
## Alessandra Polissi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7614108/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Large-Scale Identification of Virulence Genes from <i>Streptococcus pneumoniae</i> . Infection and Immunity, 1998, 66, 5620-5629.                                                                                                                     | 2.2 | 421       |
| 2  | Function of Escherichia coli MsbA, an Essential ABC Family Transporter, in Lipid A and Phospholipid<br>Biosynthesis. Journal of Biological Chemistry, 1998, 273, 12466-12475.                                                                         | 3.4 | 306       |
| 3  | Functional Analysis of the Protein Machinery Required for Transport of Lipopolysaccharide to the<br>Outer Membrane of <i>Escherichia coli</i> . Journal of Bacteriology, 2008, 190, 4460-4469.                                                        | 2.2 | 218       |
| 4  | Characterization of lptA and lptB , Two Essential Genes Implicated in Lipopolysaccharide Transport to the Outer Membrane of Escherichia coli. Journal of Bacteriology, 2007, 189, 244-253.                                                            | 2.2 | 212       |
| 5  | Novel Structure of the Conserved Gram-Negative Lipopolysaccharide Transport Protein A and<br>Mutagenesis Analysis. Journal of Molecular Biology, 2008, 380, 476-488.                                                                                  | 4.2 | 144       |
| 6  | The lipopolysaccharide transport system of Gram-negative bacteria. Biochimica Et Biophysica Acta -<br>Molecular and Cell Biology of Lipids, 2009, 1791, 594-602.                                                                                      | 2.4 | 132       |
| 7  | Mutational analysis and properties of the msbA gene of Escherichia coli, coding for an essential ABC family transporter. Molecular Microbiology, 1996, 20, 1221-1233.                                                                                 | 2.5 | 121       |
| 8  | Peptidoglycan Remodeling Enables Escherichia coli To Survive Severe Outer Membrane Assembly<br>Defect. MBio, 2019, 10, .                                                                                                                              | 4.1 | 115       |
| 9  | Global analysis of transcription kinetics during competence development in Streptococcus pneumoniae using high density DNA arrays. Molecular Microbiology, 2002, 36, 1279-1292.                                                                       | 2.5 | 101       |
| 10 | Annotated Draft Genomic Sequence from aStreptococcus pneumoniaeType 19F Clinical Isolate.<br>Microbial Drug Resistance, 2001, 7, 99-125.                                                                                                              | 2.0 | 98        |
| 11 | Changes in Escherichia coli transcriptome during acclimatization at low temperature. Research in<br>Microbiology, 2003, 154, 573-580.                                                                                                                 | 2.1 | 94        |
| 12 | The Escherichia coli Lpt Transenvelope Protein Complex for Lipopolysaccharide Export Is Assembled via Conserved Structurally Homologous Domains. Journal of Bacteriology, 2013, 195, 1100-1108.                                                       | 2.2 | 90        |
| 13 | New Insights into the Lpt Machinery for Lipopolysaccharide Transport to the Cell Surface: LptA-LptC<br>Interaction and LptA Stability as Sensors of a Properly Assembled Transenvelope Complex. Journal of<br>Bacteriology, 2011, 193, 1042-1053.     | 2.2 | 86        |
| 14 | Non-essential KDO biosynthesis and new essential cell envelope biogenesis genes in the Escherichia<br>coli yrbG–yhbG locus. Research in Microbiology, 2006, 157, 547-558.                                                                             | 2.1 | 83        |
| 15 | Lipopolysaccharide biogenesis and transport at the outer membrane of Gram-negative bacteria.<br>Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 1451-1460.                                                          | 2.4 | 73        |
| 16 | The lipopolysaccharide transport (Lpt) machinery: A nonconventional transporter for<br>lipopolysaccharide assembly at the outer membrane of Gram-negative bacteria. Journal of Biological<br>Chemistry, 2017, 292, 17981-17990.                       | 3.4 | 66        |
| 17 | Copper inhibits peptidoglycan LD-transpeptidases suppressing Î <sup>2</sup> -lactam resistance due to bypass of penicillin-binding proteins. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10786-10791. | 7.1 | 59        |
| 18 | Development of antibacterial quaternary ammonium silane coatings on polyurethane catheters.<br>Journal of Colloid and Interface Science, 2015, 451, 78-84.                                                                                            | 9.4 | 48        |

Alessandra Polissi

