defect Is Marked across Multiple Rodent Models of Huntington's Disease and Is Manifest in Astrocytes. Journal of Neuroscience, 2010, 30, 10844-10850.	3.6	136
134	Prevention of depressive behaviour in the YAC128 mouse model of Huntington disease by mutation at residue 586 of huntingtin. Brain, 2008, 132, 919-932.	7.6	135
135	Predictive, preâ€natal and diagnostic genetic testing for Huntington's disease: the experience in Canada from 1987 to 2000. Clinical Genetics, 2003, 63, 462-475.	2.0	134
136	Identification of a Novel Gene (HSN2) Causing Hereditary Sensory and Autonomic Neuropathy Type II through the Study of Canadian Genetic Isolates. American Journal of Human Genetics, 2004, 74, 1064-1073.	6.2	133
137	Huntingtin Associates with Acidic Phospholipids at the Plasma Membrane. Journal of Biological Chemistry, 2005, 280, 36464-36473.	3.4	133
138	A functional ABCA1 gene variant is associated with low HDL-cholesterol levels and shows evidence of positive selection in Native Americans. Human Molecular Genetics, 2010, 19, 2877-2885.	2.9	133
139	Rethinking Genotype and Phenotype Correlations in Polyglutamine Expansion Disorders. Human Molecular Genetics, 1997, 6, 2005-2010.	2.9	132
140	Modeling Doxorubicin-Induced Cardiotoxicity in Human Pluripotent Stem Cell Derived-Cardiomyocytes. Scientific Reports, 2016, 6, 25333.	3.3	130
141	Length of Uninterrupted CAG, Independent of Polyglutamine Size, Results in Increased Somatic Instability, Hastening Onset of Huntington Disease. American Journal of Human Genetics, 2019, 104, 1116-1126.	6.2	130
142	Increased instability of intermediate alleles in families with sporadic Huntington disease compared to similar sized intermediate alleles in the general population. Human Molecular Genetics, 1995, 4, 1911-1918.	2.9	129
143	Increased huntingtin protein length reduces the number of polyglutamine-induced gene expression changes in mouse models of Huntington's disease. Human Molecular Genetics, 2002, 11, 1939-1951.	2.9	129
144	Phenotypic Variation in Heterozygous Familial Hypercholesterolemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 1998, 18, 309-315.	2.4	128

#	Article	IF	Citations
145	<i>Als2</i> -deficient mice exhibit disturbances in endosome trafficking associated with motor behavioral abnormalities. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9595-9600.	7.1	128
146	Huntingtin phosphorylation on serine 421 is significantly reduced in the striatum and by polyglutamine expansion in vivo. Human Molecular Genetics, 2005, 14, 1569-1577.	2.9	126
147	Multisource ascertainment of Huntington disease in Canada: Prevalence and population at risk. Movement Disorders, 2014, 29, 105-114.	3.9	125
148	Cholesterol in islet dysfunction and type 2 diabetes. Journal of Clinical Investigation, 2008, 118, 403-408.	8.2	125
149	A novel apoA-I mutation (L178P) leads to endothelial dysfunction, increased arterial wall thickness, and premature coronary artery disease. Journal of the American College of Cardiology, 2004, 44, 1429-1435.	2.8	124
150	Mitochondrial-Dependent Ca2+ Handling in Huntington's Disease Striatal Cells: Effect of Histone Deacetylase Inhibitors. Journal of Neuroscience, 2006, 26, 11174-11186.	3.6	124
151	Mutant Huntingtin N-terminal Fragments of Specific Size Mediate Aggregation and Toxicity in Neuronal Cells. Journal of Biological Chemistry, 2009, 284, 10855-10867.	3.4	124
152	Differential Susceptibility to Excitotoxic Stress in YAC128 Mouse Models of Huntington Disease between Initiation and Progression of Disease. Journal of Neuroscience, 2009, 29, 2193-2204.	3.6	123
153	Verbal episodic memory declines prior to diagnosis in Huntington's disease. Neuropsychologia, 2007, 45, 1767-1776.	1.6	122
154	Cholesterol metabolism in Huntington disease. Nature Reviews Neurology, 2011, 7, 561-572.	10.1	122
155	Marked differences in neurochemistry and aggregates despite similar behavioural and neuropathological features of Huntington disease in the full-length BACHD and YAC128 mice. Human Molecular Genetics, 2012, 21, 2219-2232.	2.9	122
156	miR-33a Modulates ABCA1 Expression, Cholesterol Accumulation, and Insulin Secretion in Pancreatic Islets. Diabetes, 2012, 61, 653-658.	0.6	122
157	Increased ABCA1 activity protects against atherosclerosis. Journal of Clinical Investigation, 2002, 110, 35-42.	8.2	121
158	HDL and LDL cholesterol significantly influence \hat{l}^2 -cell function in type 2 diabetes mellitus. Current Opinion in Lipidology, 2010, 21, 178-185.	2.7	120
159	Curation of the Mammalian Palmitoylome Indicates a Pivotal Role for Palmitoylation in Diseases and Disorders of the Nervous System and Cancers. PLoS Computational Biology, 2015, 11, e1004405.	3.2	120
160	Caspases and neurodegeneration: on the cutting edge of new therapeutic approaches. Clinical Genetics, 2000, 57, 1-10.	2.0	119
161	Putting proteins in their place: Palmitoylation in Huntington disease and other neuropsychiatric diseases. Progress in Neurobiology, 2012, 97, 220-238.	5.7	118
162	Therapeutic approaches to Huntington disease: from the bench to the clinic. Nature Reviews Drug Discovery, 2018, 17, 729-750.	46.4	117

#	Article	IF	CITATIONS
163	Genetic Variant Showing a Positive Interaction With \hat{l}^2 -Blocking Agents With a Beneficial Influence on Lipoprotein Lipase Activity, HDL Cholesterol, and Triglyceride Levels in Coronary Artery Disease Patients. Circulation, 1997, 95, 2628-2635.	1.6	117
164	Contribution of DNA Sequence and CAG Size to Mutation Frequencies of Intermediate Alleles for Huntington Disease: Evidence from Single Sperm Analyses. Human Molecular Genetics, 1997, 6, 301-309.	2.9	116
165	Protein Kinase A Site-specific Phosphorylation Regulates ATP-binding Cassette A1 (ABCA1)-mediated Phospholipid Efflux. Journal of Biological Chemistry, 2002, 277, 41835-41842.	3.4	116
166	Specific Loss of Brain ABCA1 Increases Brain Cholesterol Uptake and Influences Neuronal Structure and Function. Journal of Neuroscience, 2009, 29, 3579-3589.	3.6	116
167	Antisense oligonucleotide therapeutics for inherited neurodegenerative diseases. Trends in Molecular Medicine, 2012, 18, 634-643.	6.7	116
168	Treatment of Nav1.7-mediated pain in inherited erythromelalgia using a novel sodium channel blocker. Pain, 2012, 153, 80-85.	4.2	116
169	Cortical thickness measured from MRI in the YAC128 mouse model of Huntington's disease. NeuroImage, 2008, 41, 243-251.	4.2	115
170	In Vivo Evaluation of Candidate Allele-specific Mutant Huntingtin Gene Silencing Antisense Oligonucleotides. Molecular Therapy, 2014, 22, 2093-2106.	8.2	115
171	Accurate Prediction of the Functional Significance of Single Nucleotide Polymorphisms and Mutations in the ABCA1 Gene. PLoS Genetics, 2005, 1, e83.	3.5	115
172	Deletion of Huntington's disease-linked G8 (D4S10) locus in Wolf–Hirschhorn syndrome. Nature, 1985, 318, 75-78.	27.8	114
173	Carriers of Loss-of-Function Mutations in ABCA1 Display Pancreatic Â-Cell Dysfunction. Diabetes Care, 2010, 33, 869-874.	8.6	114
174	Caspase-6 and neurodegeneration. Trends in Neurosciences, 2011, 34, 646-656.	8.6	114
175	A SNP in the HTT promoter alters NF-κB binding and is a bidirectional genetic modifier of Huntington disease. Nature Neuroscience, 2015, 18, 807-816.	14.8	113
176	Elevated plasma triglyceride levels precede amyloid deposition in Alzheimer's disease mouse models with abundant Aβ in plasma. Neurobiology of Disease, 2006, 24, 114-127.	4.4	112
177	Mutant Huntingtin: Nuclear translocation and cytotoxicity mediated by GAPDH. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3405-3409.	7.1	112
178	Altered NMDA Receptor Trafficking in a Yeast Artificial Chromosome Transgenic Mouse Model of Huntington's Disease. Journal of Neuroscience, 2007, 27, 3768-3779.	3.6	112
179	Activated caspase-6 and caspase-6-cleaved fragments of huntingtin specifically colocalize in the nucleus. Human Molecular Genetics, 2008, 17, 2390-2404.	2.9	112
180	Cholesterol efflux regulatory protein, Tangier disease and familial high-density lipoprotein deficiency. Current Opinion in Lipidology, 2000, 11, 117-122.	2.7	111

#	Article	IF	CITATIONS
181	Mitochondrial Sensitivity and Altered Calcium Handling Underlie Enhanced NMDA-Induced Apoptosis in YAC128 Model of Huntington's Disease. Journal of Neuroscience, 2007, 27, 13614-13623.	3.6	111
182	Laquinimod arrests experimental autoimmune encephalomyelitis by activating the aryl hydrocarbon receptor. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6145-E6152.	7.1	111
183	A major insertion accounts for a significant proportion of mutations underlying human lipoprotein lipase deficiency Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 948-952.	7.1	110
184	Predictive testing for Huntington disease: interpretation and significance of intermediate alleles. Clinical Genetics, 2006, 70, 283-294.	2.0	110
185	Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington's disease. Neurobiology of Disease, 2008, 31, 80-88.	4.4	110
186	HLA-A*31:01 and HLA-B*15:02 as Genetic Markers for Carbamazepine Hypersensitivity in Children. Clinical Pharmacology and Therapeutics, 2013, 94, 142-149.	4.7	110
187	Absence of Disease Phenotype and Intergenerational Stability of the Cag Repeat in Transgenic Mice Expressing the Human Huntington Disease Transcript. Human Molecular Genetics, 1996, 5, 177-185.	2.9	109
188	A common truncation variant of lipoprotein lipase (Ser447X) confers protection against coronary heart disease: the Framingham Offspring Study. Clinical Genetics, 1999, 55, 450-454.	2.0	109
189	Replication of TPMT and ABCC3 Genetic Variants Highly Associated With Cisplatin-Induced Hearing Loss in Children. Clinical Pharmacology and Therapeutics, 2013, 94, 243-251.	4.7	109
190	Huntingtin Interacting Protein 1 Induces Apoptosis via a Novel Caspase-dependent Death Effector Domain. Journal of Biological Chemistry, 2000, 275, 41299-41308.	3.4	108
191	Striatal neuronal apoptosis is preferentially enhanced by NMDA receptor activation in YAC transgenic mouse model of Huntington disease. Neurobiology of Disease, 2006, 21, 392-403.	4.4	108
192	Cholesterol efflux via ATP-binding cassette transporter A1 (ABCA1) and cholesterol uptake via the LDL receptor influences cholesterol-induced impairment of beta cell function in mice. Diabetologia, 2010, 53, 1110-1119.	6.3	108
193	Central Nervous System Depression of Neonates Breastfed by Mothers Receiving Oxycodone for Postpartum Analgesia. Journal of Pediatrics, 2012, 160, 33-37.e2.	1.8	108
194	Suppressing aberrant GluN3A expression rescues synaptic and behavioral impairments in Huntington's disease models. Nature Medicine, 2013, 19, 1030-1038.	30.7	108
195	Psychological consequences and predictors of adverse events in the first 5 years after predictive testing for Huntington's disease. Clinical Genetics, 2003, 64, 300-309.	2.0	107
196	Enhanced Striatal NR2B-Containing N-Methyl-d-Aspartate Receptor-Mediated Synaptic Currents in a Mouse Model of Huntington Disease. Journal of Neurophysiology, 2004, 92, 2738-2746.	1.8	107
197	Magnetic resonance spectroscopy biomarkers in premanifest and early Huntington disease. Neurology, 2010, 75, 1702-1710.	1.1	107
198	Loss of Both ABCA1 and ABCG1 Results in Increased Disturbances in Islet Sterol Homeostasis, Inflammation, and Impaired \hat{l}^2 -Cell Function. Diabetes, 2012, 61, 659-664.	0.6	107

#	Article	IF	Citations
199	Cholesterol biosynthesis pathway is disturbed in YAC128 mice and is modulated by huntingtin mutation. Human Molecular Genetics, 2007, 16, 2187-2198.	2.9	106
200	Regulation of ABCA1 Protein Expression and Function in Hepatic and Pancreatic Islet Cells by miR-145. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2724-2732.	2.4	106
201	ABCA1 Is Essential for Efficient Basolateral Cholesterol Efflux during the Absorption of Dietary Cholesterol in Chickens. Journal of Biological Chemistry, 2003, 278, 13356-13366.	3.4	105
202	Huntington's disease-like 2 (HDL2) in North America and Japan. Annals of Neurology, 2004, 56, 670-674.	5. 3	105
203	Age-dependent neurovascular abnormalities and altered microglial morphology in the YAC128 mouse model of Huntington disease. Neurobiology of Disease, 2012, 45, 438-449.	4.4	105
204	The sigma-1 receptor mediates the beneficial effects of pridopidine in a mouse model of Huntington disease. Neurobiology of Disease, 2017, 97, 46-59.	4.4	105
205	Comparative Mitochondrial-Based Protective Effects of Resveratrol and Nicotinamide in Huntington's Disease Models. Molecular Neurobiology, 2017, 54, 5385-5399.	4.0	105
206	Double-stranded RNA-dependent protein kinase, PKR, binds preferentially to Huntington's disease (HD) transcripts and is activated in HD tissue. Human Molecular Genetics, 2001, 10, 1531-1538.	2.9	103
207	Tissue-Specific Induction of Intestinal ABCA1 Expression With a Liver X Receptor Agonist Raises Plasma HDL Cholesterol Levels. Circulation Research, 2006, 99, 672-674.	4.5	103
208	Mutation of conserved cysteines in the Ly6 domain of GPIHBP1 in familial chylomicronemia. Journal of Lipid Research, 2010, 51, 1535-1545.	4.2	103
209	Altered palmitoylation and neuropathological deficits in mice lacking HIP14. Human Molecular Genetics, 2011, 20, 3899-3909.	2.9	103
210	The Asp ₉ Asn Mutation in the Lipoprotein Lipase Gene Is Associated With Increased Progression of Coronary Atherosclerosis. Circulation, 1996, 94, 1913-1918.	1.6	103
211	Disruption of the endocytic protein HIP1 results in neurological deficits and decreased AMPA receptor trafficking. EMBO Journal, 2003, 22, 3254-3266.	7.8	102
212	HD iPSC-derived neural progenitors accumulate in culture and are susceptible to BDNF withdrawal due to glutamate toxicity. Human Molecular Genetics, 2015, 24, 3257-3271.	2.9	102
213	Common sequence variants of lipoprotein lipase: standardized studies of in vitro expression and catalytic function. Lipids and Lipid Metabolism, 1996, 1302, 159-166.	2.6	101
214	Huntingtin Interacting Protein 1 (HIP1) Regulates Clathrin Assembly through Direct Binding to the Regulatory Region of the Clathrin Light Chain. Journal of Biological Chemistry, 2005, 280, 6101-6108.	3.4	101
215	Body weight is modulated by levels of full-length Huntingtin. Human Molecular Genetics, 2006, 15, 1513-1523.	2.9	101
216	A Mutation in the Human Lipoprotein Lipase Gene as the Most Common Cause of Familial Chylomicronemia in French Canadians. New England Journal of Medicine, 1991, 324, 1761-1766.	27.0	100

