Andrés Juan Valdés

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7613537/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Macroscopic mechanical characterization of self-compacting recycled concrete mixed with natural lime filler. , 2022, , 303-322.		0
2	Biotreatments Using Microbial Mixed Cultures with Crude Glycerol and Waste Pinewood as Carbon Sources: Influence of Application on the Durability of Recycled Concrete. Materials, 2022, 15, 1181.	2.9	3
3	Effect of pores on the mechanical and durability properties on high strength recycled fine aggregate mortar. Case Studies in Construction Materials, 2022, 16, e01050.	1.7	7
4	A sustainable production of natural hydraulic lime mortars through bio-amendment. Construction and Building Materials, 2022, 340, 127812.	7.2	8
5	The past and future of sustainable concrete: A critical review and new strategies on cement-based materials. Journal of Cleaner Production, 2021, 281, 123558.	9.3	181
6	Mechanical and microstructural properties of recycled concretes mixed with ceramic recycled cement and secondary recycled aggregates. A viable option for future concrete. Construction and Building Materials, 2021, 270, 121455.	7.2	30
7	Use of Bioproducts Derived from Mixed Microbial Cultures Grown with Crude Glycerol to Protect Recycled Concrete Surfaces. Materials, 2021, 14, 2057.	2.9	1
8	Effect of Design Parameters on Compressive and Split Tensile Strength of Self-Compacting Concrete with Recycled Aggregate: An Overview. Applied Sciences (Switzerland), 2021, 11, 6028.	2.5	17
9	Sustainable cement mortar bioformulated with a bioproduct obtained from fermentation of biodiesel' crude glycerol. Journal of Cleaner Production, 2021, 313, 127885.	9.3	3
10	Normative review and necessary advances to promote the use of recycled aggregates and by-products in cement-based materials. , 2021, , 735-776.		3
11	Evaluation of Mechanical Characteristics of Cement Mortar with Fine Recycled Concrete Aggregates (FRCA). Sustainability, 2021, 13, 414.	3.2	19
12	Use of Mixed Microbial Cultures to Protect Recycled Concrete Surfaces: A Preliminary Study. Materials, 2021, 14, 6545.	2.9	1
13	Recycled Precast Concrete Kerbs and Paving Blocks, a Technically Viable Option for Footways. Materials, 2021, 14, 7007.	2.9	4
14	Influence of Design Parameters on Fresh Properties of Self-Compacting Concrete with Recycled Aggregate—A Review. Materials, 2020, 13, 5749.	2.9	14
15	Self-healing concrete with recycled aggregates. , 2020, , 355-383.		2
16	Thermal Performance of Concrete with Recycled Concrete Powder as Partial Cement Replacement and Recycled CDW Aggregate. Applied Sciences (Switzerland), 2020, 10, 4540.	2.5	22
17	Recycling Aggregates for Self-Compacting Concrete Production: A Feasible Option. Materials, 2020, 13, 868.	2.9	29
18	Effect of surface biotreatments on construction materials. Construction and Building Materials, 2020, 241, 118019.	7.2	11

