Graziella Cappelletti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7613972/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Astrocytes expressing Vitamin Dâ€activating enzyme identify Parkinson's disease. CNS Neuroscience and Therapeutics, 2022, 28, 703-713.	3.9	10
2	Poly (ADP-ribose) polymerase 1 and Parkinson's disease: A study in post-mortem human brain. Neurochemistry International, 2021, 144, 104978.	3.8	8
3	Microtubule acetylation: A reading key to neural physiology and degeneration. Neuroscience Letters, 2021, 755, 135900.	2.1	18
4	The Association between α-Synuclein and α-Tubulin in Brain Synapses. International Journal of Molecular Sciences, 2021, 22, 9153.	4.1	10
5	The imbalance between dynamic and stable microtubules underlies neurodegeneration induced by 2,5-hexanedione. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165581.	3.8	8
6	Phospho-HDAC6 Gathers Into Protein Aggregates in Parkinson's Disease and Atypical Parkinsonisms. Frontiers in Neuroscience, 2020, 14, 624.	2.8	17
7	α-Synuclein oligomers in skin biopsy of idiopathic and monozygotic twin patients with Parkinson's disease. Brain, 2020, 143, 920-931.	7.6	41
8	Neuronal microtubules and proteins linked to Parkinson's disease: a relevant interaction?. Biological Chemistry, 2019, 400, 1099-1112.	2.5	25
9	CRISPR/Cas9-mediated generation of a tyrosine hydroxylase reporter iPSC line for live imaging and isolation of dopaminergic neurons. Scientific Reports, 2019, 9, 6811.	3.3	22
10	Microtubule defects in mesenchymal stromal cells distinguish patients with Progressive Supranuclear Palsy. Journal of Cellular and Molecular Medicine, 2018, 22, 2670-2679.	3.6	8
11	Parkin absence accelerates microtubule aging in dopaminergic neurons. Neurobiology of Aging, 2018, 61, 66-74.	3.1	43
12	α-Synuclein regulates the partitioning between tubulin dimers and microtubules at neuronal growth cone. Communicative and Integrative Biology, 2017, 10, e1267076.	1.4	4
13	Microtubule-Directed Therapeutic Strategy for Neurodegenerative Disorders: Starting From the Basis and Looking on the Emergences. Current Pharmaceutical Design, 2017, 23, 784-808.	1.9	9
14	Synthesis of Pironetin–Dumetorine Hybrids as Tubulin Binders. European Journal of Organic Chemistry, 2016, 2016, 2029-2036.	2.4	14
15	Tools for the rational design of bivalent microtubule-targeting drugs. Biochemical and Biophysical Research Communications, 2016, 479, 48-53.	2.1	10
16	Frataxin silencing alters microtubule stability in motor neurons: implications for Friedreich's ataxia. Human Molecular Genetics, 2016, 25, 4288-4301.	2.9	27
17	α-Synuclein is a Novel Microtubule Dynamase. Scientific Reports, 2016, 6, 33289.	3.3	79
18	Linking microtubules to Parkinson's disease: the case of parkin. Biochemical Society Transactions, 2015, 43, 292-296.	3.4	24

GRAZIELLA CAPPELLETTI

#	Article	IF	CITATIONS
19	Selfâ€Assembled Squaleneâ€based Fluorescent Heteronanoparticles. ChemPlusChem, 2015, 80, 47-49.	2.8	18
20	Parkin regulates kainate receptors by interacting with the GluK2 subunit. Nature Communications, 2014, 5, 5182.	12.8	42
21	Neuritin 1 promotes neuronal migration. Brain Structure and Function, 2014, 219, 105-118.	2.3	34
22	New class of squalene-based releasable nanoassemblies of paclitaxel, podophyllotoxin, camptothecin and epothilone A. European Journal of Medicinal Chemistry, 2014, 85, 179-190.	5.5	34
23	Microtubule Alterations Occur Early in Experimental Parkinsonism and The Microtubule Stabilizer Epothilone D Is Neuroprotective. Scientific Reports, 2013, 3, 1837.	3.3	103
24	Preparation of Fluorescent Tubulin Binders. ChemPlusChem, 2013, 78, 202-202.	2.8	0
25	Preparation of Fluorescent Tubulin Binders. ChemPlusChem, 2013, 78, 222-226.	2.8	7
26	9â€Fluorenoneâ€2 arboxylic Acid as a Scaffold for Tubulin Interacting Compounds. ChemPlusChem, 2013, 78, 663-669.	2.8	7
27	Molecular dynamics and tubulin polymerization kinetics study on 1,14-heterofused taxanes: evidence of stabilization of the tubulin head-to-tail dimer–dimer interaction. Molecular BioSystems, 2012, 8, 3254.	2.9	13
28	Epigenetic Approaches and Methods in Developmental Toxicology: Role of HDAC Inhibition in Teratogenic Events. Methods in Molecular Biology, 2012, 889, 373-383.	0.9	3
29	Microtubule Destabilization Is Shared by Genetic and Idiopathic Parkinson's Disease Patient Fibroblasts. PLoS ONE, 2012, 7, e37467.	2.5	43
30	Centaurin-Î ± 2 Interacts with Î ² -Tubulin and Stabilizes Microtubules. PLoS ONE, 2012, 7, e52867.	2.5	15
31	Tubulin-guided dynamic combinatorial library of thiocolchicine–podophyllotoxin conjugates. Tetrahedron, 2011, 67, 7354-7357.	1.9	22
32	Mesenchymal Stromal Cells Primed with Paclitaxel Provide a New Approach for Cancer Therapy. PLoS ONE, 2011, 6, e28321.	2.5	146
33	New aryldithiolethione derivatives as potent histone deacetylase inhibitors. Bioorganic and Medicinal Chemistry, 2010, 18, 4187-4194.	3.0	17
34	Synthesis and biological evaluation of novel thiocolchicine–podophyllotoxin conjugates. European Journal of Medicinal Chemistry, 2010, 45, 219-226.	5.5	48
35	Microtubule dysfunction precedes transport impairment and mitochondria damage in MPP ⁺ â€induced neurodegeneration. Journal of Neurochemistry, 2010, 115, 247-258.	3.9	109
36	Antimitotic effect of the retinoid 4-oxo-fenretinide through inhibition of tubulin polymerization: a novel mechanism of retinoid growth–inhibitory activity. Molecular Cancer Therapeutics, 2009, 8, 3360-3368.	4.1	16

