
Kevin M Downard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7614390/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determination of Macromolecular Folding and Structure by Synchrotron X-Ray Radiolysis Techniques. Analytical Biochemistry, 2001, 289, 103-115.	1.1	116
2	Electrospray-assisted modification of proteins: a radical probe of protein structure. , 1999, 13, 2352-2358.		113
3	Radical approaches to probe protein structure, folding, and interactions by mass spectrometry. Mass Spectrometry Reviews, 2001, 20, 388-401.	2.8	111
4	Câ€ŧerminal specific protein degradation: Activity and substrate specificity of the Tsp protease. Protein Science, 1995, 4, 1507-1515.	3.1	70
5	Antigenic Surveillance of the Influenza Virus by Mass Spectrometryâ€. Biochemistry, 1999, 38, 14185-14191.	1.2	62
6	Direct Identification of Protein Epitopes by Mass Spectrometry without Immobilization of Antibody and Isolation of Antibodyâ^'Peptide Complexes. Analytical Chemistry, 1999, 71, 1792-1801.	3.2	61
7	Photochemical and electrophysical production of radicals on millisecond timescales to probe the structure, dynamics and interactions of proteins. Photochemical and Photobiological Sciences, 2004, 3, 741.	1.6	61
8	Study of the Ribonucleaseâ^'S-Proteinâ^'Peptide Complex Using a Radical Probe and Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2003, 75, 1557-1563.	3.2	60
9	Hydroxyl radical probe of the calmodulin-melittin complex interface by electrospray ionization mass spectrometry. Journal of the American Society for Mass Spectrometry, 2005, 16, 225-233.	1.2	58
10	Subtyping of the Influenza Virus by High Resolution Mass Spectrometry. Analytical Chemistry, 2009, 81, 3500-3506.	3.2	56
11	Advances in radical probe mass spectrometry for protein footprinting in chemical biology applications. Chemical Society Reviews, 2014, 43, 3244.	18.7	54
12	The effect of charge state and the localization of charge on the collision-induced dissociation of peptide ions. Journal of the American Society for Mass Spectrometry, 1994, 5, 966-975.	1.2	51
13	A proteomics approach to survey the antigenicity of the influenza virus by mass spectrometry. Proteomics, 2006, 6, 2034-2041.	1.3	51
14	Preservation and detection of specific antibody—peptide complexes by matrix-assisted laser desorption ionization mass spectrometry. Journal of the American Society for Mass Spectrometry, 2000, 11, 746-750.	1.2	48
15	Binding of a natural anthocyanin inhibitor to influenza neuraminidase by mass spectrometry. Analytical and Bioanalytical Chemistry, 2013, 405, 6563-6572.	1.9	46
16	Unfolding of apomyoglobin helices by synchrotron radiolysis and mass spectrometry. FEBS Journal, 2001, 268, 5578-5588.	0.2	37
17	Catechin inhibition of influenza neuraminidase and its molecular basis with mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2015, 111, 222-230.	1.4	36
18	Proteotyping for the rapid identification of influenza virus and other biopathogens. Chemical Society Reviews, 2013, 42, 8584.	18.7	35

#	Article	IF	CITATIONS
19	lons of the interactome: The role of MS in the study of protein interactions in proteomics and structural biology. Proteomics, 2006, 6, 5374-5384.	1.3	34
20	Detection, Mapping, and Proteotyping of SARS-CoV-2 Coronavirus with High Resolution Mass Spectrometry. ACS Infectious Diseases, 2020, 6, 3269-3276.	1.8	34
21	Hydroxyl radical probe of the surface of lysozyme by synchrotron radiolysis and mass spectrometry. Rapid Communications in Mass Spectrometry, 2002, 16, 53-61.	0.7	33