#	Article	IF	CITATIONS
217	Full-length huntingtin levels modulate body weight by influencing insulin-like growth factor 1 expression. Human Molecular Genetics, 2010, 19, 1528-1538.	2.9	100
218	Cleavage of Atrophin-1 at Caspase Site Aspartic Acid 109 Modulates Cytotoxicity. Journal of Biological Chemistry, 1999, 274, 8730-8736.	3.4	99
219	Tissue-Specific Roles of ABCA1 Influence Susceptibility to Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 548-554.	2.4	98
220	Perceptions of genetic discrimination among people at risk for Huntington's disease: a cross sectional survey. BMJ: British Medical Journal, 2009, 338, b2175-b2175.	2.3	98
221	HIP1 and HIP12 Display Differential Binding to F-actin, AP2, and Clathrin. Journal of Biological Chemistry, 2002, 277, 19897-19904.	3.4	97
222	An <i>ALS2</i> gene mutation causes hereditary spastic paraplegia in a Pakistani kindred. Annals of Neurology, 2003, 53, 144-145.	5.3	97
223	Depletion of wild-type huntingtin in mouse models of neurologic diseases. Journal of Neurochemistry, 2003, 87, 101-106.	3.9	97
224	Role of NR2B-type NMDA receptors in selective neurodegeneration in Huntington disease. Neurobiology of Aging, 2003, 24, 1113-1121.	3.1	97
225	Phenotypic abnormalities in the YAC128 mouse model of Huntington disease are penetrant on multiple genetic backgrounds and modulated by strain. Neurobiology of Disease, 2007, 26, 189-200.	4.4	97
226	Islet Cholesterol Accumulation Due to Loss of ABCA1 Leads to Impaired Exocytosis of Insulin Granules. Diabetes, 2011, 60, 3186-3196.	0.6	97
227	Design, Characterization, and Lead Selection of Therapeutic miRNAs Targeting Huntingtin for Development of Gene Therapy for Huntington's Disease. Molecular Therapy - Nucleic Acids, 2016, 5, e297.	5.1	97
228	Restrictive dermopathy: A newly recognized autosomal recessive skin dysplasia. American Journal of Medical Genetics Part A, 1986, 24, 631-648.	2.4	96
229	Five year study of prenatal testing for Huntington's disease: demand, attitudes, and psychological assessment Journal of Medical Genetics, 1993, 30, 549-556.	3.2	96
230	Cystamine treatment is neuroprotective in the YAC128 mouse model of Huntington disease. Journal of Neurochemistry, 2005, 95, 210-220.	3.9	96
231	ABCA1 regulatory variants influence coronary artery disease independent of effects on plasma lipid levels. Clinical Genetics, 2002, 61, 115-125.	2.0	95
232	Despite Antiatherogenic Metabolic Characteristics, SCD1-Deficient Mice Have Increased Inflammation and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 341-347.	2.4	95
233	Genetic variants in <i>SLC22A17 and SLC22A7</i> are associated with anthracycline-induced cardiotoxicity in children. Pharmacogenomics, 2015, 16, 1065-1076.	1.3	95
234	Differential 3′ polyadenylation of the Huntington disease gene results in two mRNA species with variable tissue expression. Human Molecular Genetics, 1993, 2, 1541-1545.	2.9	94

#	Article	IF	CITATIONS
235	Human huntingtin derived from YAC transgenes compensates for loss of murine huntingtin by rescue of the embryonic lethal phenotype. Human Molecular Genetics, 1996, 5, 1875-1885.	2.9	94
236	Cleavage at the 586 Amino Acid Caspase-6 Site in Mutant huntingtin Influences Caspase-6 Activation < i>In Vivo < /i>. Journal of Neuroscience, 2010, 30, 15019-15029.	3.6	94
237	A fully humanized transgenic mouse model of Huntington disease. Human Molecular Genetics, 2013, 22, 18-34.	2.9	93
238	Familial influence on age of onset among siblings with Huntington disease. American Journal of Medical Genetics Part A, 2001, 105, 399-403.	2.4	92
239	Specific Mutations in ABCA1 Have Discrete Effects on ABCA1 Function and Lipid Phenotypes Both In Vivo and In Vitro. Circulation Research, 2006, 99, 389-397.	4.5	92
240	Altered adult hippocampal neurogenesis in the YAC128 transgenic mouse model of Huntington disease. Neurobiology of Disease, 2011, 41, 249-260.	4.4	92
241	Allele-Specific Suppression of Mutant Huntingtin Using Antisense Oligonucleotides: Providing a Therapeutic Option for All Huntington Disease Patients. PLoS ONE, 2014, 9, e107434.	2.5	92
242	Mouse models of Huntington disease: variations on a theme. DMM Disease Models and Mechanisms, 2009, 2, 123-129.	2.4	91
243	Transcriptional changes in Huntington disease identified using genome-wide expression profiling and cross-platform analysis. Human Molecular Genetics, 2010, 19, 1438-1452.	2.9	91
244	Testicular degeneration in Huntington disease. Neurobiology of Disease, 2007, 26, 512-520.	4.4	90
245	Palmitoylation and function of glial glutamate transporter-1 is reduced in the YAC128 mouse model of Huntington disease. Neurobiology of Disease, 2010, 40, 207-215.	4.4	90
246	Presymptomatic Neuropsychological Impairment in Huntington's Disease. Archives of Neurology, 1988, 45, 769-773.	4.5	89
247	Loss of <i>Cyp8b1</i> Improves Glucose Homeostasis by Increasing GLP-1. Diabetes, 2015, 64, 1168-1179.	0.6	89
248	Huntingtin suppression restores cognitive function in a mouse model of Huntington's disease. Science Translational Medicine, 2018, 10, .	12.4	89
249	The Gln-Ala repeat transcriptional activator CA150 interacts with huntingtin: Neuropathologic and genetic evidence for a role in Huntington's disease pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1811-1816.	7.1	89
250	Striatal neurochemical changes in transgenic models of Huntington's disease. Journal of Neuroscience Research, 2002, 68, 716-729.	2.9	88
251	Huntingtin inhibits caspase-3 activation. EMBO Journal, 2006, 25, 5896-5906.	7.8	88
252	Spontaneous Atherosclerosis in Aged Lipoprotein Lipase–Deficient Mice With Severe Hypertriglyceridemia on a Normal Chow Diet. Circulation Research, 2008, 102, 250-256.	4.5	88

#	Article	IF	Citations
253	Sequence of the murine Huntington dusease gene: evidence for conservation, and polymorphism in a triplet (CCG) repeat alternate splicing. Human Molecular Genetics, 1994, 3, 85-92.	2.9	87
254	Cortical glucose metabolism in Huntington's disease. Neurology, 1992, 42, 223-223.	1.1	87
255	Predictive testing for Huntington disease: I. Description of a pilot project in British Columbia. American Journal of Medical Genetics Part A, 1989, 32, 211-216.	2.4	86
256	The ATP-binding cassette transporter 1 mediates lipid efflux from Sertoli cells and influences male fertility. Journal of Lipid Research, 2004, 45, 1040-1050.	4.2	86
257	Hippi is essential for node cilia assembly and Sonic hedgehog signaling. Developmental Biology, 2006, 300, 523-533.	2.0	86
258	Phosphorylation of huntingtin reduces the accumulation of its nuclear fragments. Molecular and Cellular Neurosciences, 2009, 40, 121-127.	2.2	86
259	Alterations of plasma lipids in mice via adenoviral-mediated hepatic overexpression of human ABCA1. Journal of Lipid Research, 2003, 44, 1470-1480.	4.2	85
260	Interaction of Postsynaptic Density Protein-95 with NMDA Receptors Influences Excitotoxicity in the Yeast Artificial Chromosome Mouse Model of Huntington's Disease. Journal of Neuroscience, 2009, 29, 10928-10938.	3.6	85
261	HACE1 reduces oxidative stress and mutant Huntingtin toxicity by promoting the NRF2 response. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3032-3037.	7.1	85
262	An enhanced Q175 knock-in mouse model of Huntington disease with higher mutant huntingtin levels and accelerated disease phenotypes. Human Molecular Genetics, 2016, 25, 3654-3675.	2.9	85
263	Fatal Hydrocodone Overdose in a Child: Pharmacogenetics and Drug Interactions. Pediatrics, 2010, 126, e986-e989.	2.1	84
264	The first nonsense mutation in alsin results in a homogeneous phenotype of infantileâ€onset ascending spastic paralysis with bulbar involvement in two siblings. Clinical Genetics, 2003, 64, 210-215.	2.0	83
265	Plasma and vessel wall lipoprotein lipase have different roles in atherosclerosis. Journal of Lipid Research, 2000, 41, 521-531.	4.2	83
266	Regional Cerebral Glucose Metabolism in Turner Syndrome. Canadian Journal of Neurological Sciences, 1990, 17, 140-144.	0.5	82
267	High incidence rate and absent family histories in one quarter of patients newly diagnosed with Huntington disease in British Columbia. Clinical Genetics, 2002, 60, 198-205.	2.0	82
268	Ultrasensitive measurement of huntingtin protein in cerebrospinal fluid demonstrates increase with Huntington disease stage and decrease following brain huntingtin suppression. Scientific Reports, 2015, 5, 12166.	3.3	82
269	Huntington disease reduced penetrance alleles occur at high frequency in the general population. Neurology, 2016, 87, 282-288.	1.1	82
270	Safety and efficacy of pridopidine in patients with Huntington's disease (PRIDE-HD): a phase 2, randomised, placebo-controlled, multicentre, dose-ranging study. Lancet Neurology, The, 2019, 18, 165-176.	10.2	82

#	Article	IF	Citations
271	Targeted Deletion of Hepatocyte ABCA1 Leads to Very Low Density Lipoprotein Triglyceride Overproduction and Low Density Lipoprotein Hypercatabolism. Journal of Biological Chemistry, 2010, 285, 12197-12209.	3.4	81
272	Phosphorylation of Huntingtin at Ser $<$ sup $>$ 421 $<$ /sup $>$ in YAC128 Neurons Is Associated with Protection of YAC128 Neurons from NMDA-Mediated Excitotoxicity and Is Modulated by PP1 and PP2A. Journal of Neuroscience, 2010, 30, 14318-14329.	3.6	81
273	Tracking Brain Palmitoylation Change: Predominance of Glial Change in a Mouse Model of Huntington's Disease. Chemistry and Biology, 2013, 20, 1421-1434.	6.0	81
274	A frequently occurring mutation in the lipoprotein lipase gene (Asn291Ser) contributes to the expression of familial combined hyperlipidemia. Human Molecular Genetics, 1995, 4, 1543-1549.	2.9	80
275	A Common Mutation in the Lipoprotein Lipase Gene (N291S) Alters the Lipoprotein Phenotype and Risk for Cardiovascular Disease in Patients With Familial Hypercholesterolemia. Circulation, 1998, 97, 729-735.	1.6	80
276	Both Hepatic and Extrahepatic ABCA1 Have Discrete and Essential Functions in the Maintenance of Plasma High-Density Lipoprotein Cholesterol Levels In Vivo. Circulation, 2006, 114, 1301-1309.	1.6	80
277	The Salmonella Type III Effector SspH2 Specifically Exploits the NLR Co-chaperone Activity of SGT1 to Subvert Immunity. PLoS Pathogens, 2013, 9, e1003518.	4.7	80
278	Genetic and phenotypic heterogeneity in familial lecithin: cholesterol acyltransferase (LCAT) deficiency. Six newly identified defective alleles further contribute to the structural heterogeneity in this disease Journal of Clinical Investigation, 1993, 91, 677-683.	8.2	80
279	In vitro evidence for both the nucleus and cytoplasm as subcellular sites of pathogenesis in Huntington's disease. Human Molecular Genetics, 1999, 8, 25-33.	2.9	79
280	Intrinsic mutant HTT-mediated defects in oligodendroglia cause myelination deficits and behavioral abnormalities in Huntington disease. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9622-9627.	7.1	79
281	Lipoprotein lipase activity is decreased in a large cohort of patients with coronary artery disease and is associated with changes in lipids and lipoproteins. Journal of Lipid Research, 1999, 40, 735-743.	4.2	79
282	Comparative efficacy and safety of pravastatin, nicotinic acid and the two combined in patients with hypercholesterolemia. American Journal of Cardiology, 1994, 73, 339-345.	1.6	78
283	Nuclear Localization of a Non-caspase Truncation Product of Atrophin-1, with an Expanded Polyglutamine Repeat, Increases Cellular Toxicity. Journal of Biological Chemistry, 2003, 278, 13047-13055.	3.4	78
284	CAG-encoded polyglutamine length polymorphism in the human genome. BMC Genomics, 2007, 8, 126.	2.8	78
285	Anti-semaphorin 4D immunotherapy ameliorates neuropathology and some cognitive impairment in the YAC128 mouse model of Huntington disease. Neurobiology of Disease, 2015, 76, 46-56.	4.4	78
286	The prediction of exons through an analysis of spliceable open reading frames. Nucleic Acids Research, 1992, 20, 3453-3462.	14.5	77
287	Neuronal degeneration in the basal ganglia and loss of pallido-subthalamic synapses in mice with targeted disruption of the Huntington's disease gene. Brain Research, 1999, 818, 468-479.	2.2	77
288	Levels of mutant huntingtin influence the phenotypic severity of Huntington disease in YAC128 mouse models. Neurobiology of Disease, 2006, 21, 444-455.	4.4	77

