
Qiuwen Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7615034/publications.pdf Version: 2024-02-01

OULWEN CHEN

#	Article	IF	CITATIONS
1	River dam impacts on biogeochemical cycling. Nature Reviews Earth & Environment, 2020, 1, 103-116.	12.2	372
2	How successful are the restoration efforts of China's lakes and reservoirs?. Environment International, 2019, 123, 96-103.	4.8	151
3	Characterizing the river water quality in China: Recent progress and on-going challenges. Water Research, 2021, 201, 117309.	5.3	127
4	The magnitude and drivers of harmful algal blooms in China's lakes and reservoirs: A national-scale characterization. Water Research, 2020, 181, 115902.	5.3	126
5	Evaluation of simulated dredging to control internal phosphorus release from sediments: Focused on phosphorus transfer and resupply across the sediment-water interface. Science of the Total Environment, 2017, 592, 662-673.	3.9	117
6	Tracking Nitrogen Sources, Transformation, and Transport at a Basin Scale with Complex Plain River Networks. Environmental Science & Technology, 2017, 51, 5396-5403.	4.6	108
7	Use of DGT and conventional methods to predict sediment metal bioavailability to a field inhabitant freshwater snail (Bellamya aeruginosa) from Chinese eutrophic lakes. Journal of Hazardous Materials, 2014, 264, 184-194.	6.5	90
8	Crowdsourcing Methods for Data Collection in Geophysics: State of the Art, Issues, and Future Directions. Reviews of Geophysics, 2018, 56, 698-740.	9.0	90
9	Characterization and source identification of tetracycline antibiotics in the drinking water sources of the lower Yangtze River. Journal of Environmental Management, 2019, 244, 13-22.	3.8	89
10	Phosphorus recovery through adsorption by layered double hydroxide nano-composites and transfer into a struvite-like fertilizer. Water Research, 2018, 145, 721-730.	5.3	87
11	Multiscale Comparative Evaluation of the GPM IMERG v5 and TRMM 3B42 v7 Precipitation Products from 2015 to 2017 over a Climate Transition Area of China. Remote Sensing, 2018, 10, 944.	1.8	84
12	Spatiotemporal variation of correlation between vegetation cover and precipitation in an arid mountain-oasis river basin in northwest China. Journal of Hydrology, 2019, 574, 138-147.	2.3	83
13	The impact of climate variability and land use/cover change on the water balance in the Middle Yellow River Basin, China. Journal of Hydrology, 2019, 577, 123942.	2.3	80
14	Three-dimensional eutrophication model and application to Taihu Lake, China. Journal of Environmental Sciences, 2008, 20, 278-284.	3.2	79
15	Hydropower reservoirs on the upper Mekong River modify nutrient bioavailability downstream. National Science Review, 2020, 7, 1449-1457.	4.6	79
16	When and where to reduce nutrient for controlling harmful algal blooms in large eutrophic lake Chaohu, China?. Ecological Indicators, 2018, 89, 808-817.	2.6	77
17	Effects of upstream reservoir regulation on the hydrological regime and fish habitats of the Lijiang River, China. Ecological Engineering, 2015, 76, 75-83.	1.6	66
18	Long-term and inter-monthly dynamics of aquatic vegetation and its relation with environmental factors in Taihu Lake, China. Science of the Total Environment, 2019, 651, 367-380.	3.9	58