#	Article	IF	CITATIONS
19	Mineralogical and mechanical characterization of rammed earth external renderings of the south of Portugal. Construction and Building Materials, 2019, 225, 1160-1169.	7.2	7
20	Influence of the use of External Carbon Fiber Reinforcement on the Flexural Behavior of Prismatic Concrete Test Specimens. An Application for Repairing of Deteriorated Agricultural Structures. Materials, 2019, 12, 1894.	2.9	1
21	Effect of red mud (bauxite residue) as cement replacement on the properties of self-compacting concrete incorporating various fillers. Journal of Cleaner Production, 2019, 240, 118213.	9.3	91
22	Use of Recycled Aggregates in Mortar. , 2019, , 143-179.		5
23	Fresh Concrete Properties. , 2019, , 181-218.		1
24	Strength Development of Concrete. , 2019, , 219-282.		1
25	Recycled Aggregate Concrete. , 2019, , 365-418.		14
26	Paving with Precast Concrete Made with Recycled Mixed Ceramic Aggregates: A Viable Technical Option for the Valorization of Construction and Demolition Wastes (CDW). Materials, 2019, 12, 24.	2.9	20
27	Properties and Composition of Recycled Aggregates. , 2019, , 89-141.		9
28	Water absorption and electrical resistivity of concrete with recycled concrete aggregates and fly ash. Cement and Concrete Composites, 2019, 95, 169-182.	10.7	204
29	Construction and demolition waste. , 2019, , 1-22.		11
30	Mechanical and microstructural characterization of non-structural precast concrete made with recycled mixed ceramic aggregates from construction and demolition wastes. Journal of Cleaner Production, 2018, 180, 482-493.	9.3	55
31	Life cycle assessment of concrete made with high volume of recycled concrete aggregates and fly ash. Resources, Conservation and Recycling, 2018, 139, 407-417.	10.8	175
32	Proportioning, fresh-state properties and rheology of self-compacting concrete with fine recycled aggregates. Hormigon Y Acero, 2018, 69, 213-221.	0.2	12
33	Proportioning, Microstructure and Fresh Properties of Self-compacting Concrete with Recycled Sand. Procedia Engineering, 2017, 171, 645-657.	1.2	27
34	Shrinkage and creep performance of concrete with recycled aggregates from CDW plants. Magazine of Concrete Research, 2017, 69, 974-995.	2.0	37
35	Compared environmental and economic impact from cradle to gate of concrete with natural and recycled coarse aggregates. Journal of Cleaner Production, 2017, 162, 529-543.	9.3	177
36	Fracture energy of coarse recycled aggregate concrete using the wedge splitting test method: influence of water-reducing admixtures. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	3.1	24

Andrés Juan Valdés

#	Article	IF	CITATIONS
37	Quality improvement of mixed and ceramic recycled aggregates by biodeposition of calcium carbonate. Construction and Building Materials, 2017, 154, 1015-1023.	7.2	53
38	Mechanical Performance Evaluation of Self-Compacting Concrete with Fine and Coarse Recycled Aggregates from the Precast Industry. Materials, 2017, 10, 904.	2.9	51
39	Upscaling the Use of Mixed Recycled Aggregates in Non-Structural Low Cement Concrete. Materials, 2016, 9, 91.	2.9	10
40	Porosity and pore size distribution in recycled concrete. Magazine of Concrete Research, 2015, 67, 1214-1221.	2.0	7
41	Porosity and pore size distribution in recycled concrete. Magazine of Concrete Research, 2015, 67, 1214-1221.	2.0	14
42	Ceramic ware waste as coarse aggregate for structural concrete production. Environmental Technology (United Kingdom), 2015, 36, 3050-3059.	2.2	27
43	Effect of mixed recycled aggregates on mechanical properties of recycled concrete. Magazine of Concrete Research, 2015, 67, 247-256.	2.0	38
44	Overview regarding construction and demolition waste in Spain. Environmental Technology (United) Tj ETQq0 (0 0 rgBT /C)verlock 10 Tf
45	Study of the rheology of self-compacting concrete with fine recycled concrete aggregates. Construction and Building Materials, 2015, 96, 491-501.	7.2	147
46	Maximum feasible use of recycled sand from construction and demolition waste for eco-mortar production – Part-I: ceramic masonry waste. Journal of Cleaner Production, 2015, 87, 692-706.	9.3	116
47	Using fine recycled concrete aggregate for mortar production. Materials Research, 2014, 17, 168-177.	1.3	120
48	Pre-Saturation Technique of the Recycled Aggregates: Solution to the Water Absorption Drawback in the Recycled Concrete Manufacture. Materials, 2014, 7, 6224-6236.	2.9	72
49	Quality Assessment of Mixed and Ceramic Recycled Aggregates from Construction and Demolition Wastes in the Concrete Manufacture According to the Spanish Standard. Materials, 2014, 7, 5843-5857.	2.9	24
50	Characterization of Colliery Spoils in León: Potential Uses in Rural Infrastructures. Geotechnical and Geological Engineering, 2014, 32, 439-452.	1.7	8
51	Influence of water-reducing admixtures on the mechanical performance of recycled concrete. Journal of Cleaner Production, 2013, 59, 93-98.	9.3	173
52	Recycled Aggregate in Concrete. Green Energy and Technology, 2013, , .	0.6	99
53	Physical–chemical and mineralogical characterization of fine aggregates from construction and demolition waste recycling plants. Journal of Cleaner Production, 2013, 52, 438-445.	9.3	163

