
Juan M Osorno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7614835/publications.pdf Version: 2024-02-01

1A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics, 2014, 46, 707-713.9.42SNP Assay Development for Linkage Map Construction, Anchoring Whole-Genome Sequence, and Other Genetic and Genomic Applications in Common Bean. G3: Genes, Genomes, Genetics, 2015, 5, 2285-2290.0.8	1,159
SNP Assay Development for Linkage Map Construction, Anchoring Whole-Genome Sequence, and Other	
² Genetic and Genomic Applications in Common Bean. G3: Genes, Genomes, Genetics, 2015, 5, 2285-2290.	147
3 Genomeâ€Wide Association Study Identifies Candidate Loci Underlying Agronomic Traits in a Middle American Diversity Panel of Common Bean. Plant Genome, 2016, 9, plantgenome2016.02.0012. 1.6	136
Achievements and limitations of contemporary common bean breeding using conventional and molecular approaches. Euphytica, 2009, 168, 145-175.	85
5 Developing market class specific InDel markers from next generation sequence data in Phaseolus 1.7 vulgaris L Frontiers in Plant Science, 2014, 5, 185.	79

6 Genetic Analysis of Flooding Tolerance in an Andean Diversity Panel of Dry Bean (Phaseolus vulgaris) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

7	Optimization of genotyping by sequencing (GBS) data in common bean (Phaseolus vulgaris L.). Molecular Breeding, 2016, 36, 1.	1.0	65
8	Genetic Architecture of Flooding Tolerance in the Dry Bean Middle-American Diversity Panel. Frontiers in Plant Science, 2017, 8, 1183.	1.7	54
9	Comparative Transcriptome Analysis of Resistant and Susceptible Common Bean Genotypes in Response to Soybean Cyst Nematode Infection. PLoS ONE, 2016, 11, e0159338.	1.1	54
10	Genotypes and Genomic Regions Associated With Rhizoctonia solani Resistance in Common Bean. Frontiers in Plant Science, 2019, 10, 956.	1.7	48
11	Targeted Analysis of Dry Bean Growth Habit: Interrelationship among Architectural, Phenological, and Yield Components. Crop Science, 2016, 56, 3005-3015.	0.8	34
12	Registration of â€~Lariat' and â€~Stampede' Pinto Beans. Journal of Plant Registrations, 2010, 4, 5-11.	0.4	31
13	Edible Grain Legumes. CSSA Special Publication - Crop Science Society of America, 0, , 87-123.	0.1	31
14	Genetic Associations in Four Decades of Multienvironment Trials Reveal Agronomic Trait Evolution in Common Bean. Genetics, 2020, 215, 267-284.	1.2	26
15	Dry beans (<scp><i>Phaseolus vulgaris</i></scp> L.) as a vital component of sustainable agriculture and food security—A review. , 2023, 5, .		26
16	Seed Yield and Loss of Dry Bean Cultivars under Conventional and Direct Harvest. Agronomy Journal, 2011, 103, 129-136.	0.9	18
17	Computational identification of receptor-like kinases "RLK―and receptor-like proteins "RLP―in legumes. BMC Genomics, 2020, 21, 459.	1.2	16
18	A New Slowâ€Darkening Pinto Bean with Improved Agronomic Performance: Registration of â€~NDâ€Palomino'. Journal of Plant Registrations, 2018, 12, 25-30.	0.4	15

2

Juan M Osorno

#	Article	IF	CITATIONS
19	Genome wide association study discovers genomic regions involved in resistance to soybean cyst nematode (Heterodera glycines) in common bean. PLoS ONE, 2019, 14, e0212140.	1.1	14
20	Faster cooking times and improved iron bioavailability are associated with the down regulation of procyanidin synthesis in slow-darkening pinto beans (Phaseolus vulgaris L.). Journal of Functional Foods, 2021, 82, 104444.	1.6	12
21	Agronomic performance and cooking quality characteristics for slowâ€darkening pinto beans. Crop Science, 2020, 60, 2317-2327.	0.8	11
22	Row Spacing and Nitrogen Effects on Upright Pinto Bean Cultivars under Direct Harvest Conditions. Agronomy Journal, 2011, 103, 1314-1320.	0.9	9
23	Development of a QTL-environment-based predictive model for node addition rate in common bean. Theoretical and Applied Genetics, 2017, 130, 1065-1079.	1.8	7
24	Using Breeding Populations With a Dual Purpose: Cultivar Development and Gene Mapping—A Case Study Using Resistance to Common Bacterial Blight in Dry Bean (Phaseolus vulgaris L.). Frontiers in Plant Science, 2021, 12, 621097.	1.7	7
25	Local to continentalâ€scale variation in fitness and heritability in common bean. Crop Science, 2022, 62, 767-779.	0.8	7
26	The Common Bean V Gene Encodes Flavonoid 3′5′ Hydroxylase: A Major Mutational Target for Flavonoid Diversity in Angiosperms. Frontiers in Plant Science, 2022, 13, 869582.	1.7	7
27	â€~ND Falcon', a new pinto bean with combined resistance to rust and soybean cyst nematode. Journal of Plant Registrations, 2020, 14, 117-125.	0.4	4
28	A new black bean with resistance to bean rust: Registration of â€~ND Twilight'. Journal of Plant Registrations, 2021, 15, 28-36.	0.4	4
29	Orthology and synteny analysis of receptor-like kinases "RLK―and receptor-like proteins "RLP―in legumes. BMC Genomics, 2021, 22, 113.	1.2	4
30	A New Small Red Bean with Improved Resistance to Common Bacterial Blight: Registration of â€~Rio Rojo'. Journal of Plant Registrations, 2013, 7, 130-134.	0.4	4
31	Registration of â€~NDâ€307' Pinto Bean. Journal of Plant Registrations, 2010, 4, 109-114.	0.4	3
32	Improved Tolerance to Root Rot and Bacterial Blights in Kidney Bean: Registration of †Talon' Dark Red Kidney and †Rosie' Light Red Kidney. Journal of Plant Registrations, 2017, 11, 1-8.	0.4	3
33	â€~ND Whitetail', a new white kidney bean with high seed yield and intermediate resistance to white mold and bacterial blights. Journal of Plant Registrations, 2020, 14, 102-109.	0.4	3
34	New genomic regions associated with white mold resistance in dry bean using a MAGIC population. Plant Genome, 2022, 15, e20190.	1.6	3
35	â€~ND Pegasus', a new great northern bean with upright plant architecture and high seed yield. Journal of Plant Registrations, 2020, 14, 110-116.	0.4	1
36	A New Navy Bean for the Northern Plains: Registration of â€~Avalanche'. Journal of Plant Registrations, 2011, 5, 170-176.	0.4	0