#	Article	IF	Citations
289	ABCA1 in adipocytes regulates adipose tissue lipid content, glucose tolerance, and insulin sensitivity. Journal of Lipid Research, 2014, 55, 516-523.	4.2	76
290	Non-random association between alleles detected at D4S95 and D4S98 and the Huntington's disease gene Journal of Medical Genetics, 1989, 26, 676-681.	3.2	75
291	Skewed X-Chromosome Inactivation Is Associated with Trisomy in Women Ascertained on the Basis of Recurrent Spontaneous Abortion or Chromosomally Abnormal Pregnancies. American Journal of Human Genetics, 2003, 72, 399-407.	6.2	75
292	A PCR method for accurate assessment of trinucleotide repeat expansion in Huntington disease. Human Molecular Genetics, 1993, 2, 635-636.	2.9	74
293	Ancestral differences in the distribution of the î"2642 glutamic acid polymorphism is associated with varying CAG repeat lengths on normal chromosomes: insights into the genetic evolution of Huntington disease. Human Molecular Genetics, 1995, 4, 207-214.	2.9	74
294	Somatic mosaicism in sperm is associated with intergenerational (CAG)n changes in Huntington disease. Human Molecular Genetics, 1995, 4, 189-195.	2.9	74
295	Effects of CAG repeat length, HTT protein length and protein context on cerebral metabolism measured using magnetic resonance spectroscopy in transgenic mouse models of Huntington's disease. Journal of Neurochemistry, 2005, 95, 553-562.	3.9	74
296	Correction of Feline Lipoprotein Lipase Deficiency with Adeno-Associated Virus Serotype 1-Mediated Gene Transfer of the Lipoprotein Lipase S447X Beneficial Mutation. Human Gene Therapy, 2006, 17, 487-499.	2.7	74
297	Targeted disruption of Huntingtin-associated protein-1 (Hap1) results in postnatal death due to depressed feeding behavior. Human Molecular Genetics, 2002, 11, 945-959.	2.9	73
298	The role of free fatty acids, pancreatic lipase and Ca ²⁺ signalling in injury of isolated acinar cells and pancreatitis model in lipoprotein lipaseâ€deficient mice. Acta Physiologica, 2009, 195, 13-28.	3.8	73
299	Huntingtin Haplotypes Provide Prioritized Target Panels for Allele-specific Silencing in Huntington Disease Patients of European Ancestry. Molecular Therapy, 2015, 23, 1759-1771.	8.2	73
300	Analysis of DNA changes in the LPL gene in patients with familial combined hyperlipidemia Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, 1994, 14, 1250-1257.	3.9	72
301	Genome-wide significance for a modifier of age at neurological onset in Huntington's Disease at 6q23-24: the HD MAPS study. BMC Medical Genetics, 2006, 7, 71.	2.1	72
302	The global spectrum of protein-coding pharmacogenomic diversity. Pharmacogenomics Journal, 2018, 18, 187-195.	2.0	72
303	A somatic cell hybrid panel for localizing DNA segments near the Huntington's disease gene. Genomics, 1987, 1, 29-34.	2.9	71
304	Wild-type HTT modulates the enzymatic activity of the neuronal palmitoyl transferase HIP14. Human Molecular Genetics, 2011, 20, 3356-3365.	2.9	71
305	ABCA1 influences neuroinflammation and neuronal death. Neurobiology of Disease, 2013, 54, 445-455.	4.4	71
306	Palmitoylation of ATP-Binding Cassette Transporter A1 Is Essential for Its Trafficking and Function. Circulation Research, 2009, 105, 138-147.	4.5	70

#	Article	IF	CITATIONS
307	Adverse drug reaction active surveillance: developing a national network in Canada's children's hospitals. Pharmacoepidemiology and Drug Safety, 2009, 18, 713-721.	1.9	70
308	Convergent pathogenic pathways in Alzheimer's and Huntington's diseases: shared targets for drug development. Nature Reviews Drug Discovery, 2011, 10, 853-867.	46.4	70
309	Novel mutations in scavenger receptor BI associated with high HDL cholesterol in humans. Clinical Genetics, 2011, 79, 575-581.	2.0	70
310	Toward Understanding the Molecular Pathology of Huntington's Disease. Brain Pathology, 1997, 7, 979-1002.	4.1	69
311	Prediction of Codeine Toxicity in Infants and Their Mothers Using a Novel Combination of Maternal Genetic Markers. Clinical Pharmacology and Therapeutics, 2012, 91, 692-699.	4.7	69
312	Amino acid substitution (Ile194—Thr) in exon 5 of the lipoprotein lipase gene causes lipoprotein lipase deficiency in three unrelated probands. Support for a multicentric origin Journal of Clinical Investigation, 1991, 87, 2005-2011.	8.2	69
313	The genotype-phenotype correlation of hereditary multiple exostoses. Clinical Genetics, 2006, 70, 122-130.	2.0	68
314	Polyglutamine-Modulated Striatal Calpain Activity in YAC Transgenic Huntington Disease Mouse Model: Impact on NMDA Receptor Function and Toxicity. Journal of Neuroscience, 2008, 28, 12725-12735.	3.6	68
315	The emerging era of pharmacogenomics: current successes, future potential, and challenges. Clinical Genetics, 2014, 86, 21-28.	2.0	68
316	A mutation in the lipoprotein lipase gene is the molecular basis of chylomicronemia in a colony of domestic cats Journal of Clinical Investigation, 1996, 97, 1257-1266.	8.2	68
317	Evidence for a modifier of onset age in Huntington disease linked to the HD gene in 4p16. Neurogenetics, 2004, 5, 109-114.	1.4	67
318	Long-Term Correction of Murine Lipoprotein Lipase Deficiency with AAV1-Mediated Gene Transfer of the Naturally Occurring LPLS447XBeneficial Mutation. Human Gene Therapy, 2004, 15, 906-919.	2.7	67
319	The Canadian Pharmacogenomics Network for Drug Safety: A Model for Safety Pharmacology. Thyroid, 2010, 20, 681-687.	4.5	67
320	Rescue from excitotoxicity and axonal degeneration accompanied by age-dependent behavioral and neuroanatomical alterations in caspase-6-deficient mice. Human Molecular Genetics, 2012, 21, 1954-1967.	2.9	67
321	Presynaptic Defects Underlying Impaired Learning and Memory Function in Lipoprotein Lipase-Deficient Mice. Journal of Neuroscience, 2009, 29, 4681-4685.	3.6	65
322	Natural history of disease in the YAC128 mouse reveals a discrete signature of pathology in Huntington disease. Neurobiology of Disease, 2011, 43, 257-265.	4.4	65
323	CAG size-specific risk estimates for intermediate allele repeat instability in Huntington disease. Journal of Medical Genetics, 2013, 50, 696-703.	3.2	65
324	Pridopidine activates neuroprotective pathways impaired in Huntington Disease. Human Molecular Genetics, 2016, 25, 3975-3987.	2.9	65

#	Article	IF	Citations
325	A Huntington Disease–Like Neurodegenerative Disorder Maps to Chromosome 20p. American Journal of Human Genetics, 1998, 63, 1431-1438.	6.2	64
326	Measurement of Mutational Flow Implies Both a High New-Mutation Rate for Huntington Disease and Substantial Underascertainment of Late-Onset Cases. American Journal of Human Genetics, 2001, 68, 373-385.	6.2	64
327	Mycophenolate mofetil attenuates plaque inflammation in patients with symptomatic carotid artery stenosis. Atherosclerosis, 2010, 211, 231-236.	0.8	64
328	Whole-Genome Sequencing: The New Standard of Care?. Science, 2012, 336, 1112-1113.	12.6	63
329	Structural and molecular myelination deficits occur prior to neuronal loss in the YAC128 and BACHD models of Huntington disease. Human Molecular Genetics, 2016, 25, ddw122.	2.9	62
330	Familial Aggregation of Psychotic Symptoms in Huntington's Disease. American Journal of Psychiatry, 2000, 157, 1955-1959.	7.2	61
331	Huntingtin-Interacting Protein 1 Influences Worm and Mouse Presynaptic Function and Protects <i>Caenorhabditis elegans</i> Neurons against Mutant Polyglutamine Toxicity. Journal of Neuroscience, 2007, 27, 11056-11064.	3.6	61
332	Enhanced susceptibility to pancreatitis in severe hypertriglyceridaemic lipoprotein lipase-deficient mice and agonist-like function of pancreatic lipase in pancreatic cells. Gut, 2009, 58, 422-430.	12.1	61
333	Huntington disease: new insights into the relationship between CAG expansion and disease. Human Molecular Genetics, 1996, 5, 1431-1435.	2.9	60
334	Complete Rescue of Lipoprotein Lipase–Deficient Mice by Somatic Gene Transfer of the Naturally Occurring LPL S447X Beneficial Mutation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 2143-2150.	2.4	60
335	Ethyl-EPA treatment improves motor dysfunction, but not neurodegeneration in the YAC128 mouse model of Huntington disease. Experimental Neurology, 2005, 196, 266-272.	4.1	60
336	Common SNP-Based Haplotype Analysis of the 4p16.3 Huntington Disease Gene Region. American Journal of Human Genetics, 2012, 90, 434-444.	6.2	60
337	IGF-1 Intranasal Administration Rescues Huntington's Disease Phenotypes in YAC128 Mice. Molecular Neurobiology, 2014, 49, 1126-1142.	4.0	60
338	The molecular epidemiology of Huntington disease is related to intermediate allele frequency and haplotype in the general population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 177, 346-357.	1.7	60
339	Patients With ApoE3 Deficiency (E2/2, E3/2, and E4/2) Who Manifest With Hyperlipidemia Have Increased Frequency of an Asn 291→Ser Mutation in the Human LPL Gene. Arteriosclerosis, Thrombosis, and Vascular Biology, 1995, 15, 1695-1703.	2.4	59
340	N-Terminal Proteolysis of Full-Length Mutant Huntingtin in an Inducible PC12 Cell Model of Huntington's Disease. Cell Cycle, 2007, 6, 2970-2981.	2.6	59
341	Absence of stearoyl-CoA desaturase-1 ameliorates features of the metabolic syndrome in LDLR-deficient mice. Journal of Lipid Research, 2008, 49, 217-229.	4.2	59
342	Hip14l-deficient mice develop neuropathological and behavioural features of Huntington disease. Human Molecular Genetics, 2013, 22, 452-465.	2.9	59

#	Article	IF	Citations
343	Laquinimod rescues striatal, cortical and white matter pathology and results in modest behavioural improvements in the YAC128 model of Huntington disease. Scientific Reports, 2016, 6, 31652.	3.3	59
344	Gene-environment interaction in the conversion of a mild-to-severe phenotype in a patient homozygous for a Ser172–>Cys mutation in the lipoprotein lipase gene Journal of Clinical Investigation, 1993, 91, 1953-1958.	8.2	59
345	Correction of Hypertriglyceridemia and Impaired Fat Tolerance in Lipoprotein Lipase–Deficient Mice by Adenovirus-Mediated Expression of Human Lipoprotein Lipase. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 2532-2539.	2.4	58
346	Antisense Oligonucleotide-Mediated Correction of Transcriptional Dysregulation is Correlated with Behavioral Benefits in the YAC128 Mouse Model of Huntington's Disease. Journal of Huntington's Disease, 2013, 2, 217-228.	1.9	58
347	The palmitoyl acyltransferase HIP14 shares a high proportion of interactors with huntingtin: implications for a role in the pathogenesis of Huntington's disease. Human Molecular Genetics, 2014, 23, 4142-4160.	2.9	58
348	Characterization and organization of DNA sequences adjacent to the human telomere associated repeat (TTAGGG)n. Nucleic Acids Research, 1990, 18, 3353-3361.	14.5	57
349	Genomic organization and complete sequence of the human gene encoding the \hat{l}^2 -subunit of the cGMP phosphodiesterase and its localisation to 4p16.3. Nucleic Acids Research, 1991, 19, 6263-6268.	14.5	57
350	Molecular analysis of late onset Huntington's disease Journal of Medical Genetics, 1993, 30, 991-995.	3.2	57
351	HAP1 facilitates effects of mutant huntingtin on inositol 1,4,5-trisphosphate-induced Ca2+ release in primary culture of striatal medium spiny neurons. European Journal of Neuroscience, 2004, 20, 1779-1787.	2.6	57
352	Engagement with genetic discrimination: concerns and experiences in the context of Huntington disease. European Journal of Human Genetics, 2008, 16, 279-289.	2.8	57
353	Increased ABCA1 activity protects against atherosclerosis. Journal of Clinical Investigation, 2002, 110, 35-42.	8.2	57
354	Huntington disease: No evidence for locus heterogeneity. Genomics, 1989, 5, 304-308.	2.9	56
355	Hereditary Late-Onset Chorea Without Significant Dementia. Neurology, 1995, 45, 443-447.	1.1	56
356	Identification of a post-translationally myristoylated autophagy-inducing domain released by caspase cleavage of Huntingtin. Human Molecular Genetics, 2014, 23, 3166-3179.	2.9	56
357	Pharmacogenomics of Vincristineâ€Induced Peripheral Neuropathy Implicates Pharmacokinetic and Inherited Neuropathy Genes. Clinical Pharmacology and Therapeutics, 2019, 105, 402-410.	4.7	56
358	Pridopidine stabilizes mushroom spines in mouse models of Alzheimer's disease by acting on the sigma-1 receptor. Neurobiology of Disease, 2019, 124, 489-504.	4.4	56
359	Adverse psychological events occurring in the first year after predictive testing for Huntington's disease. The Canadian Collaborative Study Predictive Testing Journal of Medical Genetics, 1996, 33, 856-862.	3.2	55
360	Gene Therapy for Lipoprotein Lipase Deficiency: Working Toward Clinical Application. Human Gene Therapy, 2005, 16, 1276-1286.	2.7	55

