Lykke Sylow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7614955/publications.pdf Version: 2024-02-01

LYKKE SVIOW

#	Article	IF	CITATIONS
1	Exercise-stimulated glucose uptake — regulation and implications for glycaemic control. Nature Reviews Endocrinology, 2017, 13, 133-148.	4.3	312
2	Rac1 Signaling Is Required for Insulin-Stimulated Glucose Uptake and Is Dysregulated in Insulin-Resistant Murine and Human Skeletal Muscle. Diabetes, 2013, 62, 1865-1875.	0.3	159
3	Cytosolic ROS production by NADPH oxidase 2 regulates muscle glucose uptake during exercise. Nature Communications, 2019, 10, 4623.	5.8	128
4	Rac1 Is a Novel Regulator of Contraction-Stimulated Glucose Uptake in Skeletal Muscle. Diabetes, 2013, 62, 1139-1151.	0.3	126
5	The many actions of insulin in skeletal muscle, the paramount tissue determining glycemia. Cell Metabolism, 2021, 33, 758-780.	7.2	124
6	Exercise Increases Human Skeletal Muscle Insulin Sensitivity via Coordinated Increases in Microvascular Perfusion and Molecular Signaling. Diabetes, 2017, 66, 1501-1510.	0.3	120
7	Rac1 signalling towards GLUT4/glucose uptake in skeletal muscle. Cellular Signalling, 2011, 23, 1546-1554.	1.7	118
8	Deletion of Skeletal Muscle SOCS3 Prevents Insulin Resistance in Obesity. Diabetes, 2013, 62, 56-64.	0.3	117
9	Akt and Rac1 signaling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance. Cellular Signalling, 2014, 26, 323-331.	1.7	117
10	Rac1 governs exerciseâ€stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice. Journal of Physiology, 2016, 594, 4997-5008.	1.3	87
11	Overexpression of Monocarboxylate Transporter-1 (<i>Slc16a1</i>) in Mouse Pancreatic β-Cells Leads to Relative Hyperinsulinism During Exercise. Diabetes, 2012, 61, 1719-1725.	0.3	86
12	Current understanding of increased insulin sensitivity after exercise – emerging candidates. Acta Physiologica, 2011, 202, 323-335.	1.8	85
13	Acute mTOR inhibition induces insulin resistance and alters substrate utilization inÂvivo. Molecular Metabolism, 2014, 3, 630-641.	3.0	68
14	LKB1 Regulates Lipid Oxidation During Exercise Independently of AMPK. Diabetes, 2013, 62, 1490-1499.	0.3	66
15	Contraction-stimulated glucose transport in muscle is controlled by AMPK and mechanical stress but not sarcoplasmatic reticulum Ca2+ release. Molecular Metabolism, 2014, 3, 742-753.	3.0	65
16	Rac1 – a novel regulator of contractionâ€stimulated glucose uptake in skeletal muscle. Experimental Physiology, 2014, 99, 1574-1580.	0.9	58
17	Stretchâ€stimulated glucose transport in skeletal muscle is regulated by Rac1. Journal of Physiology, 2015, 593, 645-656.	1.3	58
18	Phosphoproteomics reveals conserved exerciseâ€stimulated signaling and AMPK regulation of storeâ€operated calcium entry. EMBO Journal, 2019, 38, e102578.	3.5	54

LYKKE SYLOW

#	Article	IF	CITATIONS
19	Housing temperature influences exercise training adaptations in mice. Nature Communications, 2020, 11, 1560.	5.8	52
20	Rac1 and AMPK Account for the Majority of Muscle Glucose Uptake Stimulated by Ex Vivo Contraction but Not In Vivo Exercise. Diabetes, 2017, 66, 1548-1559.	0.3	48
21	PT-1 selectively activates AMPK-γ1 complexes in mouse skeletal muscle, but activates all three γ subunit complexes in cultured human cells by inhibiting the respiratory chain. Biochemical Journal, 2015, 467, 461-472.	1.7	47
22	Mechanisms involved in follistatinâ€induced hypertrophy and increased insulin action in skeletal muscle. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 1241-1257.	2.9	47
23	mTORC2 and AMPK differentially regulate muscle triglyceride content via Perilipin 3. Molecular Metabolism, 2016, 5, 646-655.	3.0	44
24	Quantitative proteomic characterization of cellular pathways associated with altered insulin sensitivity in skeletal muscle following high-fat diet feeding and exercise training. Scientific Reports, 2018, 8, 10723.	1.6	44
25	Rho GTPases—Emerging Regulators of Glucose Homeostasis and Metabolic Health. Cells, 2019, 8, 434.	1.8	44
26	Mammalian target of rapamycin complex 2 regulates muscle glucose uptake during exercise in mice. Journal of Physiology, 2017, 595, 4845-4855.	1.3	43
27	Rac1 muscle knockout exacerbates the detrimental effect of highâ€fat diet on insulinâ€stimulated muscle glucose uptake independently of Akt. Journal of Physiology, 2018, 596, 2283-2299.	1.3	41
28	Current advances in our understanding of exercise as medicine in metabolic disease. Current Opinion in Physiology, 2019, 12, 12-19.	0.9	41
29	Differential effects of high-fat diet and exercise training on bone and energy metabolism. Bone, 2018, 116, 120-134.	1.4	37
30	Interactions between insulin and exercise. Biochemical Journal, 2021, 478, 3827-3846.	1.7	31
31	AMPK and Insulin Action - Responses to Ageing and High Fat Diet. PLoS ONE, 2013, 8, e62338.	1.1	28
32	β-Actin shows limited mobility and is required only for supraphysiological insulin-stimulated glucose transport in young adult soleus muscle. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E110-E125.	1.8	25
33	Circulating Follistatin and Activin A and Their Regulation by Insulin in Obesity and Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 1343-1354.	1.8	23
34	Cancer causes metabolic perturbations associated with reduced insulin-stimulated glucose uptake in peripheral tissues and impaired muscle microvascular perfusion. Metabolism: Clinical and Experimental, 2020, 105, 154169.	1.5	22
35	Endothelial mechanotransduction proteins and vascular function are altered by dietary sucrose supplementation in healthy young male subjects. Journal of Physiology, 2017, 595, 5557-5571.	1.3	21
36	Insulinâ€stimulated glucose uptake partly relies on p21â€activated kinase (PAK)2, but not PAK1, in mouse skeletal muscle. Journal of Physiology, 2020, 598, 5351-5377.	1.3	15