22	Signature peptides of influenza nucleoprotein for the typing and subtyping of the virus by high resolution mass spectrometry. Analyst, The, 2009, 134, 2253.	1.7	33
23	Contributions of mass spectrometry to structural immunology. , 2000, 35, 493-503.		32
24	Onset of oxidative damage in α-crystallin by radical probe mass spectrometry. Analytical Biochemistry, 2005, 344, 247-256.	1.1	32
25	Antigenic characterisation of H3N2 subtypes of the influenza virus by mass spectrometry. Journal of Virological Methods, 2007, 145, 106-114.	1.0	32
26	Typing of human and animal strains of influenza virus with conserved signature peptides of matrix M1 protein by high resolution mass spectrometry. Journal of Virological Methods, 2010, 165, 178-185.	1.0	32
27	Rapid Differentiation of Seasonal and Pandemic H1N1 Influenza through Proteotyping of Viral Neuraminidase with Mass Spectrometry. Analytical Chemistry, 2010, 82, 4584-4590.	3.2	32
28	Mass spectrometry analytical responses to the SARS-CoV2 coronavirus in review. TrAC - Trends in Analytical Chemistry, 2021, 142, 116328.	5.8	31
29	PROXIMOa new docking algorithm to model protein complexes using data from radical probe mass spectrometry (RP-MS). Bioinformatics, 2006, 22, 1702-1709.	1.8	30
30	Inhibition of influenza hemagglutinin with the antiviral inhibitor arbidol using a proteomics based approach and mass spectrometry. Antiviral Research, 2013, 100, 399-406.	1.9	29
31	Amino acid sequence prerequisites for the formation of cn ions. Journal of the American Society for Mass Spectrometry, 1993, 4, 874-831.	1.2	28
32	Strategy for identifying protein–protein interactions of gel-separated proteins and complexes by mass spectrometry. Analytical Biochemistry, 2003, 318, 60-70.	1.1	28
33	Mass spectrometry analysis of the influenza virus. Mass Spectrometry Reviews, 2009, 28, 35-49.	2.8	27
34	Francis William Aston: The Man Behind the Mass Spectrograph. European Journal of Mass Spectrometry, 2007, 13, 177-190.	0.5	25
35	Antigenicity of a Type A Influenza Virus Through Comparison of Hemagglutination Inhibition and Mass Spectrometry Immunoassays. Journal of Immunoassay and Immunochemistry, 2009, 30, 245-261.	0.5	25
36	Impact of limited oxidation on protein ion mobility and structure of importance to footprinting by radical probe mass spectrometry. Rapid Communications in Mass Spectrometry, 2012, 26, 226-230.	0.7	25

#	Article	IF	CITATIONS
37	Mass Trees: A New Phylogenetic Approach and Algorithm to Chart Evolutionary History with Mass Spectrometry. Analytical Chemistry, 2013, 85, 5475-5482.	3.2	24
38	Detection and evolution of SARS-CoV-2 coronavirus variants of concern with mass spectrometry. Analytical and Bioanalytical Chemistry, 2021, 413, 7241-7249.	1.9	23
39	Incorporation of a Proteotyping Approach Using Mass Spectrometry for Surveillance of Influenza Virus in Cell-Cultured Strains. Journal of Clinical Microbiology, 2014, 52, 725-735.	1.8	22
40	Charging behavior of highly basic peptides during electrospray ionization. A predilection for protons. International Journal of Mass Spectrometry and Ion Processes, 1995, 148, 191-202.	1.9	20
41	FluShuffle and FluResort: new algorithms to identify reassorted strains of the influenza virus by mass spectrometry. BMC Bioinformatics, 2012, 13, 208.	1.2	20
42	Proteotyping to establish the lineage of type A H1N1 and type B human influenza virus. Journal of Virological Methods, 2011, 171, 117-122.	1.0	19