#	Article	IF	Citations
361	ABCA8 Regulates Cholesterol Efflux and High-Density Lipoprotein Cholesterol Levels. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2147-2155.	2.4	55
362	Genetic variants affecting human lipoprotein and hepatic lipases. Current Opinion in Lipidology, 1991, 2, 104-109.	2.7	54
363	Long-term lentiviral-mediated expression of ciliary neurotrophic factor in the striatum of Huntington's disease transgenic mice. Experimental Neurology, 2004, 185, 26-35.	4.1	54
364	Cholesterol in \hat{l}^2 -cell Dysfunction: The Emerging Connection Between HDL Cholesterol and Type 2 Diabetes. Current Diabetes Reports, 2010, 10, 55-60.	4.2	54
365	A grand challenge: Providing benefits of clinical genetics to those in need. Genetics in Medicine, 2011, 13, 197-200.	2.4	54
366	Selective degeneration in YAC mouse models of Huntington disease. Brain Research Bulletin, 2007, 72, 124-131.	3.0	53
367	Gender differences in expression of the human caspase-12 long variant determines susceptibility to <i>Listeria monocytogenes</i> infection. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9016-9020.	7.1	53
368	The Impact of Partial and Complete Loss-of-Function Mutations in Endothelial Lipase on High-Density Lipoprotein Levels and Functionality in Humans. Circulation: Cardiovascular Genetics, 2013, 6, 54-62.	5.1	53
369	Dopamine D2 receptor gene variants and response to rasagiline in early Parkinson's disease: a pharmacogenetic study. Brain, 2016, 139, 2050-2062.	7.6	53
370	Lipoprotein Lipase Activity Is Associated With Severity of Angina Pectoris. Circulation, 2000, 102, 1629-1633.	1.6	52
371	Treatment of YAC128 mice and their wild-type littermates with cystamine does not lead to its accumulation in plasma or brain: implications for the treatment of Huntington disease. Journal of Neurochemistry, 2005, 94, 1087-1101.	3.9	52
372	Huntington disease in the South African population occurs on diverse and ethnically distinct genetic haplotypes. European Journal of Human Genetics, 2013, 21, 1120-1127.	2.8	52
373	Arrested Epidermal Morphogenesis in Three Newborn Infants With a Fatal Genetic Disorder (Restrictive Dermopathy) Journal of Investigative Dermatology, 1987, 88, 330-339.	0.7	52
374	New Insights Into the Clinical Features, Pathogenesis and Molecular Genetics of Huntington Disease. Brain Pathology, 1992, 2, 321-335.	4.1	51
375	A homozygous HAMP mutation in a multiply consanguineous family with pseudo-dominant juvenile hemochromatosis. Clinical Genetics, 2004, 65, 378-383.	2.0	51
376	Identification of an Alu retrotransposition event in close proximity to a strong candidate gene for Huntington's disease. Nature, 1993, 362, 370-373.	27.8	50
377	Recent Insights into the Molecular Pathogenesis of Huntington Disease. Seminars in Neurology, 1999, 19, 385-395.	1.4	50
378	Increased risk of coronary artery disease in Caucasians with extremely low HDL cholesterol due to mutations in ABCA1, APOA1, and LCAT. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 416-424.	2.4	50

#	Article	IF	Citations
379	A longitudinal study of magnetic resonance spectroscopy Huntington's disease biomarkers. Movement Disorders, 2015, 30, 393-401.	3.9	50
380	Histone Deacetylase Inhibitors Protect Against Pyruvate Dehydrogenase Dysfunction in Huntington's Disease. Journal of Neuroscience, 2017, 37, 2776-2794.	3.6	50
381	Mapping of the epitope on lipoprotein lipase recognized by a monoclonal antibody (5D2) which inhibits lipase activity. Lipids and Lipid Metabolism, 1992, 1128, 113-115.	2.6	49
382	AnAluelement retroposition in two families with Huntington disease defines a new activeAlusubfamily. Nucleic Acids Research, 1993, 21, 3379-3383.	14.5	49
383	The LPL S447X cSNP is associated with decreased blood pressure and plasma triglycerides, and reduced risk of coronary artery disease. Clinical Genetics, 2001, 60, 293-300.	2.0	49
384	Identification and functional analysis of a naturally occurring E89K mutation in the ABCA1 gene of the WHAM chicken. Journal of Lipid Research, 2002, 43, 1610-1617.	4.2	49
385	Transgenic Mouse Model Expressing the Caspase 6 Fragment of Mutant Huntingtin. Journal of Neuroscience, 2012, 32, 183-193.	3.6	49
386	Silent periods, long-latency reflexes and cortical MEPs in Huntington's desease and at-risk relatives. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1989, 74, 444-449.	2.0	48
387	Segments in the C-terminal Folding Domain of Lipoprotein Lipase Important for Binding to the Low Density Lipoprotein Receptor-related Protein and to Heparan Sulfate Proteoglycans. Journal of Biological Chemistry, 1997, 272, 5821-5827.	3.4	48
388	Glutamate receptor abnormalities in the YAC128 transgenic mouse model of Huntington's disease. Neuroscience, 2007, 147, 354-372.	2.3	48
389	Partial rescue of some features of Huntington Disease in the genetic absence of caspase-6 in YAC128 mice. Neurobiology of Disease, 2015, 76, 24-36.	4.4	48
390	A Huntingtin-based peptide inhibitor of caspase-6 provides protection from mutant Huntingtin-induced motor and behavioral deficits. Human Molecular Genetics, 2015, 24, 2604-2614.	2.9	48
391	eEF2K inhibition blocks A \hat{l}^2 42 neurotoxicity by promoting an NRF2 antioxidant response. Acta Neuropathologica, 2017, 133, 101-119.	7.7	48
392	Pridopidine protects neurons from mutant-huntingtin toxicity via the sigma-1 receptor. Neurobiology of Disease, 2019, 129, 118-129.	4.4	48
393	HIP12 is a non-proapoptotic member of a gene family including HIP1, an interacting protein with huntingtin. Mammalian Genome, 2000, 11, 1006-1015.	2.2	47
394	Wild-type huntingtin ameliorates striatal neuronal atrophy but does not prevent other abnormalities in the YAC128 mouse model of Huntington disease. BMC Neuroscience, 2006, 7, 80.	1.9	47
395	Tetrabenazine. Nature Reviews Drug Discovery, 2009, 8, 17-18.	46.4	47
396	NPO3, a novel low-dose lithium formulation, is neuroprotective in the YAC128 mouse model of Huntington disease. Neurobiology of Disease, 2012, 48, 282-289.	4.4	47

#	Article	IF	Citations
397	Preventing mutant huntingtin proteolysis and intermittent fasting promote autophagy in models of Huntington disease. Acta Neuropathologica Communications, 2018, 6, 16.	5.2	47
398	Pridopidine Induces Functional Neurorestoration Via the Sigma-1 Receptor in a Mouse Model of Parkinson's Disease. Neurotherapeutics, 2019, 16, 465-479.	4.4	47
399	Two common mutations (D9N, N291S) in lipoprotein lipase: a cumulative analysis of their influence on plasma lipids and lipoproteins in men and women. Clinical Genetics, 1999, 56, 297-305.	2.0	46
400	Cloning and Characterization of Three Novel Genes, ALS2CR1, ALS2CR2, and ALS2CR3, in the Juvenile Amyotrophic Lateral Sclerosis (ALS2) Critical Region at Chromosome 2q33–q34: Candidate Genes for ALS2. Genomics, 2001, 71, 200-213.	2.9	46
401	Forskolin and dopamine D1 receptor activation increase Huntingtin's association with endosomes in immortalized neuronal cells of striatal origin. Neuroscience, 1999, 89, 1159-1167.	2.3	45
402	Mycophenolate mofetil (MMF): Firing at the atherosclerotic plaque from different angles?. Cardiovascular Research, 2006, 69, 341-347.	3.8	45
403	CYP2D6 Polymorphisms and Codeine Analgesia in Postpartum Pain Management: A Pilot Study. Therapeutic Drug Monitoring, 2011, 33, 425-432.	2.0	45
404	Memory and synaptic deficits in <i>Hip14/DHHC17</i> knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20296-20301.	7.1	45
405	Human genetics of HDL: Insight into particle metabolism and function. Progress in Lipid Research, 2015, 58, 14-25.	11.6	45
406	Of molecular interactions, mice and mechanisms. Current Opinion in Neurology, 1997, 10, 291-298.	3.6	44
407	High frequency of intermediate alleles on huntington diseaseâ€associated haplotypes in British Columbia's general population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013, 162, 864-871.	1.7	44
408	Personalized gene silencing therapeutics for Huntington disease. Clinical Genetics, 2014, 86, 29-36.	2.0	44
409	Attitudes toward direct predictive testing for the Huntington disease gene. Relevance for other adult-onset disorders. The Canadian Collaborative Group on Predictive Testing for Huntington Disease. JAMA - Journal of the American Medical Association, 1993, 270, 2321-2325.	7.4	44
410	A missense mutation (Asp250â†'Asn) in exon 6 of the human lipoprotein lipase gene causes chylomicronemia in patients of different ancestries. Genomics, 1992, 13, 649-653.	2.9	43
411	Predictive testing for Huntington's disease: the calm after the storm. Lancet, The, 2000, 356, 1944-1945.	13.7	43
412	Onset and pre-onset studies to define the Huntington's disease natural history. Brain Research Bulletin, 2001, 56, 233-238.	3.0	43
413	Epidemiology of Huntington disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2017, 144, 31-46.	1.8	43
414	Interrupting sequence variants and age of onset in Huntington's disease: clinical implications and emerging therapies. Lancet Neurology, The, 2020, 19, 930-939.	10.2	43

#	Article	IF	CITATIONS
415	A transcription map of the region containing the Huntington disease gene. Human Molecular Genetics, 1993, 2, 901-907.	2.9	42
416	The factor structure for positive and negative symptoms in South African Xhosa patients with schizophrenia. Schizophrenia Research, 2001, 47, 149-157.	2.0	42
417	Caudate volume as an outcome measure in clinical trials for Huntington's disease: a pilot study. Brain Research Bulletin, 2003, 62, 137-141.	3.0	42
418	Chapter 15 Juvenile amyotrophic lateral sclerosis. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2007, 82, 301-312.	1.8	42
419	Perceptions of discrimination among persons who have undergone predictive testing for Huntington's disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 320-325.	1.7	42
420	Perception, experience, and response to genetic discrimination in Huntington disease: The international RESPONDâ∈HD study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 1081-1093.	1.7	42
421	p53 increases caspase-6 expression and activation in muscle tissue expressing mutant huntingtin. Human Molecular Genetics, 2014, 23, 717-729.	2.9	42
422	Structural analysis of the $5\hat{a}\in^2$ region of mouse and human huntington disease genes reveals conservation of putative promoter region and di- and trinucleotide polymorphisms. Genomics, 1995, 25, 707-715.	2.9	41
423	NMDA Receptor Function and NMDA Receptor-Dependent Phosphorylation of Huntingtin Is Altered by the Endocytic Protein HIP1. Journal of Neuroscience, 2007, 27, 2298-2308.	3.6	41
424	From Mutation Identification to Therapy: Discovery and Origins of the First Approved Gene Therapy in the Western World. Human Gene Therapy, 2013, 24, 472-478.	2.7	41
425	Codeine-related deaths: The role of pharmacogenetics and drug interactions. Forensic Science International, 2014, 239, 50-56.	2.2	41
426	Association Between <i>SLC16A5</i> Genetic Variation and Cisplatin-Induced Ototoxic Effects in Adult Patients With Testicular Cancer. JAMA Oncology, 2017, 3, 1558.	7.1	41
427	Impairment and Restoration of Homeostatic Plasticity in Cultured Cortical Neurons From a Mouse Model of Huntington Disease. Frontiers in Cellular Neuroscience, 2019, 13, 209.	3.7	41
428	Potent and sustained huntingtin lowering via AAV5 encoding miRNA preserves striatal volume and cognitive function in a humanized mouse model of Huntington disease. Nucleic Acids Research, 2019, 48, 36-54.	14.5	41
429	The Asn9 variant of lipoprotein lipase is associated with the -93G promoter mutation and an increased risk of coronary artery disease. Clinical Genetics, 1998, 53, 27-33.	2.0	41
430	Cerebral metabolism of glucose in benign hereditary chorea. Movement Disorders, 1986, 1, 33-44.	3.9	40
431	Ethnic Variation and In Vivo Effects of the â^'93tâ†'g Promoter Variant in the Lipoprotein Lipase Gene. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 2672-2678.	2.4	40
432	A novel Glu421Lys substitution in the lipoprotein lipase gene in pregnancy-induced hypertriglyceridemic pancreatitis. Clinica Chimica Acta, 1998, 269, 1-12.	1.1	40