54The Influence of Slate Waste Activation Conditions on Mineralogical Changes and Pozzolanic3.82254Behavior. Journal of the American Ceramic Society, 2013, 96, 2276-2282.3.822

#	Article	IF	CITATIONS
55	Microstructural Characterization of Concrete Prepared with Recycled Aggregates. Microscopy and Microanalysis, 2013, 19, 1222-1230.	0.4	43
56	Standardization as a Driving Force of the use of Recycled Coarse Aggregate in Concrete. Advanced Materials Research, 2013, 742, 371-378.	0.3	0
57	Influence of Moisture States of Recycled Coarse Aggregates on the Slump Test. Advanced Materials Research, 2013, 742, 379-383.	0.3	10
58	Influence of construction and demolition waste management on the environmental impact of buildings. Waste Management, 2012, 32, 532-541.	7.4	201
59	Incorporation of fine concrete aggregates in mortars. Construction and Building Materials, 2012, 36, 960-968.	7.2	128
60	Testing concrete made with cork powder and steel fibres. Scientific Research and Essays, 2012, 7, 3974-3982.	0.4	2
61	Scientific Aspects of Kaolinite Based Coal Mining Wastes in Pozzolan/ <scp><scp>Ca(OH)₂</scp> System. Journal of the American Ceramic Society, 2012, 95, 386-391.</scp>	3.8	65
62	Effect of activated coal mining wastes on the properties of blended cement. Cement and Concrete Composites, 2012, 34, 678-683.	10.7	117
63	Influence of the pre-saturation of recycled coarse concrete aggregates on concrete properties. Magazine of Concrete Research, 2011, 63, 617-627.	2.0	264
64	Mechanical characterisation of traditional adobes from the north of Spain. Construction and Building Materials, 2011, 25, 3020-3023.	7.2	50
65	Estado actual de la gestión de residuos de construcción y demolición: limitaciones. Informes De La Construccion, 2011, 63, 89-95.	0.3	12
66	Caracterización de los hormigones realizados con áridos reciclados procedentes de la industria de cerámica sanitaria. Materiales De Construccion, 2011, 61, 533-546.	0.7	26
67	Eco-efficient concretes: The effects of using recycled ceramic material from sanitary installations on the mechanical properties of concrete. Waste Management, 2009, 29, 643-646.	7.4	121
68	Structural concrete with incorporation of coarse recycled concrete and ceramic aggregates: durability performance. Materials and Structures/Materiaux Et Constructions, 2009, 42, 663-675.	3.1	201
69	Eco-efficient Concretes: Impact of the Use of White Ceramic Powder on the Mechanical Properties of Concrete. Biosystems Engineering, 2007, 96, 559-564.	4.3	84
70	Effects of Environmental Temperature Changes on Steel Silos. Biosystems Engineering, 2006, 94, 229-238.	4.3	11
71	Establishing stress state of cylindrical metal silos using finite element method: Comparison with ENV 1993. Thin-Walled Structures, 2006, 44, 1192-1200.	5.3	12
72	Eurocode 1-6 in buckling calculation of agricultural steel silos. Informes De La Construccion, 2002, 54, .	0.3	0

5