43	Rapid Typing and Subtyping of Vaccine Strains of the Influenza Virus with High Resolution Mass Spectrometry. European Journal of Mass Spectrometry, 2010, 16, 321-329.	0.5	18
44	Anti-Viral Inhibitor Binding to Influenza Neuraminidase by MALDI Mass Spectrometry. Analytical Chemistry, 2012, 84, 3725-3730.	3.2	18
45	Evolution of Influenza Neuraminidase and the Detection of Antiviral Resistant Strains Using Mass Trees. Analytical Chemistry, 2014, 86, 629-637.	3.2	18
46	Mutational analysis employing a phylogenetic mass tree approach in a study of the evolution of the influenza virus. Molecular Phylogenetics and Evolution, 2017, 112, 209-217.	1.2	18
47	Identification of epistatic mutations and insights into the evolution of the influenza virus using a mass-based protein phylogenetic approach. Molecular Phylogenetics and Evolution, 2018, 121, 132-138.	1.2	18
48	Ancestral and Compensatory Mutations that Promote Antiviral Resistance in InfluenzaÂN1 Neuraminidase Revealed by a Phylonumerics Approach. Journal of Molecular Evolution, 2018, 86, 546-553.	0.8	17
49	Fingerprinting a killer: surveillance of the influenza virus by mass spectrometry. Analyst, The, 2007, 132, 611.	1.7	16
50	A computer algorithm for the identification of protein interactions from the spectra of masses (PRISM). Journal of the American Society for Mass Spectrometry, 2007, 18, 563-566.	1.2	16
51	Kinetics of Antigenâ^'Antibody Interactions Employing a MALDI Mass Spectrometry Immunoassay. Analytical Chemistry, 2008, 80, 7720-7726.	3.2	16
52	FluTyper-an algorithm for automated typing and subtyping of the influenza virus from high resolution mass spectral data. BMC Bioinformatics, 2010, 11, 266.	1.2	16
53	Proteotyping of the Parainfluenza Virus with High-Resolution Mass Spectrometry. Analytical Chemistry, 2013, 85, 1097-1105.	3.2	16
54	Quantitation of anthocyanins in elderberry fruit extracts and nutraceutical formulations with paper spray ionization mass spectrometry. Journal of Mass Spectrometry, 2018, 53, 58-64.	0.7	15

#	Article	IF	CITATIONS
55	Homologyâ€modelled structure of the βB2B3â€crystallin heterodimer studied by ion mobility and radical probe MS. FEBS Journal, 2011, 278, 4044-4054.	2.2	14
56	Substituent effects on the binding of natural product anthocyanidin inhibitors to influenza neuraminidase with mass spectrometry. Analytica Chimica Acta, 2014, 828, 61-69.	2.6	14
57	Mechanisms of antiviral resistance in influenza neuraminidase revealed by a mass spectrometry based phylonumerics approach. Molecular Phylogenetics and Evolution, 2019, 135, 286-296.	1.2	14
58	Onâ€plate deposition of oxidized proteins to facilitate protein footprinting studies by radical probe mass spectrometry. Rapid Communications in Mass Spectrometry, 2012, 26, 2311-2318.	0.7	13
59	Subtyping of influenza neuraminidase using mass spectrometry. Analyst, The, 2013, 138, 1787.	1.7	13
60	Interaction between alpha and upsilon-crystallin, common to the eye of the Australian platypus, by radical probe mass spectrometry. Journal of Mass Spectrometry, 2006, 41, 1298-1303.	0.7	12
61	SEQUENCEâ€FREE PHYLOGENETICS WITH MASS SPECTROMETRY. Mass Spectrometry Reviews, 2020, 41, 3-14.	2.8	12
62	Indirect study of nonâ€covalent protein complexes by MALDI mass spectrometry: Origins, advantages, and applications of the "intensityâ€fading―approach. Mass Spectrometry Reviews, 2016, 35, 559-573.	2.8	11
63	Methionine specific sequence ions formed by the dissociation of protonated peptides at high collision energies. Journal of Mass Spectrometry, 1995, 30, 25-32.	0.7	9