#	Article	IF	CITATIONS
433	Huntingtin is required for normal hematopoiesis. Human Molecular Genetics, 2000, 9, 387-394.	2.9	40
434	The role of the ABCA1 transporter and cholesterol efflux in familial hypoalphalipoproteinemia. Journal of Lipid Research, 2003, 44, 1251-1255.	4.2	40
435	Mutation Screening of the ALS2 Gene in Sporadic and Familial Amyotrophic Lateral Sclerosis. Archives of Neurology, 2003, 60, 1768.	4.5	40
436	Mutations in the Gene for Lipoprotein Lipase. Arteriosclerosis, Thrombosis, and Vascular Biology, 1995, 15, 1704-1712.	2.4	39
437	Early pridopidine treatment improves behavioral and transcriptional deficits in YAC128 Huntington disease mice. JCI Insight, 2017, 2, .	5.0	39
438	Treatment with the MAO-A inhibitor clorgyline elevates monoamine neurotransmitter levels and improves affective phenotypes in a mouse model of Huntington disease. Experimental Neurology, 2016, 278, 4-10.	4.1	38
439	A human huntingtin SNP alters post-translational modification and pathogenic proteolysis of the protein causing Huntington disease. Scientific Reports, 2018, 8, 8096.	3.3	38
440	The FDG/PET Methodology for Early Detection of Disease Onset: A Statistical Model. Journal of Cerebral Blood Flow and Metabolism, 1991, 11, A96-A102.	4.3	37
441	Genomic organization of the human α-adducin gene and its alternately spliced isoforms. Genomics, 1995, 25, 93-99.	2.9	37
442	Life Without Huntingtin. Normal Differentiation into FunctionalNeurons. Journal of Neurochemistry, 1999, 72, 1009-1018.	3.9	37
443	Phenotypic Correction of Feline Lipoprotein Lipase Deficiency by Adenoviral Gene Transfer. Human Gene Therapy, 2000, 11, 21-32.	2.7	37
444	Unstable familial transmissions of Huntington disease alleles with 27–35 CAG repeats (intermediate) Tj ETQq0	0 0.rgBT /	Oyerlock 10
445	Adenosine-Triphosphate-Binding Cassette Transporter-1 Trafficking and Function. Trends in Cardiovascular Medicine, 2010, 20, 41-49.	4.9	37
446	Beyond the patient: The broader impact of genetic discrimination among individuals at risk of Huntington disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2012, 159B, 217-226.	1.7	37
447	A novel humanized mouse model of Huntington disease for preclinical development of therapeutics targeting mutant huntingtin alleles. Human Molecular Genetics, 2017, 26, ddx021.	2.9	37
448	Therapeutic modulation of the bile acid pool by <i>Cyp8b1</i> knockdown protects against nonalcoholic fatty liver disease in mice. FASEB Journal, 2018, 32, 3792-3802.	0.5	37
449	Mutant Huntingtin Is Cleared from the Brain via Active Mechanisms in Huntington Disease. Journal of Neuroscience, 2021, 41, 780-796.	3.6	37
450	What monozygotic twins discordant for phenotype illustrate about mechanisms influencing genetic forms of neurodegeneration. Clinical Genetics, 2012, 81, 325-333.	2.0	36

#	Article	IF	Citations
451	Intrinsic cleavage of receptor-interacting protein kinase-1 by caspase-6. Cell Death and Differentiation, 2013, 20, 86-96.	11.2	36
452	<i>VKORC1</i> and <i>CYP2C9</i> genotypes are predictors of warfarinâ€related outcomes in children. Pediatric Blood and Cancer, 2014, 61, 1055-1062.	1.5	36
453	The human \hat{l}^2 -subunit of rod photoreceptor cGMP phosphodiesterase: Complete retinal cDNA sequence and evidence for expression in brain. Genomics, 1992, 13, 698-704.	2.9	35
454	Geographic distribution and genealogy of mutation 207 of the lipoprotein lipase gene in the French Canadian population of Québec. Human Genetics, 1992, 89, 671-675.	3.8	35
455	Common mutations in the lipoprotein lipase gene (LPL): effects on HDL-cholesterol levels in a Chinese Canadian population. Atherosclerosis, 2001, 156, 401-407.	0.8	35
456	The †flap' endonuclease gene FEN1 is excluded as a candidate gene implicated in the CAG repeat expansion underlying Huntington disease. Clinical Genetics, 2001, 59, 122-127.	2.0	35
457	Evidenceâ€based genetic counselling implications for Huntington disease intermediate allele predictive test results. Clinical Genetics, 2014, 85, 303-311.	2.0	35
458	Comparing the Biological Impact of Glatiramer Acetate with the Biological Impact of a Generic. PLoS ONE, 2014, 9, e83757.	2.5	35
459	Striatal Synaptic Dysfunction and Hippocampal Plasticity Deficits in the Hu97/18 Mouse Model of Huntington Disease. PLoS ONE, 2014, 9, e94562.	2.5	35
460	Diagnosis of Huntington disease: A model for the stages of psychological response based on experience of a predictive testing program. American Journal of Medical Genetics Part A, 1993, 47, 368-374.	2.4	34
461	Prevention of raised low-density lipoprotein cholesterol in a patient with familial hypercholesterolaemia and lipoprotein lipase deficiency. Lancet, The, 1993, 341, 1119-1121.	13.7	34
462	Familial predisposition to recurrent mutations causing Huntington's disease: genetic risk to sibs of sporadic cases Journal of Medical Genetics, 1993, 30, 987-990.	3.2	34
463	Risk Reversals in Predictive Testing for Huntington Disease. American Journal of Human Genetics, 1997, 61, 945-952.	6.2	34
464	Human Mendelian pain disorders: a key to discovery and validation of novel analgesics. Clinical Genetics, 2012, 82, 367-373.	2.0	34
465	Enhanced immune response to MMP3 stimulation in microglia expressing mutant huntingtin. Neuroscience, 2016, 325, 74-88.	2.3	34
466	A Clinical Tool for Reducing Central Nervous System Depression among Neonates Exposed to Codeine through Breast Milk. PLoS ONE, 2013, 8, e70073.	2.5	34
467	Acidic and basic fibroblast growth factor-like immunoreactivity in the striatum and midbrain in Huntington's disease. Brain Research, 1993, 610, 1-7.	2.2	33
468	Hepatic ATP-Binding Cassette Transporter A1 Is a Key Molecule in High-Density Lipoprotein Cholesteryl Ester Metabolism in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1821-1827.	2.4	33

#	Article	IF	Citations
469	Managing genetic discrimination: Strategies used by individuals found to have the Huntington disease mutation. Clinical Genetics, 2007, 71, 220-231.	2.0	33
470	In their own words: Reports of stigma and genetic discrimination by people at risk for Huntington disease in the International RESPONDâ€HD study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 1150-1159.	1.7	33
471	A Frequent Mutation in the Lipoprotein Lipase Gene (D9N) Deteriorates the Biochemical and Clinical Phenotype of Familial Hypercholesterolemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 2708-2713.	2.4	32
472	Accurate determination of the number of CAG repeats in the Huntington disease gene using a sequenceâ€specific internal DNA standard. Clinical Genetics, 1999, 55, 198-202.	2.0	32
473	Lipid and lipoprotein analysis of cats with lipoprotein lipase deficiency. European Journal of Clinical Investigation, 1999, 29, 17-26.	3.4	32
474	To be or not to be toxic: aggregations in Huntington and Alzheimer disease. Trends in Genetics, 2006, 22, 408-411.	6.7	32
475	Palmitoylation of caspase-6 by HIP14 regulates its activation. Cell Death and Differentiation, 2017, 24, 433-444.	11.2	32
476	Further Investigation of the Role of <i>ACYP2</i> and <i>WFS1</i> Pharmacogenomic Variants in the Development of Cisplatin-Induced Ototoxicity in Testicular Cancer Patients. Clinical Cancer Research, 2018, 24, 1866-1871.	7.0	32
477	Pridopidine, a clinicâ€ready compound, reduces 3,4â€dihydroxyphenylalanineâ€induced dyskinesia in Parkinsonian macaques. Movement Disorders, 2019, 34, 708-716.	3.9	32
478	Frequency of the loss of CAA interruption in the HTT CAG tract and implications for Huntington disease in the reduced penetrance range. Genetics in Medicine, 2020, 22, 2108-2113.	2.4	32
479	Nonrandom association between huntington disease and two loci separated by about 3 Mb on 4p16.3. Genomics, 1992, 13, 301-311.	2.9	31
480	U-type exchange in a paracentric inversion as a possible mechanism of origin of an inverted tandem duplication of chromosome 8. American Journal of Medical Genetics Part A, 1994, 49, 384-387.	2.4	31
481	Predictive testing for Huntington's disease: a universal model?. Lancet Neurology, The, 2003, 2, 141-142.	10.2	31
482	Cerebrospinal fluid levels of orexinâ€A are not a clinically useful biomarker for Huntington disease. Clinical Genetics, 2006, 70, 78-79.	2.0	31
483	Brain-derived neurotrophic factor does not influence age at neurologic onset of Huntington's disease. Neurobiology of Disease, 2006, 24, 280-285.	4.4	31
484	Hunting human disease genes: lessons from the past, challenges for the future. Human Genetics, 2013, 132, 603-617.	3.8	31
485	Inhibition of Excessive Monoamine Oxidase A/B Activity Protects Against Stress-induced Neuronal Death in Huntington Disease. Molecular Neurobiology, 2015, 52, 1850-1861.	4.0	31
486	Sequence and expression of Tangier apoA-I gene. FEBS Journal, 1988, 173, 465-471.	0.2	30

#	Article	IF	Citations
487	Sequence of the murine Huntington disease gene: evidence for conservation, alternate splicing and polymorphism in a triplet (CCG) repeat. Human Molecular Genetics, 1994, 3, 530-530.	2.9	30
488	Murine α-l-Iduronidase: cDNA Isolation and Expression. Genomics, 1994, 24, 311-316.	2.9	30
489	Expression and Functional Analyses of Novel Mutations of ATP-Binding Cassette Transporter-1 in Japanese Patients with High-Density Lipoprotein Deficiency. Biochemical and Biophysical Research Communications, 2002, 290, 713-721.	2.1	30
490	Mice lacking caspase-2 are protected from behavioral changes, but not pathology, in the YAC128 model of Huntington disease. Molecular Neurodegeneration, 2011, 6, 59.	10.8	30
491	Bidirectional Control of Postsynaptic Density-95 (PSD-95) Clustering by Huntingtin. Journal of Biological Chemistry, 2014, 289, 3518-3528.	3.4	30
492	Laquinimod dampens hyperactive cytokine production in Huntington's disease patient myeloid cells. Journal of Neurochemistry, 2016, 137, 782-794.	3.9	30
493	Structural and functional consequences of missense mutations in exon 5 of the lipoprotein lipase gene. Journal of Lipid Research, 2002, 43, 398-406.	4.2	30
494	Differences in the Phenotype Between Children With Familial Defective Apolipoprotein B-100 and Familial Hypercholesterolemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 826-833.	2.4	30
495	A New Mutation Destroying Disulphide Bridging in the C-Terminal Domain of Lipoprotein Lipase. Biochemical and Biophysical Research Communications, 1996, 227, 189-194.	2.1	29
496	Evidence for both nucleus and cytoplasm as subcellular sites of pathogenesis in Huntington'sdisease in cell culture and in transgenic mice expressing mutant huntingtin. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 1047-1055.	4.0	29
497	Apnea and Oxygen Desaturations in Children Treated with Opioids after Adenotonsillectomy for Obstructive Sleep Apnea Syndrome. Paediatric Drugs, 2012, 14, 411-415.	3.1	29
498	Providing predictive testing for Huntington disease via telehealth: results of a pilot study in British Columbia, Canada. Clinical Genetics, 2013, 84, 60-64.	2.0	29
499	Higher frequency of genetic variants conferring increased risk for ADRs for commonly used drugs treating cancer, AIDS and tuberculosis in persons of African descent. Pharmacogenomics Journal, 2014, 14, 160-170.	2.0	29
500	Pharmacogenomics strategies to optimize treatments for multiple sclerosis: Insights from clinical research. Progress in Neurobiology, 2017, 152, 114-130.	5.7	29
501	Prenatal diagnosis of asplenia/polysplenia syndrome. American Journal of Obstetrics and Gynecology, 1988, 158, 1085-1087.	1.3	28
502	Intrachromosomal location of the telomeric repeat (TTAGGG)n. Mammalian Genome, 1991, 1, 211-216.	2.2	28
503	Expression of LPL in Endothelial-Intact Artery Results in Lipid Deposition and Vascular Cell Adhesion Molecule-1 Upregulation in Both LPL and ApoE-Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 197-203.	2.4	28
504	Genotypic Approaches to Therapy in Children: A National Active Surveillance Network (GATC) to Study the Pharmacogenomics of Severe Adverse Drug Reactions in Children. Annals of the New York Academy of Sciences, 2007, 1110, 177-192.	3.8	28

#	Article	IF	Citations
505	Targeted next-generation sequencing to diagnose disorders of HDL cholesterol. Journal of Lipid Research, 2015, 56, 1993-2001.	4.2	28
506	Insulin and IGF-1 regularize energy metabolites in neural cells expressing full-length mutant huntingtin. Neuropeptides, 2016, 58, 73-81.	2.2	28
507	The Sigma-1 Receptor Mediates Pridopidine Rescue of Mitochondrial Function in Huntington Disease Models. Neurotherapeutics, 2021, 18, 1017-1038.	4.4	28
508	Huntington disease: new insights on the role of huntingtin cleavage., 2000,, 1-17.		28
509	Sigma-1 and dopamine D2/D3 receptor occupancy of pridopidine in healthy volunteers and patients with Huntington disease: a [18F] fluspidine and [18F] fallypride PET study. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 1103-1115.	6.4	28
510	Segregation of LIPG, CETP, and GALNT2 Mutations in Caucasian Families with Extremely High HDL Cholesterol. PLoS ONE, 2012, 7, e37437.	2.5	28
511	The molecular genetics of Huntington's disease. Current Opinion in Neurology, 1994, 7, 325-332.	3.6	27
512	Pharmacogenomics and its implications for autoimmune disease. Journal of Autoimmunity, 2007, 28, 122-128.	6.5	27
513	Aberrant palmitoylation in Huntington disease. Biochemical Society Transactions, 2015, 43, 205-210.	3.4	27
514	A whole brain longitudinal study in the YAC128 mouse model of Huntington's disease shows distinct trajectories of neurochemical, structural connectivity and volumetric changes. Human Molecular Genetics, 2018, 27, 2125-2137.	2.9	27
515	Altered Regulation of Striatal Neuronal N-Methyl-D-Aspartate Receptor Trafficking by Palmitoylation in Huntington Disease Mouse Model. Frontiers in Synaptic Neuroscience, 2019, 11, 3.	2.5	27
516	Laquinimod Treatment Improves Myelination Deficits at the Transcriptional and Ultrastructural Levels in the YAC128 Mouse Model of Huntington Disease. Molecular Neurobiology, 2019, 56, 4464-4478.	4.0	27
517	A Quantitative Method for the Specific Assessment of Caspase-6 Activity in Cell Culture. PLoS ONE, 2011, 6, e27680.	2.5	27
518	Gene structure and map location of the murine homolog of the Huntington-associated protein, Hap1. Mammalian Genome, 1998, 9, 565-570.	2.2	26
519	Truncation mutations in ABCA1 suppress normal upregulation of full-length ABCA1 by 9-cis-retinoic acid and 22-R-hydroxycholesterol. Journal of Lipid Research, 2002, 43, 1939-1949.	4.2	26
520	A Role for Epsin N-terminal Homology/AP180 N-terminal Homology (ENTH/ANTH) Domains in Tubulin Binding. Journal of Biological Chemistry, 2003, 278, 28823-28830.	3.4	26
521	HDL deficiency and atherosclerosis: lessons from Tangier disease. Journal of Internal Medicine, 2004, 255, 299-301.	6.0	26
522	The fatal attraction of polyglutamineâ€containing proteins. Clinical Genetics, 1998, 53, 233-242.	2.0	26