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Divergent evolution of chloroplast-type ferredoxins. FEBS Letters, 1991, 285, 85-88.                                                                                                                                                                    | 2.8 | 43        |
| 20 | The Lipopolysaccharide Export Pathway in Escherichia coli: Structure, Organization and Regulated Assembly of the Lpt Machinery. Marine Drugs, 2014, 12, 1023-1042.                                                                                      | 4.6 | 41        |
| 21 | Nanostructured Ag <sub>4</sub> 0 <sub>4</sub> films with enhanced antibacterial activity.<br>Nanotechnology, 2008, 19, 475602.                                                                                                                          | 2.6 | 38        |
| 22 | New Targets for Antibacterial Design: Kdo Biosynthesis and LPS Machinery Transport to the Cell<br>Surface. Current Medicinal Chemistry, 2011, 18, 830-852.                                                                                              | 2.4 | 38        |
| 23 | Thanatin Impairs Lipopolysaccharide Transport Complex Assembly by Targeting LptC–LptA Interaction and Decreasing LptA Stability. Frontiers in Microbiology, 2020, 11, 909.                                                                              | 3.5 | 38        |
| 24 | Site-Specific Mutation of <i>Staphylococcus aureus</i> VraS Reveals a Crucial Role for the VraR-VraS<br>Sensor in the Emergence of Glycopeptide Resistance. Antimicrobial Agents and Chemotherapy, 2011, 55,<br>1008-1020.                              | 3.2 | 36        |
| 25 | Dissecting Escherichia coli Outer Membrane Biogenesis Using Differential Proteomics. PLoS ONE, 2014,<br>9, e100941.                                                                                                                                     | 2.5 | 36        |
| 26 | Mutation and Suppressor Analysis of the Essential Lipopolysaccharide Transport Protein LptA Reveals<br>Strategies To Overcome Severe Outer Membrane Permeability Defects in Escherichia coli. Journal of<br>Bacteriology, 2018, 200, .                  | 2.2 | 36        |
| 27 | Interaction of lipopolysaccharides at intermolecular sites of the periplasmic Lpt transport assembly.<br>Scientific Reports, 2017, 7, 9715.                                                                                                             | 3.3 | 32        |
| 28 | Photosynthetic membranes. VI. Characterization of ultrafiltration membranes prepared by<br>photografting zeolite-epoxy-diacrylate resin composites onto cellulose. Journal of Membrane Science,<br>1988, 36, 277-295.                                   | 8.2 | 31        |
| 29 | Crystal structure of LptH, the periplasmic component of the lipopolysaccharide transport machinery from <i>PseudomonasÂaeruginosa</i> . FEBS Journal, 2015, 282, 1980-1997.                                                                             | 4.7 | 31        |
| 30 | Scanning the Escherichia coli chromosome by random transposon mutagenesis and multiple phenotypic screening. Research in Microbiology, 2004, 155, 692-701.                                                                                              | 2.1 | 30        |
| 31 | LptA Assembles into Rod-Like Oligomers Involving Disorder-to-Order Transitions. Journal of the American Society for Mass Spectrometry, 2013, 24, 1593-1602.                                                                                             | 2.8 | 29        |
| 32 | <i>Pseudomonas aeruginosa</i> LptE is crucial for LptD assembly, cell envelope integrity, antibiotic resistance and virulence. Virulence, 2018, 9, 1718-1733.                                                                                           | 4.4 | 29        |
| 33 | ActS activates peptidoglycan amidases during outer membrane stress in <i>Escherichia coli</i> .<br>Molecular Microbiology, 2021, 116, 329-342.                                                                                                          | 2.5 | 28        |
| 34 | Targeting Bacterial Membranes: NMR Spectroscopy Characterization of Substrate Recognition and<br>Binding Requirements of <scp>D</scp> â€Arabinoseâ€5â€Phosphate Isomerase. Chemistry - A European<br>Journal, 2010, 16, 1897-1902.                      | 3.3 | 27        |
| 35 | Lipopolysaccharide Biosynthesis and Transport to the Outer Membrane of Gram-Negative Bacteria.<br>Sub-Cellular Biochemistry, 2019, 92, 9-37.                                                                                                            | 2.4 | 27        |
| 36 | The Lack of the Essential LptC Protein in the Trans-Envelope Lipopolysaccharide Transport Machine Is<br>Circumvented by Suppressor Mutations in LptF, an Inner Membrane Component of the Escherichia coli<br>Transporter. PLoS ONE, 2016, 11, e0161354. | 2.5 | 26        |

Alessandra Polissi

| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | The puzzle of zmpB and extensive chain formation, autolysis defect and non-translocation of choline-binding proteins in Streptococcus pneumoniae. Molecular Microbiology, 2001, 39, 1651-1660.                                             | 2.5  | 24        |
| 38 | The Kdo Biosynthetic Pathway Toward OM Biogenesis as Target in Antibacterial Drug Design and Development. Current Drug Discovery Technologies, 2009, 6, 19-33.                                                                             | 1.2  | 24        |
| 39 | Targeting Bacterial Membranes: Identification of <i>Pseudomonas<br/>aeruginosa</i> <scp>D</scp> â€Arabinoseâ€5P Isomerase and NMR Characterisation of its Substrate<br>Recognition and Binding Properties. ChemBioChem, 2011, 12, 719-727. | 2.6  | 24        |
| 40 | Self-Assembled Monolayers of Copper Sulfide Nanoparticles on Glass as Antibacterial Coatings.<br>Nanomaterials, 2020, 10, 352.                                                                                                             | 4.1  | 24        |
| 41 | Skin infections are eliminated by cooperation of the fibrinolytic and innate immune systems. Science<br>Immunology, 2017, 2, .                                                                                                             | 11.9 | 22        |
| 42 | Novel photo-thermally active polyvinyl alcohol-Prussian blue nanoparticles hydrogel films capable of eradicating bacteria and mitigating biofilms. Nanotechnology, 2019, 30, 295702.                                                       | 2.6  | 22        |
| 43 | Covalent Grafting of Antimicrobial Peptides onto Microcrystalline Cellulose. ACS Applied Bio<br>Materials, 2020, 3, 4895-4901.                                                                                                             | 4.6  | 22        |
| 44 | DpaA Detaches Braun's Lipoprotein from Peptidoglycan. MBio, 2021, 12, .                                                                                                                                                                    | 4.1  | 22        |
| 45 | PVA Films with Mixed Silver Nanoparticles and Gold Nanostars for Intrinsic and Photothermal Antibacterial Action. Nanomaterials, 2021, 11, 1387.                                                                                           | 4.1  | 20        |
| 46 | Probing the active site of the sugar isomerase domain from <i>E. coli</i> arabinoseâ€5â€phosphate<br>isomerase via Xâ€ray crystallography. Protein Science, 2010, 19, 2430-2439.                                                           | 7.6  | 19        |
| 47 | Complex transcriptional organization regulates an Escherichia coli locus implicated in lipopolysaccharide biogenesis. Research in Microbiology, 2011, 162, 470-482.                                                                        | 2.1  | 19        |
| 48 | Solid State NMR Studies of Intact Lipopolysaccharide Endotoxin. ACS Chemical Biology, 2018, 13, 2106-2113.                                                                                                                                 | 3.4  | 18        |
| 49 | Functional Interaction between the Cytoplasmic ABC Protein LptB and the Inner Membrane LptC<br>Protein, Components of the Lipopolysaccharide Transport Machinery in Escherichia coli. Journal of<br>Bacteriology, 2016, 198, 2192-2203.    | 2.2  | 17        |
| 50 | The Lpt ABC transporter for lipopolysaccharide export to the cell surface. Research in Microbiology, 2019, 170, 366-373.                                                                                                                   | 2.1  | 17        |
| 51 | Functional Characterization of <i>E. coli</i> LptC: Interaction with LPS and a Synthetic Ligand.<br>ChemBioChem, 2014, 15, 734-742.                                                                                                        | 2.6  | 16        |
| 52 | Synthesis and anti-bacterial activity of a library of 1,2-benzisothiazol-3(2H)-one (BIT) derivatives amenable of crosslinking to polysaccharides. Tetrahedron, 2017, 73, 1745-1761.                                                        | 1.9  | 16        |
| 53 | Structure prediction and functional analysis of KdsD, an enzyme involved in lipopolysaccharide biosynthesis. Biochemical and Biophysical Research Communications, 2009, 388, 222-227.                                                      | 2.1  | 15        |
| 54 | Targeting Bacterial Biofilm: A New LecA Multivalent Ligand with Inhibitory Activity. ChemBioChem, 2019, 20, 2911-2915.                                                                                                                     | 2.6  | 15        |

ALESSANDRA POLISSI

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The Landscape of Pseudomonas aeruginosa Membrane-Associated Proteins. Cells, 2020, 9, 2421.                                                                                                                               | 4.1 | 14        |