#	Article	IF	CITATIONS
19	Carbon Emission from Cascade Reservoirs: Spatial Heterogeneity and Mechanisms. Environmental Science & Technology, 2017, 51, 12175-12181.	4.6	56
20	Hypoxia Remediation and Methane Emission Manipulation Using Surface Oxygen Nanobubbles. Environmental Science & Technology, 2018, 52, 8712-8717.	4.6	55
21	The influences of land use changes on the value of ecosystem services in Chaohu Lake Basin, China. Environmental Earth Sciences, 2015, 74, 385-395.	1.3	53
22	Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques. Journal of Environmental Management, 2015, 151, 33-43.	3.8	52
23	Determination of an appropriate ecological hydrograph for a rare fish species using an improved fish habitat suitability model introducing landscape ecology index. Ecological Modelling, 2015, 311, 31-38.	1.2	51
24	Spatial–temporal characteristics of surface water quality in the Taihu Basin, China. Environmental Earth Sciences, 2011, 64, 809-819.	1.3	48
25	Long-term precipitation forecast for drought relief using atmospheric circulation factors: a study on the Maharloo Basin in Iran. Hydrology and Earth System Sciences, 2014, 18, 1995-2006.	1.9	46
26	Development of Fish Passage in China. Fisheries, 2015, 40, 161-169.	0.6	42
27	Migration and degradation of swine farm tetracyclines at the river catchment scale: Can the multi-pond system mitigate pollution risk to receiving rivers?. Environmental Pollution, 2017, 220, 1301-1310.	3.7	42
28	Tracking nitrogen pollution sources in plain watersheds by combining high-frequency water quality monitoring with tracing dual nitrate isotopes. Journal of Hydrology, 2020, 581, 124439.	2.3	42
29	Critical roles of cyanobacteria as reservoir and source for antibiotic resistance genes. Environment International, 2020, 144, 106034.	4.8	40
30	Substrate degradation and nutrient enrichment structuring macroinvertebrate assemblages in agriculturally dominated Lake Chaohu Basins, China. Science of the Total Environment, 2018, 627, 57-66.	3.9	35
31	Physiological effects of nitrate, ammonium, and urea on the growth and microcystins contamination of Microcystis aeruginosa: Implication for nitrogen mitigation. Water Research, 2019, 163, 114890.	5.3	35
32	Framework for quantifying rural NPS pollution of a humid lowland catchment in Taihu Basin, Eastern China. Science of the Total Environment, 2019, 688, 983-993.	3.9	33
33	A Phosphorus Dynamic model for lowland Polder systems (PDP). Ecological Engineering, 2016, 88, 242-255.	1.6	32
34	Nitrous oxide emissions from cascade hydropower reservoirs in the upper Mekong River. Water Research, 2020, 173, 115582.	5.3	32
35	Sources, distribution and export coefficient of phosphorus in lowland polders of Lake Taihu Basin, China. Environmental Pollution, 2017, 231, 1274-1283.	3.7	31
36	Linking landscape structures and ecosystem service value using multivariate regression analysis: a case study of the Chaohu Lake Basin, China. Environmental Earth Sciences, 2016, 75, 1.	1.3	30

#	Article	IF	CITATIONS
37	Sieved Transport and Redistribution of Bioavailable Phosphorus from Watershed with Complex River Networks to Lake. Environmental Science & Technology, 2017, 51, 10379-10386.	4.6	30
38	Application of a Simple Raster-Based Hydrological Model for Streamflow Prediction in a Humid Catchment with Polder Systems. Water Resources Management, 2011, 25, 661-676.	1.9	29
39	A comparison of factors influencing the summer phytoplankton biomass in China's three largest freshwater lakes: Poyang, Dongting, and Taihu. Hydrobiologia, 2017, 792, 283-302.	1.0	29
40	Towards the development of a modeling framework to track nitrogen export from lowland artificial watersheds (polders). Water Research, 2018, 133, 319-337.	5.3	29
41	Ecological hydrograph based on Schizothorax chongi habitat conservation in the dewatered river channel between Jinping cascaded dams. Science China Technological Sciences, 2011, 54, 54-63.	2.0	27
42	A method to study antibiotic emission and fate for data-scarce rural catchments. Environment International, 2019, 127, 514-521.	4.8	27
43	Improving the Resilience of Postdisaster Water Distribution Systems Using Dynamic Optimization Framework. Journal of Water Resources Planning and Management - ASCE, 2020, 146, .	1.3	27
44	Modeling the effects of environmental variables on short-term spatial changes in phytoplankton biomass in a large shallow lake, Lake Taihu. Environmental Earth Sciences, 2014, 72, 3609-3621.	1.3	26
45	Combined effects of binary antibiotic mixture on growth, microcystin production, and extracellular release of Microcystis aeruginosa: application of response surface methodology. Environmental Science and Pollution Research, 2018, 25, 736-748.	2.7	26
46	Estimating the biomass of unevenly distributed aquatic vegetation in a lake using the normalized water-adjusted vegetation index and scale transformation method. Science of the Total Environment, 2017, 601-602, 998-1007.	3.9	25
47	Deriving Optimal Daily Reservoir Operation Scheme with Consideration of Downstream Ecological Hydrograph Through A Time-Nested Approach. Water Resources Management, 2015, 29, 3371-3386.	1.9	24
48	Combination of artificial neural network and clustering techniques for predicting phytoplankton biomass of Lake Poyang, China. Limnology, 2015, 16, 179-191.	0.8	22
49	Hydrology and phosphorus transport simulation in a lowland polder by a coupled modeling system. Environmental Pollution, 2017, 227, 613-625.	3.7	21
50	Inducing Flow Velocities to Manage Fish Reproduction in Regulated Rivers. Engineering, 2021, 7, 178-186.	3.2	21
51	Assessing the variable ecosystem services relationships in polders over time: a case study in the eastern Chaohu Lake Basin, China. Environmental Earth Sciences, 2016, 75, 1.	1.3	20
52	Long-term exposure to antibiotic mixtures favors microcystin synthesis and release in Microcystis aeruginosa with different morphologies. Chemosphere, 2019, 235, 344-353.	4.2	20
53	In situ simulation of thin-layer dredging effects on sediment metal release across the sediment-water interface. Science of the Total Environment, 2019, 658, 501-509.	3.9	20
54	Assessment of land use impact on hydraulic threshold conditions for gully head cut initiation. Hydrology and Earth System Sciences, 2016, 20, 3005-3012.	1.9	19