#	Article	IF	Citations
523	Prevalence, geographical distribution and genealogical investigations of mutation 188 of lipoprotein lipase gene in the French Canadian population of Québec. Clinical Genetics, 1992, 41, 206-210.	2.0	26
524	Population stratification may bias analysis of PGC- $1\hat{l}_{\pm}$ as a modifier of age at Huntington disease motor onset. Human Genetics, 2012, 131, 1833-1840.	3.8	26
525	Public Perceptions of Pharmacogenetics. Pediatrics, 2014, 133, e1258-e1267.	2.1	26
526	Direct intracerebral delivery of a miR-33 antisense oligonucelotide into mouse brain increases brain ABCA1 expression. Neuroscience Letters, 2015, 598, 66-72.	2.1	26
527	Laquinimod decreases Bax expression and reduces caspase-6 activation in neurons. Experimental Neurology, 2016, 283, 121-128.	4.1	26
528	Large-scale transcriptomic analysis reveals that pridopidine reverses aberrant gene expression and activates neuroprotective pathways in the YAC128 HD mouse. Molecular Neurodegeneration, 2018, 13, 25.	10.8	26
529	Recurrent pancreatitis and chylomicronemia in an extended Dutch kindred is caused by a Gly154–>Ser substitution in lipoprotein lipase Journal of Lipid Research, 1993, 34, 2109-2119.	4.2	26
530	South African founder mutations in the low-density lipoprotein receptor gene causing familial hypercholesterolemia in the Dutch population. Human Genetics, 1993, 92, 567-570.	3.8	25
531	Recurrent missense mutations at the first and second base of codon Arg243 in human lipoprotein lipase in patients of different ancestries. Human Mutation, 1994, 3, 52-58.	2.5	25
532	Precise Mapping of the Brain α2-Adrenergic Receptor Gene within Chromosome 4p16. Genomics, 1994, 19, 298-302.	2.9	25
533	Origins and evolution of huntington disease chromosomes. Experimental Neurology, 1995, 4, 239-244.	1.7	25
534	Genetic testing and Huntington's disease: issues of employment. Lancet Neurology, The, 2004, 3, 249-252.	10.2	25
535	Cross-species characterization of the ALS2 gene and analysis of its pattern of expression in development and adulthood. Neurobiology of Disease, 2005, 18, 243-257.	4.4	25
536	Structural abnormalities in spermatids together with reduced sperm counts and motility underlie the reproductive defect in HIP1 \hat{a} mice. Molecular Reproduction and Development, 2007, 74, 341-359.	2.0	25
537	Hypoalphalipoproteinemia Resembling Fish Eye Disease. Acta Medica Scandinavica, 1987, 221, 291-298.	0.0	25
538	Cocaine adulterant linked to neutropenia. Cmaj, 2010, 182, 57-59.	2.0	25
539	<i>"Grasping the Greyâ€</i> : Patient Understanding and Interpretation of an Intermediate Allele Predictive Test Result for Huntington Disease. Journal of Genetic Counseling, 2013, 22, 200-217.	1.6	25
540	A pharmacogenetic signature of high response to Copaxone in late-phase clinical-trial cohorts of multiple sclerosis. Genome Medicine, 2017, 9, 50.	8.2	25

#	Article	lF	CITATION
541	Primary Lipoprotein Lipase Deficiency. , 1986, 201, 227-239.		25
542	Normal CAG repeat length in the Huntington's disease gene in senile chorea. Neurology, 1994, 44, 2183-2183.	1.1	25
543	Are we all of one mind? Clinicians' and patients' opinions regarding the development of a service protocol for predictive testing for Huntington disease. American Journal of Medical Genetics Part A, 1995, 58, 59-69.	2.4	24
544	DNA analysis of distinct populations suggests multiple origins for the mutation causing Huntington disease. Clinical Genetics, 2008, 43, 286-294.	2.0	24
545	The Dynamics of Macrophage Infiltration into the Arterial Wall during Atherosclerotic Lesion Development in Low-Density Lipoprotein Receptor Knockout Mice. American Journal of Pathology, 2011, 178, 413-422.	3.8	24
546	Identification of four novel genes contributing to familial elevated plasma HDL cholesterol in humans. Journal of Lipid Research, 2014, 55, 1693-1701.	4.2	24
547	Systematic interaction network filtering identifies CRMP1 as a novel suppressor of huntingtin misfolding and neurotoxicity. Genome Research, 2015, 25, 701-713.	5.5	24
548	ABCA1 deficiency and cellular cholesterol accumulation increases islet amyloidogenesis in mice. Diabetologia, 2016, 59, 1242-1246.	6.3	24
549	Sigma-1 Receptor (S1R) Interaction with Cholesterol: Mechanisms of S1R Activation and Its Role in Neurodegenerative Diseases. International Journal of Molecular Sciences, 2021, 22, 4082.	4.1	24
550	Identification of Binding Sites in Huntingtin for the Huntingtin Interacting Proteins HIP14 and HIP14L. PLoS ONE, 2014, 9, e90669.	2.5	24
551	Many roads lead to atheroma. Nature Medicine, 1995, 1, 22-23.	30.7	23
552	Expression of matrix metalloproteinase activity in idiopathic dilated cardiomyopathy: A marker of cardiac dilatation. Molecular and Cellular Biochemistry, 2004, 264, 183-191.	3.1	23
553	Mycophenolate Mofetil and Atherosclerosis: Results of Animal and Human Studies. Annals of the New York Academy of Sciences, 2007, 1110, 209-221.	3.8	23
554	Application of principal component analysis to pharmacogenomic studies in Canada. Pharmacogenomics Journal, 2009, 9, 362-372.	2.0	23
555	Communicating Pharmacogenetic Research Results to Breastfeeding Mothers Taking Codeine: A Pilot Study of Perceptions and Benefits. Clinical Pharmacology and Therapeutics, 2010, 88, 792-795.	4.7	23
556	A Comprehensive Haplotype-Targeting Strategy for Allele-Specific HTT Suppression in Huntington Disease. American Journal of Human Genetics, 2019, 105, 1112-1125.	6.2	23
557	Quantification of Motor Function in Huntington Disease Patients Using Wearable Sensor Devices. Digital Biomarkers, 2020, 3, 103-115.	4.4	23
558	Hemorheological abnormalities in lipoprotein lipase deficient mice with severe hypertriglyceridemia. Biochemical and Biophysical Research Communications, 2006, 341, 1066-1071.	2.1	22

#	Article	IF	Citations
559	Pharmacogenomics of Cardiovascular Drugs and Adverse Effects in Pediatrics. Journal of Cardiovascular Pharmacology, 2011, 58, 228-239.	1.9	22
560	A new mutation for Huntington disease following maternal transmission of an intermediate allele. European Journal of Medical Genetics, 2015, 58, 28-30.	1.3	22
561	Sudden death due to paralysis and synaptic and behavioral deficits when Hip14/Zdhhc17 is deleted in adult mice. BMC Biology, 2016, 14, 108.	3.8	22
562	Genetic ablation of <i>Cyp8b1</i> preserves host metabolic function by repressing steatohepatitis and altering gut microbiota composition. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314, E418-E432.	3.5	22
563	The high frequency of juvenile Huntington's chorea in South Africa. Journal of Medical Genetics, 1982, 19, 94-97.	3.2	21
564	Identification of multiple CpG islands and associated conserved sequences in a candidate region for the Huntington disease gene. Genomics, 1991, 11, 1113-1124.	2.9	21
565	The Murine Homologues of the Huntington Disease Gene (Hdh) and the α-Adducin Gene (Add1) Map to Mouse Chromosome 5 within a Region of Conserved Synteny with Human Chromosome 4p16.3. Genomics, 1994, 22, 198-201.	2.9	21
566	Alternate transcripts expressed in response to diet reflect tissue-specific regulation of ABCA1. Journal of Lipid Research, 2005, 46, 2061-2071.	4.2	21
567	Protective up-regulation of CK2 by mutant huntingtin in cells co-expressing NMDA receptors. Journal of Neurochemistry, 2007, 104, 071106220454003-???.	3.9	21
568	Economic impact of a genetic test for cisplatin-induced ototoxicity. Pharmacogenomics Journal, 2012, 12, 205-213.	2.0	21
569	Genetic diversity of variants involved in drug response and metabolism in Sri Lankan populations. Pharmacogenetics and Genomics, 2016, 26, 28-39.	1.5	21
570	Functional effects of the antigen glatiramer acetate are complex and tightly associated with its composition. Journal of Neuroimmunology, 2016, 290, 84-95.	2.3	21
571	HACE1 is essential for astrocyte mitochondrial function and influences Huntington disease phenotypes in vivo. Human Molecular Genetics, 2018, 27, 239-253.	2.9	21
572	The Interaction of Aging and Cellular Stress Contributes to Pathogenesis in Mouse and Human Huntington Disease Neurons. Frontiers in Aging Neuroscience, 2020, 12, 524369.	3.4	21
573	Re: Autopsyâ€proven Huntington's disease with 29 trinucleotide repeats. Movement Disorders, 2008, 23, 1794-1795.	3.9	20
574	TAA repeat variation in the GRIK2 gene does not influence age at onset in Huntington's disease. Biochemical and Biophysical Research Communications, 2012, 424, 404-408.	2.1	20
575	When access is an issue: exploring barriers to predictive testing for Huntington disease in British Columbia, Canada. European Journal of Human Genetics, 2013, 21, 148-153.	2.8	20
576	Role of TPMT and COMT genetic variation in cisplatin-induced ototoxicity. Clinical Pharmacology and Therapeutics, 2014, 95, 253-253.	4.7	20

#	Article	IF	CITATIONS
577	Post-translational myristoylation at the cross roads of cell death, autophagy and neurodegeneration. Biochemical Society Transactions, 2015, 43, 229-234.	3.4	20
578	Identification of a novel caspase cleavage site in huntingtin that regulates mutant huntingtin clearance. FASEB Journal, 2019, 33, 3190-3197.	0.5	20
579	Regression Model for Predicting Dissociations of Regional Cerebral Glucose Metabolism in Individuals at Risk for Huntington's Disease. Journal of Cerebral Blood Flow and Metabolism, 1986, 6, 756-762.	4.3	19
580	Different options for prenatal testing for Huntington's disease using DNA probes Journal of Medical Genetics, 1989, 26, 353-357.	3.2	19
581	Mapping of the Human NMDA Receptor Subunit (NMDAR1) and the Proposed NMDA Receptor Glutamate-Binding Subunit (NMDARA1) to Chromosomes 9q34.3 and Chromosome 8, Respectively. Genomics, 1993, 17, 237-239.	2.9	19
582	Long-term efficacy and tolerability of simvastatin in a large cohort of elderly hypercholesterolemic patients. Atherosclerosis, 1995, 116, 153-162.	0.8	19
583	Heterozygosity for ABCA1 gene mutations: effects on enzymes, apolipoproteins and lipoprotein particle size. Atherosclerosis, 2003, 171, 311-319.	0.8	19
584	Pharmacogenomics and active surveillance for serious adverse drug reactions in children. Pharmacogenomics, 2010, 11, 1269-1285.	1.3	19
585	Clinical, Biochemical, and Molecular Characterization of Novel Mutations in ABCA1 in Families with Tangier Disease. JIMD Reports, 2014, 18, 51-62.	1.5	19
586	Hepatic ABCA1 Expression Improves Â-Cell Function and Glucose Tolerance. Diabetes, 2014, 63, 4076-4082.	0.6	19
587	Two novel mutations in apolipoprotein C3 underlie atheroprotective lipid profiles in families. Clinical Genetics, 2014, 85, 433-440.	2.0	19
588	Altering cortical input unmasks synaptic phenotypes in the YAC128 cortico-striatal co-culture model of Huntington disease. BMC Biology, 2018, 16, 58.	3.8	19
589	Coupled Control of Distal Axon Integrity and Somal Responses to Axonal Damage by the Palmitoyl Acyltransferase ZDHHC17. Cell Reports, 2020, 33, 108365.	6.4	19
590	A missense mutation Pro157Arg in lipoprotein lipase (LPLNijmegen) resulting in loss of catalytic activity. FEBS Journal, 1992, 208, 267-272.	0.2	18
591	Dilemmas of anonymous predictive testing for Huntington disease: Privacy vs. optimal care., 1997, 71, 197-201.		18
592	A Yeast Artificial Chromosome-Based Physical Map of the Juvenile Amyotrophic Lateral Sclerosis (ALS2) Critical Region on Human Chromosome 2q33–q34. Genomics, 1999, 55, 106-112.	2.9	18
593	Familial defective apolipoprotein B-100 is clinically indistinguishable from familial hypercholesterolemia. Archives of Internal Medicine, 1993, 153, 2349-2356.	3.8	18
594	Genetic aspects of Huntington's chorea: Results of a national survey. American Journal of Medical Genetics Part A, 1982, 11, 135-141.	2.4	17

