
Alexander B Morgan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7614823/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A targeted review of bio-derived plasticizers with flame retardant functionality used in PVC. Journal of Materials Science, 2022, 57, 7155-7172.	3.7	18
2	The well-meaning but misguided rollback of fire safety in the United States. Journal of Fire Sciences, 2022, 40, 249-253.	2.0	2
3	Studying smoldering to flaming transition in polyurethane furniture <scp>subassemblies</scp> : Effects of fabrics, flame retardants, and material type. Fire and Materials, 2021, 45, 56-67.	2.0	8
4	Revisiting flexible polyurethane foam flammability in furniture and bedding in the United States. Fire and Materials, 2021, 45, 68-80.	2.0	20
5	Smolder behavior and emissions byproducts of aircraft composite coupons. Fire Safety Journal, 2021, 123, 103366.	3.1	3
6	Bio-Based Flame-Retardant Coatings Based on the Synergistic Combination of Tannic Acid and Phytic Acid for Nylon–Cotton Blends. ACS Applied Materials & Interfaces, 2021, 13, 61620-61628.	8.0	44
7	Improving the flame retardancy of polypropylene foam with piperazine pyrophosphate via multilayering coextrusion of film/foam composites. Journal of Applied Polymer Science, 2020, 137, 48552.	2.6	19
8	Flammability testing of wool/cellulosic and wool/synthetic fiber blends: Vertical flame spread and heat release results. Journal of Fire Sciences, 2020, 38, 522-551.	2.0	4
9	Organophosphorus-hydrazides as potential reactive flame retardants for epoxy. Journal of Fire Sciences, 2020, 38, 28-52.	2.0	6
10	The Future of Flame Retardant Polymers – Unmet Needs and Likely New Approaches. Polymer Reviews, 2019, 59, 25-54.	10.9	117
11	Flammability Characteristics of Animal Fibers: Single Breed Wools, Alpaca/Wool, and Llama/Wool Blends. Fibers, 2019, 7, 3.	4.0	7
12	New polyether diols as flame retardants for polyurethane: Derivatives of epoxyâ€functionalized phosphonates and phosphates. Fire and Materials, 2018, 42, 3-17.	2.0	11
13	An experimental setup for observation of smolderingâ€ŧoâ€flaming transition on flexible foam/fabric assemblies. Fire and Materials, 2018, 42, 128-133.	2.0	15
14	Preparation and studies of new phosphorusâ€containing diols as potential flame retardants. Fire and Materials, 2017, 41, 973-982.	2.0	18
15	Flammability of natural plant and animal fibers: a heat release survey. Fire and Materials, 2017, 41, 275-288.	2.0	19
16	Apparatus for the vertical orientation cone calorimeter testing of flexible polyurethane foams. Fire and Materials, 2016, 40, 158-176.	2.0	4
17	Effects of laundering on military uniform fabric flammability. Fire and Materials, 2016, 40, 599-611.	2.0	4
18	Carbon Nanotube Multilayer Nanocoatings Prevent Flame Spread on Flexible Polyurethane Foam. Macromolecular Materials and Engineering, 2016, 301, 665-673.	3.6	41

Alexander B Morgan

#	Article	IF	CITATIONS
19	Synthesis and flammability testing of epoxy functionalized phosphorousâ€based flame retardants. Journal of Applied Polymer Science, 2015, 132, .	2.6	17
20	Heat release of polyurethanes containing potential flame retardants based on boron and phosphorus chemistries. Polymer Degradation and Stability, 2014, 106, 108-121.	5.8	33
21	Cone calorimeter and room corner fire testing of balsa wood core/phenolic composite skin sandwich panels. Journal of Fire Sciences, 2014, 32, 328-345.	2.0	8
22	Effect of halloysite nanotubes on mechanical properties and flammability of soy protein based green composites. Fire and Materials, 2013, 37, 75-90.	2.0	46
23	An overview of flame retardancy of polymeric materials: application, technology, and future directions. Fire and Materials, 2013, 37, 259-279.	2.0	352
24	Structure, Theoretical Studies, and Coupling Reactions of Some New Cyclic Boronic Esters. Heteroatom Chemistry, 2013, 24, 361-371.	0.7	2
25	An innovative experimental approach aiming to understand and quantify the actual fire hazards of ionic liquids. Energy and Environmental Science, 2013, 6, 699.	30.8	57
26	Exceptionally Flame Retardant Sulfur-Based Multilayer Nanocoating for Polyurethane Prepared from Aqueous Polyelectrolyte Solutions. ACS Macro Letters, 2013, 2, 361-365.	4.8	131
27	Preparation of Phosphonoterephthalic Acids via Palladium-Catalyzed Coupling of Aromatic Iodoesters. Synthetic Communications, 2013, 43, 1831-1836.	2.1	9
28	Milligram Scale Flammability Testing of Flame Retardant Polyurethane Foams. ACS Symposium Series, 2012, , 445-458.	0.5	0
29	Revisiting physico-chemical hazards of ionic liquids. Separation and Purification Technology, 2012, 97, 228-234.	7.9	92
30	Intumescent Multilayer Nanocoating, Made with Renewable Polyelectrolytes, for Flame-Retardant Cotton. Biomacromolecules, 2012, 13, 2843-2848.	5.4	318
31	Synthesis and flame retardant testing of new boronated and phosphonated aromatic compounds. Journal of Materials Chemistry, 2012, 22, 1180-1190.	6.7	58
32	Intumescent Allâ€Polymer Multilayer Nanocoating Capable of Extinguishing Flame on Fabric. Advanced Materials, 2011, 23, 3926-3931.	21.0	311
33	Flammability of thermoplastic carbon nanofiber nanocomposites. Fire and Materials, 2011, 35, 43-60.	2.0	14
34	Use of inorganic materials to enhance thermal stability and flammability behavior of a polyimide. Polymer Degradation and Stability, 2011, 96, 23-32.	5.8	43
35	Cone calorimeter testing of S2 glass reinforced polymer composites. Fire and Materials, 2009, 33, 323-344.	2.0	19
36	Heat release measurements on micron and nano-scale aluminum powders. Thermochimica Acta, 2009, 488, 1-9.	2.7	25