| 56 | Genetic analysis of chromosomal operons involved in degradation of aromatic hydrocarbons in Pseudomonas putida TMB. Journal of Bacteriology, 1990, 172, 6355-6362.                                                        | 2.2 | 13        |
| 57 | Lysozyme Mucoadhesive Tablets Obtained by Freeze-Drying. Journal of Pharmaceutical Sciences, 2019, 108, 3667-3674.                                                                                                        | 3.3 | 11        |
| 58 | Cloning and transposon vectors derived from satellite bacteriophage P4 for genetic manipulation of<br>Pseudomonas and other gram-negative bacteria. Plasmid, 1992, 28, 101-114.                                           | 1.4 | 10        |
| 59 | Arabinose 5-phosphate isomerase as a target for antibacterial design: Studies with substrate analogues and inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 2576-2583.                                           | 3.0 | 10        |
| 60 | Lipopolysaccharide Transport to the Cell Surface: New Insights in Assembly into the Outer Membrane.<br>Structure, 2016, 24, 847-849.                                                                                      | 3.3 | 10        |
| 61 | Nanocomposite Sprayed Films with Photo-Thermal Properties for Remote Bacteria Eradication.<br>Nanomaterials, 2020, 10, 786.                                                                                               | 4.1 | 10        |
| 62 | Linking dual mode of action of host defense antimicrobial peptide thanatin: Structures,<br>lipopolysaccharide and LptAm binding of designed analogs. Biochimica Et Biophysica Acta -<br>Biomembranes, 2022, 1864, 183839. | 2.6 | 10        |
| 63 | Immobilization of biocatalysts by photochemically grafted membranes: some studies with catalase as model system. Biotechnology and Bioengineering, 1990, 35, 646-649.                                                     | 3.3 | 8         |
| 64 | The lipopolysaccharide-transporter complex LptB2FG also displays adenylate kinase activity inÂvitro<br>dependent on the binding partners LptC/LptA. Journal of Biological Chemistry, 2021, 297, 101313.                   | 3.4 | 6         |
| 65 | Degradation of Components of the Lpt Transenvelope Machinery Reveals LPS-Dependent Lpt Complex<br>Stability in Escherichia coli. Frontiers in Molecular Biosciences, 2021, 8, 758228.                                     | 3.5 | 6         |
| 66 | A model study for release of plasticizers from polymer films through vapor phase. Journal of Applied<br>Polymer Science, 1984, 29, 3185-3195.                                                                             | 2.6 | 4         |
| 67 | Lipopolysaccharide Export to the Outer Membrane. , 2011, , 311-337.                                                                                                                                                       |     | 4         |
| 68 | Phosphonate Analogues of Arabinose 5â€Phosphate: Putative Ligands for Arabinose 5â€Phosphate<br>Isomerases. European Journal of Organic Chemistry, 2013, 2013, 7776-7784.                                                 | 2.4 | 4         |
| 69 | <i>N</i> ‣pirofused Bicyclic Derivatives of 1â€Đeoxynojirimycin: Synthesis and Preliminary Biological<br>Evaluation. ChemistrySelect, 2016, 1, 2444-2447.                                                                 | 1.5 | 4         |
| 70 | Fat Matters for Bugs: How Lipids and Lipid Modifications Make the Difference in Bacterial Life.<br>European Journal of Lipid Science and Technology, 2019, 121, 1900204.                                                  | 1.5 | 4         |
| 71 | On-cell saturation transfer difference NMR for the identification of FimH ligands and inhibitors.<br>Bioorganic Chemistry, 2021, 112, 104876.                                                                             | 4.1 | 4         |
| 72 | Thermodynamic study of solvent and substituent effects on 4-substituted aminoazobenzenes. Dyes and<br>Pigments, 1987, 8, 239-251.                                                                                         | 3.7 | 3         |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Re LPS Biogenetic Pathway: Enzyme Characterisation and Synthetic Efforts Towards Inhibitors.<br>Current Organic Chemistry, 2008, 12, 576-600.                                                               | 1.6 | 3         |
| 74 | Synthesis and biological evaluation of arabinose 5-phosphate mimics modified at position five.<br>Carbohydrate Research, 2014, 389, 186-191.                                                                | 2.3 | 1         |
| 75 | An induced folding process characterizes the partial-loss of function mutant LptAl36D in its<br>interactions with ligands. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1451-1457.  | 2.3 | 1         |
| 76 | Differential Proteomics Based on Multidimensional Protein Identification Technology to Understand<br>the Biogenesis of Outer Membrane of Escherichia coli. Methods in Molecular Biology, 2016, 1440, 57-70. | 0.9 | 1         |