#	Article	IF	CITATIONS
55	Modeling the hydrological effects of climate and land use/cover changes in Chinese lowland polder using an improved WALRUS model. Hydrology Research, 2016, 47, 84-101.	1.1	19
56	Antibiotics along an alpine river and in the receiving lake with a catchment dominated by grazing husbandry. Journal of Environmental Sciences, 2022, 115, 374-382.	3.2	18
57	Effects of nutrient temporal variations on toxic genotype and microcystin concentration in two eutrophic lakes. Ecotoxicology and Environmental Safety, 2018, 166, 192-199.	2.9	17
58	Dramatic source-sink transition of N2O in the water level fluctuation zone of the Three Gorges Reservoir during flooding-drying processes. Environmental Science and Pollution Research, 2018, 25, 20023-20031.	2.7	17
59	Spatiotemporal analysis of nonlinear trends in precipitation over Germany during 1951–2013 from multiple observationâ€based gridded products. International Journal of Climatology, 2019, 39, 2120-2135.	1.5	17
60	Bacterial communities in cascade reservoirs along a large river. Limnology and Oceanography, 2021, 66, 4363-4374.	1.6	17
61	How can we reduce phosphorus export from lowland polders? Implications from a sensitivity analysis of a coupled model. Science of the Total Environment, 2016, 562, 946-952.	3.9	15
62	Offline training for improving online performance of a genetic algorithm based optimization model for hourly multi-reservoir operation. Environmental Modelling and Software, 2017, 96, 46-57.	1.9	15
63	Assessing Aquatic Ecological Health for Lake Poyang, China: Part I Index Development. Water (Switzerland), 2018, 10, 943.	1.2	15
64	Modelling the regulation effects of lowland polder with pumping station on hydrological processes and phosphorus loads. Science of the Total Environment, 2018, 637-638, 200-207.	3.9	15
65	Incorporating fish habitat requirements of the complete life cycle into ecological flow regime estimation of rivers. Ecohydrology, 2020, 13, e2204.	1.1	14
66	Key role of suspended particulate matter in assessing fate and risk of endocrine disrupting compounds in a complex river-lake system. Journal of Hazardous Materials, 2022, 431, 128543.	6.5	14
67	Structural uncertainty assessment in a discharge simulation model. Hydrological Sciences Journal, 2011, 56, 854-869.	1.2	13
68	Effects and consideration of storm movement in rainfall–runoff modelling at the basin scale. Hydrology and Earth System Sciences, 2016, 20, 5063-5071.	1.9	13
69	Effects of rainfall events on behavior of tetracycline antibiotics in a receiving river: Seasonal differences in dominant processes and mechanisms. Science of the Total Environment, 2019, 692, 511-518.	3.9	13
70	Enhanced riparian denitrification in reservoirs following hydropower production. Journal of Hydrology, 2020, 583, 124305.	2.3	13
71	A novel framework to predict water turbidity using Bayesian modeling. Water Research, 2021, 202, 117406.	5.3	12
72	An improved Ensemble Kalman Filter for optimizing parameters in a coupled phosphorus model for lowland polders in Lake Taihu Basin, China. Ecological Modelling, 2017, 357, 14-22.	1.2	11