3

Alexander B Morgan

#	Article	IF	CITATIONS
37	Mild processing and characterization of silica epoxy hybrid nanocomposite. Polymer, 2009, 50, 6265-6273.	3.8	27
38	A Review of Transition Metal-Based Flame Retardants: Transition Metal Oxide/Salts, and Complexes. ACS Symposium Series, 2009, , 312-328.	0.5	26
39	Graphite Oxide Flame-Retardant Polymer Nanocomposites. ACS Applied Materials & Interfaces, 2009, 1, 2256-2261.	8.0	245
40	Polymer Nanocomposite Flammability and Flame Retardancy. , 2009, , 107-136.		1
41	Fire Retardancy of Polymeric Materials. , 2009, , 1-16.		39
42	Microcombustion calorimetry as a tool for screening flame retardancy in epoxy. Polymers for Advanced Technologies, 2008, 19, 530-546.	3.2	81
43	Cone calorimeter analysis of UL-94 V-rated plastics. Fire and Materials, 2007, 31, 257-283.	2.0	202
44	The effectiveness of magnesium carbonate-based flame retardants for poly(ethylene-co-vinyl acetate) and poly(ethylene-co-ethyl acrylate). Fire and Materials, 2007, 31, 387-410.	2.0	54
45	A study of the flammability reduction mechanism of polystyrene-layered silicate nanocomposite: layered silicate reinforced carbonaceous char. Polymers for Advanced Technologies, 2006, 17, 263-271.	3.2	116
46	Flame retarded polymer layered silicate nanocomposites: a review of commercial and open literature systems. Polymers for Advanced Technologies, 2006, 17, 206-217.	3.2	353
47	A flammability performance comparison between synthetic and natural clays in polystyrene nanocomposites. Fire and Materials, 2005, 29, 213-229.	2.0	112
48	Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: A comparative study. Journal of Applied Polymer Science, 2003, 87, 1329-1338.	2.6	575
49	Thermal and flammability properties of a silica-poly(methylmethacrylate) nanocomposite. Journal of Applied Polymer Science, 2003, 89, 2072-2078.	2.6	215
50	Fire Retardant Halogenâ^'Antimonyâ^'Clay Synergism in Polypropylene Layered Silicate Nanocompositesâ€. Chemistry of Materials, 2002, 14, 189-193.	6.7	243
51	Polymer/Layered Silicate Nanocomposites from Thermally Stable Trialkylimidazolium-Treated Montmorillonite. Chemistry of Materials, 2002, 14, 3776-3785.	6.7	281
52	Flammability of polystyrene layered silicate (clay) nanocomposites: Carbonaceous char formation. Fire and Materials, 2002, 26, 247-253.	2.0	154
53	Studies on the Mechanism by Which the Formation of Nanocomposites Enhances Thermal Stabilityâ€. Chemistry of Materials, 2001, 13, 4649-4654.	6.7	488
54	Fire Properties of Polystyreneâ^'Clay Nanocomposites. Chemistry of Materials, 2001, 13, 3774-3780.	6.7	599

#	Article	IF	CITATIONS
55	Synthesis, flameâ€retardancy testing, and preliminary mechanism studies of nonhalogenated aromatic boronic acids: A new class of condensedâ€phase polymer flameâ€retardant additives for acrylonitrile–butadiene–styrene and polycarbonate. Journal of Applied Polymer Science, 2000, 76, 1257-1268.	2.6	119
56	Flammability Properties of Polymerâ^'Layered-Silicate Nanocomposites. Polypropylene and Polystyrene Nanocompositesâ€. Chemistry of Materials, 2000, 12, 1866-1873.	6.7	1,451
57	Synthesis and testing of nonhalogenated alkyne/phosphorus-containing polymer additives: Potent condensed-phase flame retardants. Journal of Applied Polymer Science, 1999, 73, 707-718.	2.6	25
58	Synthesis and Testing of Nonhalogenated Alkyne-Containing Flame-Retarding Polymer Additives. Macromolecules, 1998, 31, 2857-2865.	4.8	62