
Wenrong Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7613806/publications.pdf Version: 2024-02-01

WENDONG XII

#	Article	IF	CITATIONS
1	MSC-Derived Extracellular Vesicle-Delivered L-PGDS Inhibit Gastric Cancer Progression by Suppressing Cancer Cell Stemness and STAT3 Phosphorylation. Stem Cells International, 2022, 2022, 1-12.	1.2	17
2	HucMSC-derived exosomes delivered BECN1 induces ferroptosis of hepatic stellate cells via regulating the xCT/GPX4 axis. Cell Death and Disease, 2022, 13, 319.	2.7	57
3	Mesenchymal Stem Cells and Their Small Extracellular Vesicles as Crucial Immunological Efficacy for Hepatic Diseases. Frontiers in Immunology, 2022, 13, .	2.2	9
4	Preconditioning and Engineering Strategies for Improving the Efficacy of Mesenchymal Stem Cell-Derived Exosomes in Cell-Free Therapy. Stem Cells International, 2022, 2022, 1-18.	1.2	38
5	Mesenchymal stem cells-derived small extracellular vesicles alleviate diabetic retinopathy by delivering NEDD4. Stem Cell Research and Therapy, 2022, 13, .	2.4	13
6	Extracellular vesicles: A bright star of nanomedicine. Biomaterials, 2021, 269, 120467.	5.7	179
7	Extracellular Vesicles: Novel Roles in Neurological Disorders. Stem Cells International, 2021, 2021, 1-16.	1.2	22
8	G6PD-NF-κB-HGF Signal in Gastric Cancer-Associated Mesenchymal Stem Cells Promotes the Proliferation and Metastasis of Gastric Cancer Cells by Upregulating the Expression of HK2. Frontiers in Oncology, 2021, 11, 648706.	1.3	16
9	Circular RNA CDR1as Inhibits the Metastasis of Gastric Cancer through Targeting miR-876-5p/GNG7 Axis. Gastroenterology Research and Practice, 2021, 2021, 1-13.	0.7	9
10	Extracellular vesicles as delivery systems at nano-/micro-scale. Advanced Drug Delivery Reviews, 2021, 179, 113910.	6.6	45
11	Implications of lymphatic alterations in the pathogenesis and treatment of inflammatory bowel disease. Biomedicine and Pharmacotherapy, 2021, 140, 111752.	2.5	23
12	Exosomes: Emerging Therapy Delivery Tools and Biomarkers for Kidney Diseases. Stem Cells International, 2021, 2021, 1-18.	1.2	22
13	Exosomes and Exosomal circRNAs: The Rising Stars in the Progression, Diagnosis and Prognosis of Gastric Cancer. Cancer Management and Research, 2021, Volume 13, 8121-8129.	0.9	6
14	Exosomes derived from hucMSC attenuate renal fibrosis through CK1Î/β-TRCP-mediated YAP degradation. Cell Death and Disease, 2020, 11, 327.	2.7	60
15	Exosomeâ€mediated effects and applications in inflammatory bowel disease. Biological Reviews, 2020, 95, 1287-1307.	4.7	89
16	HucMSCâ€exosomes carrying miRâ€326 inhibit neddylation to relieve inflammatory bowel disease in mice. Clinical and Translational Medicine, 2020, 10, e113.	1.7	79
17	The Achievements and Challenges of Mesenchymal Stem Cell-Based Therapy in Inflammatory Bowel Disease and Its Associated Colorectal Cancer. Stem Cells International, 2020, 2020, 1-18.	1.2	25
18	Human umbilical cord mesenchymal stem cell exosomes alleviate sepsis-associated acute kidney injury via regulating microRNA-146b expression. Biotechnology Letters, 2020, 42, 669-679.	1.1	62