LYKKE SYLOW

#	Article	IF	CITATIONS
37	Rac1 in Muscle Is Dispensable for Improved Insulin Action After Exercise in Mice. Endocrinology, 2016, 157, 3009-3015.	1.4	13
38	ls contractionâ€ s timulated glucose transport feedforward regulated by Ca ²⁺ ?. Experimental Physiology, 2014, 99, 1562-1568.	0.9	11
39	Effect of hypoxic exercise on glucose tolerance in healthy and prediabetic adults. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E43-E54.	1.8	11
40	Exercise—A Panacea of Metabolic Dysregulation in Cancer: Physiological and Molecular Insights. International Journal of Molecular Sciences, 2021, 22, 3469.	1.8	9
41	The p21â€activated kinase 2 (PAK2), but not PAK1, regulates contractionâ€stimulated skeletal muscle glucose transport. Physiological Reports, 2020, 8, e14460.	0.7	9
42	Genetic variation of macronutrient tolerance in Drosophila melanogaster. Nature Communications, 2022, 13, 1637.	5.8	9
43	Regulation of glycogen synthase in muscle and its role in Type 2 diabetes. Diabetes Management, 2013, 3, 81-90.	0.5	8
44	Acute systemic insulin intolerance does not alter the response of the Akt/GSK-3 pathway to environmental hypoxia in human skeletal muscle. European Journal of Applied Physiology, 2015, 115, 1219-1231.	1.2	7
45	Cancer causes dysfunctional insulin signaling and glucose transport in a muscleâ€ŧypeâ€specific manner. FASEB Journal, 2022, 36, e22211.	0.2	7
46	Incidence of New-Onset Type 2 Diabetes After Cancer: A Danish Cohort Study. Diabetes Care, 2022, 45, e105-e106.	4.3	7
47	The Cancer Drug Dasatinib Increases PGC-1α in Adipose Tissue but Has Adverse Effects on Glucose Tolerance in Obese Mice. Endocrinology, 2016, 157, 4184-4191.	1.4	5
48	Decreased spontaneous activity in AMPK α2 muscle specific kinase dead mice is not caused by changes in brain dopamine metabolism. Physiology and Behavior, 2016, 164, 300-305.	1.0	5
49	Integrinâ€associated ILK and PINCH1 protein content are reduced in skeletal muscle of maintenance haemodialysis patients. Journal of Physiology, 2020, 598, 5701-5716.	1.3	5
50	Exercise increases phosphorylation of the putative mTORC2 activity readout NDRG1 in human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2022, 322, E63-E73.	1.8	4
51	Effects of Roux-en-Y gastric bypass on circulating follistatin, activin A, and peripheral ActRIIB signaling in humans with obesity and type 2 diabetes. International Journal of Obesity, 2021, 45, 316-325.	1.6	3
52	Three challenges of being a scientist in an age of misinformation. Journal of Physiology, 2021, 599, 1937-1938.	1.3	3
53	Tyrosine 397 phosphorylation is critical for FAK-promoted Rac1 activation and invasive properties in oral squamous cell carcinoma cells. Laboratory Investigation, 2016, 96, 1026-1026.	1.7	1
54	Reply from Lykke Sylow, Lisbeth L. V. MÃ,ller, Maximilian Kleinert, Erik A. Richter and Thomas E. Jensen. Journal of Physiology, 2015, 593, 2239-2240.	1.3	0

LYKKE SYLOW

#	Article	IF	CITATIONS
55	Editorial: Skeletal Muscle Immunometabolism. Frontiers in Physiology, 2021, 12, 683088.	1.3	0
56	Muscleâ€specific deletion of mTORC2 (Rictor) blocks insulin stimulated Akt Ser 473 phosphorylation and impairs submaximal but not maximal insulin induced glucose uptake. FASEB Journal, 2013, 27, 1109.10.	0.2	0
57	Rac1 is a novel regulator of stretchâ€induced glucose uptake in muscle. FASEB Journal, 2013, 27, 1152.7.	0.2	0