Alexander B Morgan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7614823/publications.pdf

Version: 2024-02-01

58 papers 7,393 citations

30 h-index 56 g-index

70 all docs

70 docs citations

70 times ranked

5195 citing authors

#	Article	IF	CITATIONS
1	Flammability Properties of Polymerâ^'Layered-Silicate Nanocomposites. Polypropylene and Polystyrene Nanocompositesâ€. Chemistry of Materials, 2000, 12, 1866-1873.	6.7	1,451
2	Fire Properties of Polystyreneâ^'Clay Nanocomposites. Chemistry of Materials, 2001, 13, 3774-3780.	6.7	599
3	Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: A comparative study. Journal of Applied Polymer Science, 2003, 87, 1329-1338.	2.6	575
4	Studies on the Mechanism by Which the Formation of Nanocomposites Enhances Thermal Stabilityâ€. Chemistry of Materials, 2001, 13, 4649-4654.	6.7	488
5	Flame retarded polymer layered silicate nanocomposites: a review of commercial and open literature systems. Polymers for Advanced Technologies, 2006, 17, 206-217.	3.2	353
6	An overview of flame retardancy of polymeric materials: application, technology, and future directions. Fire and Materials, 2013, 37, 259-279.	2.0	352
7	Intumescent Multilayer Nanocoating, Made with Renewable Polyelectrolytes, for Flame-Retardant Cotton. Biomacromolecules, 2012, 13, 2843-2848.	5.4	318
8	Intumescent Allâ€Polymer Multilayer Nanocoating Capable of Extinguishing Flame on Fabric. Advanced Materials, 2011, 23, 3926-3931.	21.0	311
9	Polymer/Layered Silicate Nanocomposites from Thermally Stable Trialkylimidazolium-Treated Montmorillonite. Chemistry of Materials, 2002, 14, 3776-3785.	6.7	281
10	Graphite Oxide Flame-Retardant Polymer Nanocomposites. ACS Applied Materials & Samp; Interfaces, 2009, 1, 2256-2261.	8.0	245
11	Fire Retardant Halogenâ^'Antimonyâ^'Clay Synergism in Polypropylene Layered Silicate Nanocompositesâ€. Chemistry of Materials, 2002, 14, 189-193.	6.7	243
12	Thermal and flammability properties of a silica-poly(methylmethacrylate) nanocomposite. Journal of Applied Polymer Science, 2003, 89, 2072-2078.	2.6	215
13	Cone calorimeter analysis of UL-94 V-rated plastics. Fire and Materials, 2007, 31, 257-283.	2.0	202
14	Flammability of polystyrene layered silicate (clay) nanocomposites: Carbonaceous char formation. Fire and Materials, 2002, 26, 247-253.	2.0	154
15	Exceptionally Flame Retardant Sulfur-Based Multilayer Nanocoating for Polyurethane Prepared from Aqueous Polyelectrolyte Solutions. ACS Macro Letters, 2013, 2, 361-365.	4.8	131
16	Synthesis, flameâ€retardancy testing, and preliminary mechanism studies of nonhalogenated aromatic boronic acids: A new class of condensedâ€phase polymer flameâ€retardant additives for acrylonitrile–butadiene–styrene and polycarbonate. Journal of Applied Polymer Science, 2000, 76, 1257-1268.	2.6	119
17	The Future of Flame Retardant Polymers – Unmet Needs and Likely New Approaches. Polymer Reviews, 2019, 59, 25-54.	10.9	117
18	A study of the flammability reduction mechanism of polystyrene-layered silicate nanocomposite: layered silicate reinforced carbonaceous char. Polymers for Advanced Technologies, 2006, 17, 263-271.	3.2	116