WENRONG XU

#	Article	IF	CITATIONS
19	The Role of CDR1as in Proliferation and Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells. Stem Cells International, 2019, 2019, 1-11.	1.2	21
20	hucMSCs Attenuate IBD through Releasing miR148b-5p to Inhibit the Expression of 15-lox-1 in Macrophages. Mediators of Inflammation, 2019, 2019, 1-16.	1.4	19
21	Mesenchymal stem cell–gut microbiota interaction in the repair of inflammatory bowel disease: an enhanced therapeutic effect. Clinical and Translational Medicine, 2019, 8, 31.	1.7	50
22	Emerging Role of Mesenchymal Stem Cell-derived Exosomes in Regenerative Medicine. Current Stem Cell Research and Therapy, 2019, 14, 482-494.	0.6	105
23	PGD2/PTGDR2 Signaling Restricts the Self-Renewal and Tumorigenesis of Gastric Cancer. Stem Cells, 2018, 36, 990-1003.	1.4	64
24	MSC-exosome: A novel cell-free therapy for cutaneous regeneration. Cytotherapy, 2018, 20, 291-301.	0.3	191
25	HucMSC exosome-transported 14-3-3ζ prevents the injury of cisplatin to HK-2 cells by inducing autophagy in vitro. Cytotherapy, 2018, 20, 29-44.	0.3	37
26	Systematic Exposition of Mesenchymal Stem Cell for Inflammatory Bowel Disease and Its Associated Colorectal Cancer. BioMed Research International, 2018, 2018, 1-16.	0.9	33
27	Human Bone Marrow Mesenchymal Stem Cells Promote Gastric Cancer Growth via Regulating <i>c-Myc</i> . Stem Cells International, 2018, 2018, 1-11.	1.2	28
28	Human Umbilical Cord MSC-Derived Exosomes Suppress the Development of CCl ₄ -Induced Liver Injury through Antioxidant Effect. Stem Cells International, 2018, 2018, 1-11.	1.2	117
29	Human Mesenchymal Stem Cell Derived Exosomes Alleviate Type 2 Diabetes Mellitus by Reversing Peripheral Insulin Resistance and Relieving Î ² -Cell Destruction. ACS Nano, 2018, 12, 7613-7628.	7.3	287
30	Exosomal miRâ€423â€5p targets SUFU to promote cancer growth and metastasis and serves as a novel marker for gastric cancer. Molecular Carcinogenesis, 2018, 57, 1223-1236.	1.3	114
31	HucMSC exosomes-delivered 14-3-3ζ enhanced autophagy via modulation of ATG16L in preventing cisplatin-induced acute kidney injury. American Journal of Translational Research (discontinued), 2018, 10, 101-113.	0.0	33
32	Exosomes derived from human umbilical cord mesenchymal stem cells alleviate inflammatory bowel disease in mice through ubiquitination. American Journal of Translational Research (discontinued), 2018, 10, 2026-2036.	0.0	32
33	Engineering exosomes: a new direction for anticancer treatment. American Journal of Cancer Research, 2018, 8, 1332-1342.	1.4	24
34	hucMSC Exosome-Derived GPX1 Is Required for the Recovery of Hepatic Oxidant Injury. Molecular Therapy, 2017, 25, 465-479.	3.7	238
35	Human umbilical cord mesenchymal stem cells alleviate inflammatory bowel disease through the regulation of 15-LOX-1 in macrophages. Biotechnology Letters, 2017, 39, 929-938.	1.1	32
36	Pre-incubation with hucMSC-exosomes prevents cisplatin-induced nephrotoxicity by activating autophagy. Stem Cell Research and Therapy, 2017, 8, 75.	2.4	119