#	Article	IF	CITATIONS
37	Synthesis, Modelling, and Antimitotic Properties of Tricyclic Systems Characterised by a 2â€(5â€Phenylâ€1 <i>H</i> â€pyrrolâ€3â€yl)â€1,3,4â€oxadiazole Moiety. ChemMedChem, 2009, 4, 998-1009.	3.2	17
38	Synthesis and biological evaluation of epothilone A dimeric compounds. Bioorganic and Medicinal Chemistry, 2009, 17, 7435-7440.	3.0	13
39	In silico design of tubulin-targeted antimitotic peptides. Nature Chemistry, 2009, 1, 642-648.	13.6	38
40	Pleiotropic effects of spastin on neurite growth depending on expression levels. Journal of Neurochemistry, 2009, 108, 1277-1288.	3.9	84
41	Tau is Endogenously Nitrated in Mouse Brain: Identification of a Tyrosine Residue Modified InÂvivo by NO. Neurochemical Research, 2008, 33, 518-525.	3.3	14
42	Inhibitors of tubulin polymerization: Synthesis and biological evaluation of hybrids of vindoline, anhydrovinblastine and vinorelbine with thiocolchicine, podophyllotoxin and baccatin III. Bioorganic and Medicinal Chemistry, 2008, 16, 6269-6285.	3.0	56
43	New sulfurated derivatives of valproic acid with enhanced histone deacetylase inhibitory activity. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1893-1897.	2.2	33
44	Semisynthesis of New D-seco-C-nor-Taxane Derivatives Containing a Polyfunctionalized Furanosyl or Cyclopentenyl or Cyclopentyl C-Ring. Journal of Organic Chemistry, 2008, 73, 8893-8900.	3.2	5
45	The Inhibition of Embryonic Histone Deacetylases as the Possible Mechanism Accounting for Axial Skeletal Malformations Induced by Sodium Salicylate. Toxicological Sciences, 2008, 104, 397-404.	3.1	20
46	Neuritin (cpg15) enhances the differentiating effect of NGF on neuronal PC12 cells. Journal of Neuroscience Research, 2007, 85, 2702-2713.	2.9	33
47	Boric acid inhibits embryonic histone deacetylases: A suggested mechanism to explain boric acid-related teratogenicity. Toxicology and Applied Pharmacology, 2007, 220, 178-185.	2.8	53
48	Tyrosine Nitration is a Novel Post-translational Modification Occurring on the Neural Intermediate Filament Protein Peripherin. Neurochemical Research, 2007, 32, 433-441.	3.3	22
49	Protein tyrosine nitration is associated with cold- and drug-resistant microtubules in neuronal-like PC12 cells. Neuroscience Letters, 2006, 401, 159-164.	2.1	20
50	Characterization of nitroproteome in neuron-like PC12 cells differentiated with nerve growth factor: Identification of two nitration sites in \hat{I} ±-tubulin. Proteomics, 2005, 5, 2422-2432.	2.2	49
51	The parkinsonism producing neurotoxin MPP+affects microtubule dynamics by acting as a destabilising factor. FEBS Letters, 2005, 579, 4781-4786.	2.8	68
52	The nitration of Ï" protein in neurone-like PC12 cells. FEBS Letters, 2004, 562, 35-39.	2.8	27
53	Protein tyrosine nitration is triggered by nerve growth factor during neuronal differentiation of PC12 cells. Experimental Cell Research, 2003, 288, 9-20.	2.6	47
54	MICROTUBULE ASSEMBLY IS DIRECTLY AFFECTED BY MPP+IN VITRO. Cell Biology International, 2001, 25, 981-984.	3.0	24

#	Article	IF	CITATIONS
55	Role of Microtubules in the Genesis of MPTP Neurotoxicity. , 2000, , 55-58.		2
56	Influence of MPP+ on the state of tubulin polymerisation in NGF-differentiated PC12 cells. , 1999, 56, 28-35.		42
57	APOPTOSIS IN HUMAN LUNG EPITHELIAL CELLS: TRIGGERING BY PARAQUAT AND MODULATION BY ANTIOXIDANTS. Cell Biology International, 1998, 22, 671-678.	3.0	56
58	The dipyridyls paraquat and diquat attenuate the interaction of G-actin with thymosin β4. FEBS Letters, 1998, 425, 495-498.	2.8	4
59	Involvement of tubulin in MPP+ neurotoxicity on NGF-differentiated PC12 cells Cell Biology International, 1995, 19, 687-694.	3.0	15
60	Actin filaments disassembly: A novel step in the genesis of paraquat toxicity?. Bulletin of Environmental Contamination and Toxicology, 1993, 50, 717-23.	2.7	5
61	N-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces cytoskeletal alterations on †Swiss 3T3' mouse fibroblasts. Neuroscience Letters, 1991, 129, 149-152.	2.1	16