Kyung Lib Jang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7614826/publications.pdf

Version: 2024-02-01

30	974	17 h-index	30
papers	citations		g-index
30	30	30	1016
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	All-trans retinoic acid inhibits HCV replication by downregulating core levels via E6AP-mediated proteasomal degradation. Biochemical and Biophysical Research Communications, 2022, 594, 15-21.	1.0	1
2	Hepatitis C virus core protein activates proteasomal activator 28 gamma to downregulate p16 levels via ubiquitin-independent proteasomal degradation. Heliyon, 2021, 7, e06134.	1.4	1
3	Proteasomal activator 28 gamma stabilizes hepatitis B virus X protein by competitively inhibiting the Siah-1-mediated proteasomal degradation. Biochemical and Biophysical Research Communications, 2021, 578, 97-103.	1.0	5
4	Hepatitis C virus core protein inhibits hepatitis B virus replication by downregulating HBx levels via Siah-1-mediated proteasomal degradation during coinfection. Journal of General Virology, 2021, 102, .	1.3	2
5	Hepatitis B virus X protein stimulates cell growth by downregulating p16 levels via PA28γ-mediated proteasomal degradation. Journal of General Virology, 2020, 101, 963-971.	1.3	3
6	HBx natural variants containing Ser-101 instead of Pro-101 evade ubiquitin-dependent proteasomal degradation by activating proteasomal activator 28 gamma expression. Journal of General Virology, 2019, 100, 1554-1566.	1.3	3
7	Hepatitis B Virus X Protein Stimulates Virus Replication Via DNA Methylation of the C-1619 in Covalently Closed Circular DNA. Molecules and Cells, 2019, 42, 67-78.	1.0	10
8	Hepatitis B virus X protein activates proteasomal activator 28 gamma expression via upregulation of p53 levels to stimulate virus replication. Journal of General Virology, 2018, 99, 655-666.	1.3	17
9	Hepatitis C virus Core overcomes all- <i>trans</i> retinoic acid-induced apoptosis in human hepatoma cells by inhibiting <i>p14</i> expression via DNA methylation. Oncotarget, 2017, 8, 85584-85598.	0.8	7
10	Hepatitis C virus core activates proteasomal activator $28\hat{l}^3$ expression via upregulation of p53 levels to control virus propagation. Journal of General Virology, 2017, 98, 56-67.	1.3	13
11	Hepatitis B virus X protein activates E3 ubiquitin ligase Siah-1 to control virus propagation via a negative feedback loop. Journal of General Virology, 2017, 98, 1774-1784.	1.3	16
12	Hepatitis B virus X protein suppresses all-trans retinoic acid-induced apoptosis in human hepatocytes by repressing p14 expression via DNA methylation. Journal of General Virology, 2017, 98, 2786-2798.	1.3	6
13	Hepatitis C virus core protein inhibits E6AP expression via DNA methylation to escape from ubiquitin-dependent proteasomal degradation. Cancer Letters, 2016, 380, 59-68.	3.2	17
14	Hepatitis B virus X protein induces epithelial–mesenchymal transition by repressing E-cadherin expression via upregulation of E12/E47. Journal of General Virology, 2016, 97, 134-143.	1.3	17
15	Hepatitis C virus core protein overcomes H2O2-induced apoptosis by downregulating p14 expression via DNA methylation. Journal of General Virology, 2015, 96, 822-832.	1.3	25
16	All-trans retinoic acid induces p53-depenent apoptosis in human hepatocytes by activating p14 expression via promoter hypomethylation. Cancer Letters, 2015, 362, 139-148.	3.2	23
17	Hepatitis C virus core protein induces epithelial–mesenchymal transition in human hepatocytes by upregulating E12/E47 levels. Cancer Letters, 2015, 362, 131-138.	3.2	20
18	Hepatitis C virus represses E-cadherin expression via DNA methylation to induce epithelial to mesenchymal transition in human hepatocytes. Biochemical and Biophysical Research Communications, 2014, 446, 561-567.	1.0	21

#	Article	lF	CITATION
19	Hepatitis C virus Core protein overcomes stress-induced premature senescence by down-regulating p16 expression via DNA methylation. Cancer Letters, 2012, 321, 154-161.	3.2	53
20	Hepatitis C virus Core protein stimulates cell growth by down-regulating p16 expression via DNA methylation. Cancer Letters, 2011, 310, 61-68.	3.2	43
21	Hepatitis B virus X protein overcomes all-trans retinoic acid-induced cellular senescence by downregulating levels of p16 and p21 via DNA methylation. Journal of General Virology, 2011, 92, 1309-1317.	1.3	39
22	Hepatitis B virus X protein overcomes stress-induced premature senescence by repressing p16INK4a expression via DNA methylation. Cancer Letters, 2010, 288, 226-235.	3.2	36
23	Hepatitis C virus core protein downregulates E-cadherin expression via activation of DNA methyltransferase 1 and 3b. Cancer Letters, 2008, 261, 244-252.	3.2	113
24	Hepatitis B virus X protein differentially affects the ubiquitin-mediated proteasomal degradation of \hat{l}^2 -catenin depending on the status of cellular p53. Journal of General Virology, 2007, 88, 2144-2154.	1.3	37
25	Hepatitis B virus X protein represses E-cadherin expression via activation of DNA methyltransferase 1. Oncogene, 2005, 24, 6617-6625.	2.6	181
26	Natural variants of hepatitis B virus X protein have differential effects on the expression of cyclin-dependent kinase inhibitor p21 gene. Nucleic Acids Research, 2004, 32, 2202-2213.	6.5	68
27	Analysis of transcriptional regulatory sequences in the human endogenous retrovirus W long terminal repeat. Journal of General Virology, 2003, 84, 2229-2235.	1.3	24
28	Dual effects of hepatitis B virus X protein on the regulation of cell-cycle control depending on the status of cellular p53. Journal of General Virology, 2002, 83, 2765-2772.	1.3	49
29	Hepatitis C virus core protein represses the p21 promoter through inhibition of a TGF- \hat{l}^2 pathway. Journal of General Virology, 2002, 83, 2145-2151.	1.3	44
30	p53-dependent transcriptional repression of p21waf1 by hepatitis C virus NS3. Journal of General Virology, 2001, 82, 2235-2241.	1.3	80