Wenrong Xu

#	Article	IF	CITATIONS
37	Exosomes Derived from <i>Akt</i> -Modified Human Umbilical Cord Mesenchymal Stem Cells Improve Cardiac Regeneration and Promote Angiogenesis via Activating Platelet-Derived Growth Factor D. Stem Cells Translational Medicine, 2017, 6, 51-59.	1.6	242
38	3,3′-Diindolylmethane stimulates exosomal Wnt11 autocrine signaling in human umbilical cord mesenchymal stem cells to enhance wound healing. Theranostics, 2017, 7, 1674-1688.	4.6	81
39	Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Relieve Inflammatory Bowel Disease in Mice. BioMed Research International, 2017, 2017, 1-12.	0.9	158
40	Exosomes from Human Umbilical Cord Mesenchymal Stem Cells: Identification, Purification, and Biological Characteristics. Stem Cells International, 2016, 2016, 1-11.	1.2	80
41	HucMSC Exosome-Delivered 14-3-3ζ Orchestrates Self-Control of the Wnt Response via Modulation of YAP During Cutaneous Regeneration. Stem Cells, 2016, 34, 2485-2500.	1.4	119
42	MicroRNA-146b, a Sensitive Indicator of Mesenchymal Stem Cell Repair of Acute Renal Injury. Stem Cells Translational Medicine, 2016, 5, 1406-1415.	1.6	32
43	Safety evaluation of exosomes derived from human umbilical cord mesenchymal stromal cell. Cytotherapy, 2016, 18, 413-422.	0.3	124
44	Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Relieve Acute Myocardial Ischemic Injury. Stem Cells International, 2015, 2015, 1-12.	1.2	197
45	Human Umbilical Cord Mesenchymal Stem Cell Exosomes Enhance Angiogenesis Through the Wnt4/β-Catenin Pathway. Stem Cells Translational Medicine, 2015, 4, 513-522.	1.6	353
46	HucMSC-Exosome Mediated-Wnt4 Signaling Is Required for Cutaneous Wound Healing. Stem Cells, 2015, 33, 2158-2168.	1.4	585
47	Pre-treatment of human umbilical cord-derived mesenchymal stem cells with interleukin-6 abolishes their growth-promoting effect on gastric cancer cells. International Journal of Molecular Medicine, 2015, 35, 367-375.	1.8	29
48	Culture medium of bone marrow-derived human mesenchymal stem cells effects lymphatic endothelial cells and tumor lymph vessel formation. Oncology Letters, 2015, 9, 1221-1226.	0.8	16
49	Exosomes in cancer: small particle, big player. Journal of Hematology and Oncology, 2015, 8, 83.	6.9	611
50	Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Research and Therapy, 2013, 4, 34.	2.4	529
51	Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Alleviate Liver Fibrosis. Stem Cells and Development, 2013, 22, 845-854.	1.1	716
52	5-Azacytidine Induces Cardiac Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells by Activating Extracellular Regulated Kinase. Stem Cells and Development, 2012, 21, 67-75.	1.1	124
53	Mesenchymal stem cells relieve fibrosis of <i>Schistosoma japonicum</i> -induced mouse liver injury. Experimental Biology and Medicine, 2012, 237, 585-592.	1.1	57
54	Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Letters, 2012, 315, 28-37.	3.2	403

Wenrong Xu

#	Article	IF	CITATIONS
55	Hepatocyte Growth Factor Modification Promotes the Amelioration Effects of Human Umbilical Cord Mesenchymal Stem Cells on Rat Acute Kidney Injury. Stem Cells and Development, 2011, 20, 103-113.	1.1	83
56	Mesenchymal stem cells derived from human umbilical cord ameliorate ischemia/reperfusion-induced acute renal failure in rats. Biotechnology Letters, 2010, 32, 725-732.	1.1	85
57	Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis and Rheumatism, 2010, 62, 2467-2475.	6.7	408
58	Mesenchymal stem cells from human umbilical cords ameliorate mouse hepatic injury <i>in vivo</i> . Liver International, 2009, 29, 356-365.	1.9	133
59	Human mesenchymal stem cells isolated from the umbilical cord. Cell Biology International, 2008, 32, 8-15.	1.4	195
60	Bone marrow mesenchymal stem cells ameliorate rat acute renal failure by differentiation into renal tubular epithelial-like cells. International Journal of Molecular Medicine, 2008, 22, 325-32.	1.8	106
61	Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Experimental and Molecular Pathology, 2006, 80, 267-274.	0.9	366