#	Article	IF	CITATIONS
73	Modelling the Impacts of Bathymetric Changes on Water Level in China's Largest Freshwater Lake. Water (Switzerland), 2019, 11, 1469.	1.2	11
74	Eutrophication Prediction Using a Markov Chain Model: Application to Lakes in the Yangtze River Basin, China. Environmental Modeling and Assessment, 2016, 21, 233-246.	1.2	10
75	Evapotranspiration versus oxygen intrusion: which is the main force in alleviating bioclogging of vertical-flow constructed wetlands during a resting operation?. Environmental Science and Pollution Research, 2017, 24, 18355-18362.	2.7	10
76	Health assessment using aqua-quality indicators of alpine streams (Khunjerab National Park), Gilgit, Pakistan. Environmental Science and Pollution Research, 2017, 24, 4685-4698.	2.7	10
77	Integrating multi indices for identifying priority management areas in lowland to control lake eutrophication: A case study in lake Gehu, China. Ecological Indicators, 2020, 112, 106103.	2.6	10
78	Impact of Shortâ€Term Hydrological Components on Landscape Pattern of Waterbird Habitat in Floodplain Wetlands. Water Resources Research, 2022, 58, .	1.7	10
79	High prevalence of unstable antibiotic heteroresistance in cyanobacteria causes resistance underestimation. Water Research, 2021, 202, 117430.	5.3	9
80	Determination of daily ecoâ€hydrographs by the fish spawning habitat suitability model and application to reservoir ecoâ€operation. Ecohydrology, 2016, 9, 973-981.	1.1	8
81	Estimating ecological flows for fish overwintering in plain rivers using a method based on water temperature and critical water depth. Ecohydrology, 2019, 12, e2098.	1.1	8
82	Quantifying the cost-effectiveness of nutrient-removal strategies for a lowland rural watershed: Insights from process-based modeling. Ecological Modelling, 2020, 431, 109123.	1.2	8
83	The direct and indirect effects of land use and water quality on phytoplankton communities in an agriculture-dominated basin. Environmental Monitoring and Assessment, 2020, 192, 760.	1.3	8
84	Laboratory study on fish behavioral response to meandering flow and riffle-pool sequence driven by deflectors in straight concrete flood channels. Journal of Hydrology, 2021, 598, 125736.	2.3	8
85	An integrated hydrodynamic and multicriteria evaluation Cellular Automata–Markov model to assess the effects of a water resource project on waterbird habitat in wetlands. Journal of Hydrology, 2022, 607, 127561.	2.3	8
86	Proper Mode of Using Rice Straw Biochar To Treat Cd-Contaminated Irrigation Water in Mining Regions Based on a Multiyear in Situ Experiment. ACS Sustainable Chemistry and Engineering, 2019, 7, 9928-9936.	3.2	7
87	The effects of environmental factors and geographic distance on species turnover in an agriculturally dominated river network. Environmental Monitoring and Assessment, 2019, 191, 201.	1.3	7
88	Dam cascade unveils sediment methylmercury dynamics in reservoirs. Water Research, 2022, 212, 118059.	5.3	7
89	Phosphorus and humic acid extraction from fermentation liquor of ferric phosphate sludge via layered double hydroxides: Efficiency and interaction mechanism. Journal of Cleaner Production, 2021, 319, 128664.	4.6	6
90	Characterizing the impacts of macrophyte-dominated ponds on nitrogen sources and sinks by coupling multiscale models. Science of the Total Environment, 2022, 811, 152208.	3.9	6

#	Article	IF	CITATIONS
91	Climate Change Shrinks and Fragments Salmon Habitats in a Snowâ€Dependent Region. Geophysical Research Letters, 2022, 49, .	1.5	6
92	Juvenile silver carp Hypophthalmichthys molitrix swim faster in closed surface flow than open surface flow. Environmental Biology of Fishes, 2014, 97, 1411-1416.	0.4	5
93	Streamflow response to future climate and land use changes in Xinjiang basin, China. Environmental Earth Sciences, 2016, 75, 1.	1.3	5
94	Exploring the Influence of Seasonal Cropland Abandonment on Evapotranspiration and Water Resources in the Humid Lowland Region, Southern China. Water Resources Research, 2022, 58, .	1.7	5
95	Experimental and numerical studies on deflector configuration in straight flood channel for heterogeneous flow enhancement and fish habitat improvements. Ecological Engineering, 2020, 156, 105964.	1.6	4
96	Quantifying the impacts of climate change and land use on hydrological processes: A comparison between mountain and lowland agricultural watersheds. Hydrological Processes, 2020, 34, 5370-5383.	1.1	4
97	Preference by juvenile Chinese sucker <scp><i>Myxocyprinus asiaticus</i></scp> , for substrate colour in zero versus slow velocity regimes suggest a change in habitat preference of wild juveniles after damming the <scp>Y</scp> angtze river. River Research and Applications, 2017, 33, 1368-1372.	0.7	3
98	Dynamics of heat transport across sediment deposited hyporheic zone inside reservoirs following hydropower production. Science of the Total Environment, 2020, 707, 135611.	3.9	3
99	Improvement on numerical modeling of total dissolved gas dissipation after dam. Ecological Engineering, 2020, 156, 105965.	1.6	3
100	Spatial Patterns of Diffusive Methane Emissions Across Sediment Deposited Riparian Zones in Hydropower Reservoirs. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005945.	1.3	3
101	Improved Model for Predicting Total Dissolved Gas Generation With the Residence Time of the Water in the Stilling Phase. Frontiers in Environmental Science, 2022, 9, .	1.5	2
102	Habitat quality assessment of Alpine Streams using ARISE: a classification tool for Alpine RIver and Stream Ecosystems in Khunjerab National Park Gilgit, Pakistan. Geomicrobiology Journal, 0, , 1-12.	1.0	1
103	A novel lake-zoning framework for large lakes based on numerical modelling. Ecological Informatics, 2022, 69, 101595.	2.3	1
104	A Real-Time Assessment of Aquatic Ecological Health Using a Process-Based Model: An Example From Lake Poyang, China. Frontiers in Environmental Science, 0, 10, .	1.5	0