#	Article	IF	CITATIONS
595	Predictive testing for Huntington disease: Are we ready for widespread community implementation?. American Journal of Medical Genetics Part A, 1991, 40, 515-517.	2.4	17
596	Auxiliary-directed dioxygenation: stereoselective synthesis of a diene hydroperoxide. Tetrahedron Letters, 1992, 33, 443-446.	1.4	17
597	Phenotypic variation of mutations in the human lipoprotein-lipase gene. Biochemical Society Transactions, 1993, 21, 506-509.	3.4	17
598	Lessons from predictive testing for Huntington disease: 25 years on. Journal of Medical Genetics, 2011, 48, 649-650.	3.2	17
599	Putative Association of ABCB1 2677G>T/A With Oxycodone-Induced Central Nervous System Depression in Breastfeeding Mothers. Therapeutic Drug Monitoring, 2013, 35, 466-472.	2.0	17
600	Life-Threatening Adverse Events Following Therapeutic Opioid Administration in Adults: Is Pharmacogenetic Analysis Useful?. Pain Research and Management, 2013, 18, 133-136.	1.8	17
601	High density lipoprotein metabolism in low density lipoprotein receptor-deficient mice. Journal of Lipid Research, 2014, 55, 1914-1924.	4.2	17
602	Gene expression profiles complement the analysis of genomic modifiers of the clinical onset of Huntington disease. Human Molecular Genetics, 2020, 29, 2788-2802.	2.9	17
603	Preclinical testing in Huntington disease. American Journal of Medical Genetics Part A, 1987, 27, 733-734.	2.4	16
604	Perinatal and first year followâ€up of patients with Praderâ€Willi syndrome: normal size of hands and feet. Clinical Genetics, 1989, 35, 161-166.	2.0	16
605	Pridopidine reduces mutant huntingtinâ€induced endoplasmic reticulum stress by modulation of the Sigmaâ€i receptor. Journal of Neurochemistry, 2021, 158, 467-481.	3.9	16
606	Super-resolution imaging reveals extrastriatal synaptic dysfunction in presymptomatic Huntington disease mice. Neurobiology of Disease, 2021, 152, 105293.	4.4	16
607	Rescue of aberrant huntingtin palmitoylation ameliorates mutant huntingtin-induced toxicity. Neurobiology of Disease, 2021, 158, 105479.	4.4	16
608	Patients' rights to laboratory data: Trinucleotide repeat length in Huntington disease., 1996, 62, 6-9.		15
609	<emph type="ital">ABCA1</emph> Gene Mutations, HDL Cholesterol Levels, and Risk of Ischemic Heart Disease. JAMA - Journal of the American Medical Association, 2008, 300, 1997.	7.4	15
610	Pharmacogenomic diversity in Singaporean populations and Europeans. Pharmacogenomics Journal, 2014, 14, 555-563.	2.0	15
611	Laquinimod exerts strong clinical and immunomodulatory effects in Lewis rat experimental autoimmune neuritis. Journal of Neuroimmunology, 2014, 274, 38-45.	2.3	15
612	The targetable A1 Huntington disease haplotype has distinct Amerindian and European origins in Latin America. European Journal of Human Genetics, 2017, 25, 332-340.	2.8	15

#	Article	IF	CITATIONS
613	Cerebral Glucose and Dopa Metabolism in Movement Disorders. Canadian Journal of Neurological Sciences, 1987, 14, 448-451.	0.5	14
614	Epiphyseal dysplasia, microcephaly, nystagmus, and retinitis pigmentosa. American Journal of Medical Genetics Part A, 1989, 33, 341-345.	2.4	14
615	Dyslipidemias associated with heterozygous lipoprotein lipase mutations in the French-Canadian population. Human Mutation, 1998, 11, S148-S153.	2.5	14
616	Genomic organization of the human caspase-9 gene on Chromosome 1p36.1-p36.3. Mammalian Genome, 1999, 10, 757-760.	2.2	14
617	Gene environment interaction and plasma triglyceride levels: the crucial role of lipoprotein lipase. Clinical Genetics, 1994, 46, 15-18.	2.0	14
618	Factors associated with experiences of genetic discrimination among individuals at risk for huntington disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 19-27.	1.7	14
619	Gene expression studies of a human monocyte cell line identify dissimilarities between differently manufactured glatiramoids. Scientific Reports, 2015, 5, 10191.	3.3	14
620	Interactome network analysis identifies multiple caspase-6 interactors involved in the pathogenesis of HD. Human Molecular Genetics, 2016, 25, 1600-1618.	2.9	14
621	DAPK1 Promotes Extrasynaptic GluN2B Phosphorylation and Striatal Spine Instability in the YAC128 Mouse Model of Huntington Disease. Frontiers in Cellular Neuroscience, 2020, 14, 590569.	3.7	14
622	The lipoprotein lipase Gly188—Glu mutation in South Africans of Indian descent: evidence suggesting common origins and an increased frequency Journal of Medical Genetics, 1992, 29, 119-122.	3.2	13
623	Issues in Molecular Genetic Testing of Individuals with Suspected Early-onset Familial AlzheimerÊ⅓s Disease. Alzheimer Disease and Associated Disorders, 1994, 8, 116-125.	1.3	13
624	Compound heterozygosity for a known and a novel defect in the lipoprotein lipase gene (Asp250 ? Asn;) Tj ETQq0 189-195.	0 0 0 rgBT / 0.5	/Overlock 10 13
625	Localization of the cell death genes CPP32 and Mch-2 to human Chromosome 4q. Mammalian Genome, 1997, 8, 56-59.	2.2	13
626	Physiologically regulated transgenic ABCA1 does not reduce amyloid burden or amyloid- \hat{l}^2 peptide levels in vivo. Journal of Lipid Research, 2007, 48, 914-923.	4.2	13
627	Plasma apolipoprotein AV levels in mice are positively associated with plasma triglyceride levels. Journal of Lipid Research, 2009, 50, 880-884.	4.2	13
628	Age-Dependent Resistance to Excitotoxicity in Htt CAG140 Mice and the Effect of Strain Background. Journal of Huntington's Disease, 2012, 1, 221-241.	1.9	13
629	Pharmacogenomic screening for anthracyclineâ€induced cardiotoxicity in childhood cancer. British Journal of Clinical Pharmacology, 2017, 83, 1143-1145.	2.4	13
630	pS421 huntingtin modulates mitochondrial phenotypes and confers neuroprotection in an HD hiPSC model. Cell Death and Disease, 2020, 11, 809.	6.3	13

#	Article	IF	CITATIONS
631	A low-copy repeat located in subtelomeric regions of 14 different human chromosomal termini. Cytogenetic and Genome Research, 1991, 57, 179-183.	1.1	12
632	Exclusion of DNA changes in the β–subunit of the c–GMP phosphodiesterase gene as the cause for Huntington's disease. Nature Genetics, 1992, 1, 104-108.	21.4	12
633	George Huntington: the man behind the eponym Journal of Medical Genetics, 1993, 30, 406-409.	3. 2	12
634	lle225Thr loop mutation in thelipoprotein lipase (LPL) gene is a de novo event., 1998, 78, 313-316.		12
635	Absence of stearoyl-CoA desaturase-1 does not promote DSS-induced acute colitis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 1166-1172.	2.4	12
636	Biophysical and Biological Characterization of Hairpin and Molecular Beacon RNase H Active Antisense Oligonucleotides. ACS Chemical Biology, 2015, 10, 1227-1233.	3.4	12
637	Apnea and Oxygen Desaturations in Children Treated with Opioids after Adenotonsillectomy for Obstructive Sleep Apnea Syndrome. Paediatric Drugs, 2012, 14, 411-415.	3.1	12
638	Cerebrospinal fluid mutant huntingtin is a biomarker for huntingtin lowering in the striatum of Huntington disease mice. Neurobiology of Disease, 2022, 166, 105652.	4.4	12
639	Controlling for Cerebral Atrophy in Positron Emission Tomography Data. Journal of Cerebral Blood Flow and Metabolism, 1987, 7, 510-512.	4.3	11
640	Comparison of gemfibrozil and clofibrate on serum lipids in familial combined hyperlipidemia. Atherosclerosis, 1988, 73, 233-240.	0.8	11
641	Efficient Adenovirus-Mediated Ectopic Gene Expression of Human Lipoprotein Lipase in Human Hepatic (HepG2) Cells. Human Gene Therapy, 1997, 8, 205-214.	2.7	11
642	Interleukin- $1\hat{1}$ ±-converting enzyme (ICE) and related cell death genes ICErel-II and ICErel-III map to the same PAC clone at band 11q22.2-22.3. Mammalian Genome, 1997, 8, 611-613.	2.2	11
643	Maternal expression of functional lipoprotein lipase and effects on body fat mass and body condition scores of mature cats with lipoprotein lipase deficiency. American Journal of Veterinary Research, 2001, 62, 264-269.	0.6	11
644	Predictive testing for persons at risk for homozygosity for CAG expansion in the Huntington disease gene. Clinical Genetics, 2003, 64, 524-525.	2.0	11
645	Complete functional rescue of the ABCA1 \hat{a} mouse by human BAC transgenesis. Journal of Lipid Research, 2005, 46, 1113-1123.	4.2	11
646	Postpartum Maternal Codeine Therapy and the Risk of Adverse Neonatal Outcomes. Therapeutic Drug Monitoring, 2012, 34, 378-380.	2.0	11
647	De novo Huntington disease caused by 26–44 CAG repeat expansion on a low-risk haplotype. Neurology, 2013, 81, 1099-1100.	1.1	11
648	Inhibiting cellular uptake of mutant huntingtin using a monoclonal antibody: Implications for the treatment of Huntington's disease. Neurobiology of Disease, 2020, 141, 104943.	4.4	11

#	Article	IF	Citations
649	Psychosocial effects of predictive testing for Huntington's disease. Advances in Neurology, 2005, 96, 226-39.	0.8	11
650	Homozygosity for a mutation in the lipoprotein lipase gene (Gly139?Ser) causes chylomicronaemia in a boy of Spanish descent. Human Genetics, 1994, 93, 339-343.	3.8	10
651	Mapping of the gonadotropin-releasing hormone (GnRH) receptor gene to human Chromosome 4q21.2 by fluorescence in situ hybridization. Mammalian Genome, 1995, 6, 309-310.	2.2	10
652	Pathological association and dissociation of functional systems in multiple sclerosis and Huntington's disease. Journal of Clinical and Experimental Neuropsychology, 1997, 19, 63-76.	1.3	10
653	Assessment of French patients with LPL deficiency for French Canadian mutations Journal of Medical Genetics, 1997, 34, 672-675.	3.2	10
654	CAG repeat polymorphisms in KCNN3 (HSKCa3) and PPP2R2B show no association or linkage to schizophrenia., 2003, 116B, 45-50.		10
655	Candidate glutamatergic and dopaminergic pathway gene variants do not influence Huntington's disease motor onset. Neurogenetics, 2013, 14, 173-179.	1.4	10
656	Activation of Caspase-6 Is Promoted by a Mutant Huntingtin Fragment and Blocked by an Allosteric Inhibitor Compound. Cell Chemical Biology, 2019, 26, 1295-1305.e6.	5.2	10
657	Low Levels of Human HIP14 Are Sufficient to Rescue Neuropathological, Behavioural, and Enzymatic Defects Due to Loss of Murine HIP14 in Hip14â^'/â^' Mice. PLoS ONE, 2012, 7, e36315.	2.5	10
658	Reflections on the history of Huntington's chorea. Trends in Neurosciences, 1983, 6, 122-124.	8.6	9
659	(CA)n-dinucleotide repeat polymorphism at the locus for the alpha2C adrenergic receptor (ADRA2C) on 4p16. Human Molecular Genetics, 1992, 1, 452-452.	2.9	9
660	Huntingtin proteolysis in Huntington disease. Clinical Neuroscience Research, 2003, 3, 129-139.	0.8	9
661	Glucose intolerance and decreased early insulin response in mice with severe hypertriglyceridemia. Experimental Biology and Medicine, 2010, 235, 40-46.	2.4	9
662	Constitutive ablation of caspase-6 reduces the inflammatory response and behavioural changes caused by peripheral pro-inflammatory stimuli. Cell Death Discovery, 2018, 4, 40.	4.7	9
663	Auxiliary-directed peroxidation of 1,4-dienes. Tetrahedron, 1996, 52, 12381-12398.	1.9	8
664	A systematic review and metaâ€analysis of clinical variables used in Huntington disease research. Movement Disorders, 2013, 28, 1987-1994.	3.9	8
665	Cancer Pharmacogenomics in Children: Research Initiatives and Progress to Date. Paediatric Drugs, 2013, 15, 71-81.	3.1	8
666	Developing a comprehensive, effective patient-friendly website to enhance decision making in predictive testing for Huntington disease. Genetics in Medicine, 2013, 15, 466-472.	2.4	8

#	Article	IF	Citations
667	Development of a broad-based ADME panel for use in pharmacogenomic studies. Pharmacogenomics, 2014, 15, 1185-1195.	1.3	8
668	Huntingtin interacting proteins 14 and 14-like are required for chorical lantoic fusion during early placental development. Developmental Biology, 2015, 397, 257-266.	2.0	8
669	Tracing the mutated HTT and haplotype of the African ancestor who spread Huntington disease into the Middle East. Genetics in Medicine, 2020, 22, 1903-1908.	2.4	8
670	Neuroprotection of retinal ganglion cells by the sigma-1 receptor agonist pridopidine in models of experimental glaucoma. Scientific Reports, 2021, 11, 21975.	3.3	8
671	Delineation of a 50 kilobase DNA segment containing the recombination site in a sporadic case of Huntington's disease. Nature Genetics, 1992, 2, 216-222.	21.4	7
672	(CA)n-dinucleotide repeat at the PDEB locus in 4p16.3. Human Molecular Genetics, 1993, 2, 827-827.	2.9	7
673	The Psychological Consequences of Predictive Testing for Huntington $\hat{E}^{1}/4$ s Disease. Obstetrical and Gynecological Survey, 1993, 48, 248-250.	0.4	7
674	Apolipoprotein CII-Padova (Tyr37>stop) as a cause of chylomicronaemia in an Italian kindred from Siculiana Journal of Medical Genetics, 1994, 31, 622-626.	3.2	7
675	Retroviral-Mediated Gene Transfer and Expression of Human Lipoprotein Lipase in Somatic Cells. Human Gene Therapy, 1995, 6, 853-863.	2.7	7
676	A single Ser259Arg mutation in the gene for lipoprotein lipase causes chylomicronemia in Moroccans of Berber ancestry., 1997, 10, 179-185.		7
677	A case of tangier disease with a novel mutation in the c-terminal region of ATP-binding cassette transporter A1. American Journal of Medical Genetics Part A, 2004, 130A, 398-401.	2.4	7
678	Cardiovascular disease in systemic lupus erythematosus: has the time for action come?. Current Opinion in Lipidology, 2005, 16, 501-506.	2.7	7
679	Acute hypertriglyceridemic pancreatitis during pregnancy due to homozygous lipoprotein lipase gene mutation. Clinica Chimica Acta, 2009, 400, 137-138.	1.1	7
680	Enhanced atherothrombotic formation after oxidative injury by FeCl3 to the common carotid artery in severe combined hyperlipidemic mice. Biochemical and Biophysical Research Communications, 2009, 385, 563-569.	2.1	7
681	Caspase-6-Resistant Mutant Huntingtin Does not Rescue the Toxic Effects of Caspase-Cleavable Mutant Huntingtin in vivo. Journal of Huntington's Disease, 2012, 1, 243-260.	1.9	7
682	Adoption and the communication of genetic risk: experiences in Huntington disease. Clinical Genetics, 2012, 81, 64-69.	2.0	7
683	Genetic Markers of Cisplatin-Induced Hearing Loss in Children. Clinical Pharmacology and Therapeutics, 2014, 96, 296-298.	4.7	7
684	Compositional differences between Copaxone and Glatopa are reflected in altered immunomodulation <i>ex vivo</i> in a mouse model. Annals of the New York Academy of Sciences, 2017, 1407, 75-89.	3.8	7