64	Ability of <i>N</i> â€acetylcarnosine to protect lens crystallins from oxidation and oxidative damage by radical probe mass spectrometry (RPâ€MS). Rapid Communications in Mass Spectrometry, 2010, 24, 2900-2908.	0.7	9
65	Origins of the reassortant 2009 pandemic influenza virus through proteotyping with mass spectrometry. Journal of Mass Spectrometry, 2014, 49, 93-102.	0.7	9
66	Darwin's Tree of Life is Numbered. Resolving the Origins of Species by Mass. Evolutionary Biology, 2020, 47, 325-333.	0.5	9
67	Subtyping of hepatitis C virus with high resolution mass spectrometry. Clinical Mass Spectrometry, 2017, 4-5, 19-24.	1.9	8
68	Reimaging the Tree of Life Using a Mass Based Phylonumerics Approach. Evolutionary Biology, 2020, 47, 76-84.	0.5	8
69	Detection of SARS CoV-2 coronavirus omicron variant with mass spectrometry. Analyst, The, 2022, 147, 1181-1190.	1.7	8
70	Detection and structural features of the βB2â€B3â€crystallin heterodimer by radical probe mass spectrometry (RPâ€MS). Journal of Mass Spectrometry, 2009, 44, 803-812.	0.7	7
71	Stability of the βB2B3 crystallin heterodimer to increased oxidation by radical probe and ion mobility mass spectrometry. Journal of Structural Biology, 2015, 189, 20-27.	1.3	7
72	Mass spectrometry in structural proteomics: The case for radical probe protein footprinting. TrAC - Trends in Analytical Chemistry, 2019, 110, 293-302.	5.8	7

#	Article	IF	CITATIONS
73	Molecular basis of influenza hemagglutinin inhibition with an entry-blocker peptide by computational docking and mass spectrometry. Antiviral Chemistry and Chemotherapy, 2015, 24, 109-117.	0.3	6
74	Evolution of SARS CoV-2 Coronavirus Surface Protein Investigated with Mass Spectrometry Based Phylogenetics. Analytical Letters, 0, , 1-13.	1.0	6
75	Characterization of the conformations of antigenic peptides of protein lactate dehydrogenase (LDH-C4) by electrospray ionization mass spectrometry. , 1997, 11, 1853-1858.		5
76	Phylogenetic Analysis Using Protein Mass Spectrometry. Methods in Molecular Biology, 2017, 1549, 135-146.	0.4	5
77	Effect of charge on the conformation of highly basic peptides including the tail regions of histone proteins by ion mobility mass spectrometry. Analytical and Bioanalytical Chemistry, 2016, 408, 6637-6648.	1.9	4
78	Protein phylogenetics with mass spectrometry. A comparison of methods. Analytical Methods, 2021, 13, 1442-1454.	1.3	3
79	New Anthocyanins from Black Elderberry of Inhibitory Potential Revealed by Mass Spectrometry. Natural Products Journal, 2016, 6, 94-102.	0.1	2
80	Molecular basis of benzimidazole inhibitors to hepatitis C virus envelope glycoprotein. Chemical Biology and Drug Design, 2018, 92, 1638-1646.	1.5	2
81	A Molecular Immunoproteomics Approach to Assess the Viral Antigenicity of Influenza. Methods in Molecular Biology, 2019, 2024, 353-369.	0.4	1
82	Concentration of Hydroxyl Radicals during Electrical Discharge for Radical Probe Protein Footprinting Mass Spectrometry. Rapid Communications in Mass Spectrometry, 2019, 33, 1420-1422.	0.7	1
83	Evolution of Type B Influenza Virus Using a Mass Spectrometry Based Phylonumerics Approach. Evolutionary Biology, 2021, 48, 259-268.	0.5	1
84	Mass-Based Protein Phylogenetic Approach to Identify Epistasis. Methods in Molecular Biology, 2021, 2212, 1-15.	0.4	1
85	Joseph John Thomson investigates the paranormal. European Journal of Mass Spectrometry, 2021, 27, 146906672110505.	0.5	0
86	Analysis of bacterial biotyping datasets with a mass-based phylonumerics approach. Analytical and Bioanalytical Chemistry, 2022, , 1.	1.9	0