#	Article	IF	Citations
19	A flammability performance comparison between synthetic and natural clays in polystyrene nanocomposites. Fire and Materials, 2005, 29, 213-229.	2.0	112
20	Revisiting physico-chemical hazards of ionic liquids. Separation and Purification Technology, 2012, 97, 228-234.	7.9	92
21	Microcombustion calorimetry as a tool for screening flame retardancy in epoxy. Polymers for Advanced Technologies, 2008, 19, 530-546.	3.2	81
22	Synthesis and Testing of Nonhalogenated Alkyne-Containing Flame-Retarding Polymer Additives. Macromolecules, 1998, 31, 2857-2865.	4.8	62
23	Synthesis and flame retardant testing of new boronated and phosphonated aromatic compounds. Journal of Materials Chemistry, 2012, 22, 1180-1190.	6.7	58
24	An innovative experimental approach aiming to understand and quantify the actual fire hazards of ionic liquids. Energy and Environmental Science, 2013, 6, 699.	30.8	57
25	The effectiveness of magnesium carbonate-based flame retardants for poly(ethylene-co-vinyl acetate) and poly(ethylene-co-ethyl acrylate). Fire and Materials, 2007, 31, 387-410.	2.0	54
26	Effect of halloysite nanotubes on mechanical properties and flammability of soy protein based green composites. Fire and Materials, 2013, 37, 75-90.	2.0	46
27	Bio-Based Flame-Retardant Coatings Based on the Synergistic Combination of Tannic Acid and Phytic Acid for Nylon–Cotton Blends. ACS Applied Materials & Eamp; Interfaces, 2021, 13, 61620-61628.	8.0	44
28	Use of inorganic materials to enhance thermal stability and flammability behavior of a polyimide. Polymer Degradation and Stability, 2011, 96, 23-32.	5.8	43
29	Carbon Nanotube Multilayer Nanocoatings Prevent Flame Spread on Flexible Polyurethane Foam. Macromolecular Materials and Engineering, 2016, 301, 665-673.	3.6	41
30	Fire Retardancy of Polymeric Materials. , 2009, , 1-16.		39
31	Heat release of polyurethanes containing potential flame retardants based on boron and phosphorus chemistries. Polymer Degradation and Stability, 2014, 106, 108-121.	5.8	33
32	Mild processing and characterization of silica epoxy hybrid nanocomposite. Polymer, 2009, 50, 6265-6273.	3.8	27
33	A Review of Transition Metal-Based Flame Retardants: Transition Metal Oxide/Salts, and Complexes. ACS Symposium Series, 2009, , 312-328.	0.5	26
34	Synthesis and testing of nonhalogenated alkyne/phosphorus-containing polymer additives: Potent condensed-phase flame retardants. Journal of Applied Polymer Science, 1999, 73, 707-718.	2.6	25
35	Heat release measurements on micron and nano-scale aluminum powders. Thermochimica Acta, 2009, 488, 1-9.	2.7	25
36	Revisiting flexible polyurethane foam flammability in furniture and bedding in the United States. Fire and Materials, 2021, 45, 68-80.	2.0	20

#	Article	IF	CITATIONS
37	Cone calorimeter testing of S2 glass reinforced polymer composites. Fire and Materials, 2009, 33, 323-344.	2.0	19
38	Flammability of natural plant and animal fibers: a heat release survey. Fire and Materials, 2017, 41, 275-288.	2.0	19
39	Improving the flame retardancy of polypropylene foam with piperazine pyrophosphate via multilayering coextrusion of film/foam composites. Journal of Applied Polymer Science, 2020, 137, 48552.	2.6	19
40	Preparation and studies of new phosphorus ontaining diols as potential flame retardants. Fire and Materials, 2017, 41, 973-982.	2.0	18
41	A targeted review of bio-derived plasticizers with flame retardant functionality used in PVC. Journal of Materials Science, 2022, 57, 7155-7172.	3.7	18
42	Synthesis and flammability testing of epoxy functionalized phosphorousâ€based flame retardants. Journal of Applied Polymer Science, 2015, 132, .	2.6	17
43	An experimental setup for observation of smolderingâ€toâ€flaming transition on flexible foam/fabric assemblies. Fire and Materials, 2018, 42, 128-133.	2.0	15
44	Flammability of thermoplastic carbon nanofiber nanocomposites. Fire and Materials, 2011, 35, 43-60.	2.0	14
45	New polyether diols as flame retardants for polyurethane: Derivatives of epoxyâ€functionalized phosphonates and phosphates. Fire and Materials, 2018, 42, 3-17.	2.0	11
46	Preparation of Phosphonoterephthalic Acids via Palladium-Catalyzed Coupling of Aromatic lodoesters. Synthetic Communications, 2013, 43, 1831-1836.	2.1	9
47	Cone calorimeter and room corner fire testing of balsa wood core/phenolic composite skin sandwich panels. Journal of Fire Sciences, 2014, 32, 328-345.	2.0	8
48	Studying smoldering to flaming transition in polyurethane furniture <scp>subassemblies</scp> : Effects of fabrics, flame retardants, and material type. Fire and Materials, 2021, 45, 56-67.	2.0	8
49	Flammability Characteristics of Animal Fibers: Single Breed Wools, Alpaca/Wool, and Llama/Wool Blends. Fibers, 2019, 7, 3.	4.0	7
50	Organophosphorus-hydrazides as potential reactive flame retardants for epoxy. Journal of Fire Sciences, 2020, 38, 28-52.	2.0	6
51	Apparatus for the vertical orientation cone calorimeter testing of flexible polyurethane foams. Fire and Materials, 2016, 40, 158-176.	2.0	4
52	Effects of laundering on military uniform fabric flammability. Fire and Materials, 2016, 40, 599-611.	2.0	4
53	Flammability testing of wool/cellulosic and wool/synthetic fiber blends: Vertical flame spread and heat release results. Journal of Fire Sciences, 2020, 38, 522-551.	2.0	4
54	Smolder behavior and emissions byproducts of aircraft composite coupons. Fire Safety Journal, 2021, 123, 103366.	3.1	3

#	Article	IF	CITATIONS
55	Structure, Theoretical Studies, and Coupling Reactions of Some New Cyclic Boronic Esters. Heteroatom Chemistry, 2013, 24, 361-371.	0.7	2
56	The well-meaning but misguided rollback of fire safety in the United States. Journal of Fire Sciences, 2022, 40, 249-253.	2.0	2
57	Polymer Nanocomposite Flammability and Flame Retardancy. , 2009, , 107-136.		1
58	Milligram Scale Flammability Testing of Flame Retardant Polyurethane Foams. ACS Symposium Series, 2012, , 445-458.	0.5	0