#	Article	IF	Citations
685	Reliable Resolution of Full-Length Huntingtin Alleles by Quantitative Immunoblotting. Journal of Huntington's Disease, 2021, 10, 355-365.	1.9	7
686	Linkage studies and mutation analysis of the PDEB gene in 23 families with leber congenital amaurosis. Human Mutation, 1992, 1, 478-485.	2.5	6
687	Development of a program for identification of patients with familial hypercholesterolemia in British Columbia: A model for prevention of coronary disease. American Journal of Cardiology, 1993, 72, D25-D29.	1.6	6
688	Familial defective apolipoprotein B-100 in hypercholesterolemic Chinese Canadians: identification of a unique haplotype of the apolipoprotein B-100 allele. Atherosclerosis, 1997, 135, 181-185.	0.8	6
689	Human huntingtin-associated protein (HAP-1) gene: genomic organisation and an intragenic polymorphism. Gene, 2000, 254, 181-187.	2.2	6
690	Compromised IGF signaling causes caspase-6 activation in Huntington disease. Experimental Neurology, 2020, 332, 113396.	4.1	6
691	Bilateral renal agenesis in twins. American Journal of Medical Genetics Part A, 1985, 21, 147-152.	2.4	5
692	A polymorphic DNA probe located to human chromosome 4p16 (D4S62). Nucleic Acids Research, 1987, 15, 3938-3938.	14.5	5
693	Compound heterozygosity for frameshift mutations in the gene for lipoprotein lipase in a patient with early-onset chylomicronemia. Human Mutation, 1998, 11, S141-S144.	2.5	5
694	Chromosomal localization of the Huntingtin Associated Protein (HAP-1) gene in mouse and humans with radiation hybrid and interspecific backcross mapping. Mammalian Genome, 1999, 10, 397-398.	2.2	5
695	The Asn9 variant of lipoprotein lipase is associated with the $\hat{a}\in$ "93G promoter mutation and an increased risk of coronary artery disease. Clinical Genetics, 1998, 53, 27-33.	2.0	5
696	Response to Falush: A Role for cis-Element Polymorphisms in HD. American Journal of Human Genetics, 2009, 85, 942-945.	6.2	5
697	Ethical issues in preclinical testing in Huntington disease: Response to Margery Shaw's invited editorial comment. American Journal of Medical Genetics Part A, 1987, 28, 761-763.	2.4	4
698	Monoamines and their metabolites in Huntington's disease brain: Evidence for decreased catechol-O-methyltransferase activity. Biological Psychiatry, 1993, 33, 551-553.	1.3	4
699	A 4 basepair deletion in exon 4 of the human lipoprotein lipase gene results in type I hyperlipoproteinemia. Human Molecular Genetics, 1993, 2, 1049-1050.	2.9	4
700	Update on genetics of Huntington's disease: availability of direct and accurate predictive test. Italian Journal of Neurological Sciences, 1996, 17, 185-187.	0.1	4
701	Experimental models of Huntington's disease. Drug Discovery Today: Disease Models, 2005, 2, 291-297.	1.2	4
702	Is tetrabenazine safe and effective for suppressing chorea in Huntington's disease?. Nature Clinical Practice Neurology, 2006, 2, 536-537.	2.5	4

#	Article	IF	CITATIONS
703	Amelioration of Hypertriglyceridemia with Hypo-Alpha-Cholesterolemia in LPL Deficient Mice by Hematopoietic Cell-Derived LPL. PLoS ONE, 2011, 6, e25620.	2.5	4
704	Role of repeats in protein clearance. Nature, 2017, 545, 33-34.	27.8	4
705	Urinary proteins in a patient with Tangier disease. Clinical Biochemistry, 1985, 18, 98-101.	1.9	3
706	Predictive testing for Huntington disease Journal of Medical Ethics, 1992, 18, 47-48.	1.8	3
707	addendum: A one-hit model of cell death in inherited neuronal degenerations. Nature, 2001, 409, 542-542.	27.8	3
708	Diagnostic Testing for Vaccinomics: Is the Regulatory Approval Framework Adequate? A Comparison of Canada, the United States, and Europe. OMICS A Journal of Integrative Biology, 2011, 15, 597-605.	2.0	3
709	Living with Huntington's Chorea: The Social Perspective. , 1981, , 123-135.		3
710	Regional cerebral glucose metabolism in huntington's disease: A statistical investigation. Human Brain Mapping, 1994, 2, 95-102.	3.6	2
711	Allelic variation in the promoter region of the LDL receptor gene: analysis of an African-specific variant in the FP2 cis-acting regulatory element. Molecular and Cellular Probes, 2003, 17, 175-181.	2.1	2
712	Mycophenolate mofetil as an immunomodulatory silver bullet in atherogenesis?. Lupus, 2006, 15, 11-17.	1.6	2
713	On planting alfalfa and growing orchids: the cloning of the gene causing Huntington disease. Clinical Genetics, 1993, 43, 217-222.	2.0	2
714	The metabolic phenotype of SCD1-deficient mice is independent of melanin-concentrating hormone. Peptides, 2010, 31, 123-129.	2.4	2
715	Early Increase in Extrasynaptic NMDA Receptor Signaling and Expression Contributes to Phenotype Onset in Huntington's Disease Mice. Neuron, 2010, 65, 436.	8.1	2
716	Personalized Medicine: Temper Expectationsâ€"Response. Science, 2012, 337, 911-911.	12.6	2
717	Developmental Biology: Frontiers for Clinical Genetics. Clinical Genetics, 2014, 86, no.	2.0	2
718	Response to "Evaluation of Pharmacogenetic Markers to Predict the Risk of Cisplatin-Induced Ototoxicity― Clinical Pharmacology and Therapeutics, 2014, 96, 158-158.	4.7	2
719	Comment on Rickels et al. Loss-of-Function Mutations inABCA1and Enhanced β-Cell Secretory Capacity in Young Adults. Diabetes 2015;64:193–199. Diabetes, 2015, 64, e25-e26.	0.6	2
720	Characterization of subventricular zone-derived progenitor cells from mild and late symptomatic YAC128 mouse model of Huntington's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 34-44.	3.8	2

#	Article	IF	Citations
721	In search of a genetic explanation for LDLc variability in an FH family: common SNPs and a rare mutation in MTTP explain only part of LDL variability in an FH family. Journal of Lipid Research, 2019, 60, 1733-1740.	4.2	2
722	Down's syndrome and Alzheimer's disease. Annals of Neurology, 1984, 16, 263-263.	5.3	1
723	Insurance and the Presymptomatic Diagnosis of Delayed-Onset Disease. JAMA - Journal of the American Medical Association, 1989, 262, 2384.	7.4	1
724	DNA testing for Huntington disease results in a modification of risk and not diagnosis of disease. European Journal of Pediatrics, 1990, 149, 513-513.	2.7	1
725	Reply to Dr. Kessler. American Journal of Medical Genetics Part A, 1993, 45, 696-697.	2.4	1
726	SORFIND: A COMPUTER PROGRAM THAT PREDICTS EXONS IN VERTEBRATE GENOMIC DNA. , 1993, , .		1
727	Gene-based therapeutic strategies for Human Lipoprotein Lipase (LPL) deficiency: Rationale and prospects for alteration of atherogenic risk. Transfusion Science, 1996, 17, 79-87.	0.6	1
728	The new Clinical Genetics: towards the millennium. Clinical Genetics, 1998, 53, 1-2.	2.0	1
729	O1-03-07 ABCA1 modulates APOE levels in brain and plasma. Neurobiology of Aging, 2004, 25, S15-S16.	3.1	1
730	Molecular Pathogenesis of Huntington's Disease: The Role of Excitotoxicity., 2006, , 251-260.		1
731	Response to the Letter by Ebara et al. Circulation Research, 2008, 102, .	4.5	1
732	Cholesterol toxicity in pancreatic islets from LDL receptor-deficient mice. Reply to: de Souza JC, de Oliveira CAM, Carneiro EM et al. [letter]. Diabetologia, 2010, 53, 2463-2464.	6.3	1
733	Peripheral and cerebral metabolic features in an animal model of Huntington's disease., 2012,,.		1
734	Polyglutamine diseases and the risk of cancer. Lancet Oncology, The, 2012, 13, 569-571.	10.7	1
735	A43 Intrinsic mutant HTT-mediated defects in oligodendroglia cells contribute to myelin deficits and behavioural abnormalities in huntington disease. , 2018, , .		1
736	Gene Therapy for Lipoprotein Lipase Deficiency: Working Toward Clinical Application. Human Gene Therapy, 2005, .	2.7	1
737	Insufficient evidence to invoke defects in or around the A-I gene as the cause for familial hypoalphahpoproteinemia. Atherosclerosis, 1987, 67, 271-272.	0.8	0
738	A polymorphic DNA marker at the D8S131 locus. Nucleic Acids Research, 1991, 19, 1725-1725.	14.5	0

#	Article	IF	CITATIONS
739	1.W05.3 Common mutations in the lipoprotein lipase gene influence plasma lipids and prevalence of coronary heart disease. Atherosclerosis, 1997, 134, 12.	0.8	O
740	1.P.265 Phenotypic variation in familial hypercholesterolemia: A comparison of Chinese patients heterozygous for the same or similar mutations in the low density lipoprotein-receptor gene living in China or Canada. Atherosclerosis, 1997, 134, 72.	0.8	0
741	2.W13.1 Molecular genetics as tools to redefine the clinics of lipoprotein disorders: The example of lipoprotein lipase deficiency. Atherosclerosis, 1997, 134, 110.	0.8	O
742	Effect of concurrent LDL receptor gene and LPL gene mutations on LDL particles size, density and lipid composition. Atherosclerosis, 1999, 144, 175.	0.8	0
743	Michael Smith (1932–2000). Nature, 2000, 408, 786-786.	27.8	0
744	Clarity is essential when using Nucleotide number systems. Atherosclerosis, 2003, 170, 349.	0.8	0
745	Introduction to Social and Behavioural Research in Genetics. Clinical Genetics, 2005, 67, 480-480.	2.0	0
746	W10-IS-001 Role of ABCA1 and SR-BI in cholesterol transport and atherosclerosis. Atherosclerosis Supplements, 2005, 6, 46.	1.2	0
747	Tu-W23:4 Hepatic ABCA1 is a key molecule in HDL cholesteryl ester metabolism in mice. Atherosclerosis Supplements, 2006, 7, 166-167.	1.2	0
748	FASA-57 cDNA shares no homology with coding sequence of HD gene. Journal of Reproductive Immunology, 2006, 69, 9-10.	1.9	0
749	Mycophenolate mofetil and animal models. Lupus, 2006, 15, 27-34.	1.6	0
750	Special new feature inClinical Genetics. Clinical Genetics, 2013, 83, 1-1.	2.0	0
751	Use of genetic technologies to compare medicines. Clinical Genetics, 2014, 86, 441-446.	2.0	0
752	696. Pre-Clinical Evaluation of Allele-Specific Mutant Huntingtin Gene Silencing Antisense Oligonucleotides. Molecular Therapy, 2015, 23, S277.	8.2	0
753	Clinical Exome/Genome Reports-Announcement. Clinical Genetics, 2015, 87, 99-99.	2.0	0
754	A true mentor and pioneer in medical genetics. South African Medical Journal, 2016, 106, 7.	0.6	0
755	A novel microdeletion affecting the <i>CETP</i> gene raises HDLâ€associated cholesterol levels. Clinical Genetics, 2016, 89, 495-500.	2.0	0
756	B42 Early olfactory behaviour deficits associated with olfactory bulb atrophy and caspase-8 activation in HD rodent models. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A24.1-A24.	1.9	0

#	Article	IF	CITATIONS
757	Author response: Huntington disease reduced penetrance alleles occur at high frequency in the general population. Neurology, 2017, 88, 334-335.	1.1	0
758	IO1 \hat{a} \in Orally bioavailable small molecule splicing modifiers with systemic and even htt-lowering activity in vitro and in vivo. , 2021, , .		0
759	Mutations du g $ ilde{A}$ 'ne de l'ATP binding cassette-1 (ABC1) dans la maladie de Tangier et la d $ ilde{A}$ ©ficience familiale en HDL Medecine/Sciences, 2000, 16, 421.	0.2	O
760	Correction of Feline Lipoprotein Lipase Deficiency with Adeno-Associated Virus Serotype 1-Mediated Gene Transfer of the Lipoprotein Lipase S447X Beneficial Mutation. Human Gene Therapy, 2006, .	2.7	0
761	Pharmacogenomics of vincristineâ€induced neurotoxicity in pediatric cancer patients. FASEB Journal, 2013, 27, 666.3.	0.5	O
762	An investigation of morphineâ€toâ€codeine metabolic ratios in postmortem blood, drug interactions, and cytochrome P450 2D6 (CYP2D6) genotype. FASEB Journal, 2013, 27, 666.2.	0.5	0
763	Predicting Anthracyclineâ€induced Cardiotoxicity in Children – Genomeâ€Wide Association Study. FASEB Journal, 2013, 27, 663.3.	0.5	0
764	109â€Antibodies inhibit cell to cell transmission of mutant HTT. , 2018, , .		0
765	Abstract W P205: Specific Deficiency of Brain ABCA1 Increases Inflammation and White Matter Damage and Worsens Functional Outcome After Stroke. Stroke, 2014, 45, .	2.0	O