Eric Le Bourhis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7613505/publications.pdf

Version: 2024-02-01

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Mechanical properties of hybrid organic–inorganic materials. Journal of Materials Chemistry, 2005, 15, 3787.	6.7	445
2	Crystallographic and structural transformations of sedimentary chalcedony in flint upon heat treatment. Journal of Archaeological Science, 2012, 39, 135-144.	2.4	91
3	Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films. Journal of Applied Physics, 2005, 98, 023715.	2.5	87
4	Characterization and residual stresses of WC–Co thermally sprayed coatings. Surface and Coatings Technology, 2008, 202, 4560-4565.	4.8	78
5	Study of texture effect on elastic properties of Au thin films by X-ray diffraction and in situ tensile testing. Acta Materialia, 2006, 54, 4503-4513.	7.9	67
6	Structural and mechanical properties of IBAD deposited nanocomposite Ti–Ni–N coatings. Surface and Coatings Technology, 2006, 200, 6298-6302.	4.8	57
7	Measurement of the elastic constants of textured anisotropic thin films from x-ray diffraction data. Applied Physics Letters, 2003, 83, 473-475.	3.3	52
8	Mechanical properties of hard AlCrN-based coated substrates. Surface and Coatings Technology, 2009, 203, 2961-2968.	4.8	50
9	Elaboration and mechanical characterization of nanocomposites thin films. Journal of the European Ceramic Society, 2006, 26, 259-266.	5.7	49
10	The influence of annealing treatments on the properties of Ag:TiO2 nanocomposite films prepared by magnetron sputtering. Applied Surface Science, 2012, 258, 4028-4034.	6.1	49
11	Transmission electron microscopy observations of low-load indents in GaAs. Philosophical Magazine Letters, 1999, 79, 805-812.	1.2	46
12	Development of a synchrotron biaxial tensile device for in situ characterization of thin films mechanical response. Review of Scientific Instruments, 2010, 81, 103903.	1.3	45
13	Fatigue behavior of AA7075-T6 aluminum alloy coated with ZrN by PVD. International Journal of Fatigue, 2008, 30, 1220-1230.	5.7	44
14	Plastic deformation of Ill–V semiconductorsunder concentrated load. Progress in Crystal Growth and Characterization of Materials, 2003, 47, 1-43.	4.0	43
15	Magnetron sputtered Ti–Si–C thin films prepared at low temperatures. Surface and Coatings Technology, 2007, 201, 7180-7186.	4.8	43
16	Elaboration and mechanical characterization of nanocomposites thin films. Journal of the European Ceramic Society, 2006, 26, 267-272.	5.7	41
17	<i>In situ</i> diffraction strain analysis of elastically deformed polycrystalline thin films, and micromechanical interpretation. Journal of Applied Crystallography, 2009, 42, 1073-1084.	4.5	41
18	Hardness properties and high-temperature wear behavior of nitrided AISI D2 tool steel, prior and after PAPVD coating. Wear, 2009, 267, 1452-1461.	3.1	41

#	Article	IF	Citations
19	Combined synchrotron X-ray and image-correlation analyses of biaxially deformed W/Cu nanocomposite thin films on Kapton. Journal of Applied Crystallography, 2011, 44, 1071-1079.	4.5	38
20	Temperature dependence of the mechanical behaviour of a GeAsSe glass. Scripta Materialia, 2001, 45, 317-323.	5.2	36
21	Indentation-induced crystallization and phase transformation of amorphous germanium. Journal of Applied Physics, 2004, 96, 1464-1468.	2.5	36
22	Elastic anisotropy of polycrystalline Au films: Modeling and respective contributions of X-ray diffraction, nanoindentation and Brillouin light scattering. Acta Materialia, 2010, 58, 4998-5008.	7.9	36
23	Depth-sensing indentation modeling for determination of Elastic modulus of thin films. Mechanics of Materials, 2010, 42, 166-174.	3. 2	35
24	Synchrotron X-ray diffraction experiments with a prototype hybrid pixel detector. Journal of Applied Crystallography, 2012, 45, 38-47.	4.5	34
25	Mechanical Properties of SiO2-PMMA Based Hybrid Organic-Inorganic Thin Films. Journal of Sol-Gel Science and Technology, 2003, 26, 413-417.	2.4	33
26	Indentation response of glass with temperature. Journal of Non-Crystalline Solids, 2003, 316, 153-159.	3.1	33
27	Indentation of glass as a function of temperature. Journal of Non-Crystalline Solids, 2000, 272, 34-38.	3.1	32
28	Elastic-strain distribution in metallic film-polymer substrate composites. Applied Physics Letters, 2010, 96, 041905.	3.3	31
29	Study on Young's modulus of thin films on Kapton by microtensile testing combined with dual DIC system. Surface and Coatings Technology, 2016, 308, 273-279.	4.8	31
30	Material flow under an indentor in indium phosphide. Journal of Materials Science, 1996, 31, 6571-6576.	3.7	30
31	Measurement of thin film elastic constants by X-ray diffraction. Thin Solid Films, 2004, 469-470, 201-205.	1.8	28
32	Determination of elastic constants of a fiber-textured gold film by combining synchrotron x-ray diffraction andin situtensile testing. Journal of Applied Physics, 2005, 98, 093511.	2.5	28
33	X-ray diffraction analysis of the structure and residual stresses of W/Cu multilayers. Surface and Coatings Technology, 2006, 201, 4372-4376.	4.8	28
34	Influence of the O/C ratio in the behaviour of TiCxOy thin films. Surface and Coatings Technology, 2007, 201, 5587-5591.	4.8	28
35	Yield surface of polycrystalline thin films as revealed by non-equibiaxial loadings at small deformation. Acta Materialia, 2013, 61, 5067-5077.	7.9	27
36	Subsurface deformations induced by a Vickers indenter in GaAs/AlGaAs superlattice. Journal of Materials Science Letters, 2002, 21, 401-404.	0.5	25

#	Article	IF	CITATIONS
37	Nanoindentation of GaAs compliant substrates. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2000, 80, 2899-2911.	0.6	24
38	ZrO _{<i>x</i>} N _{<i>y</i>} decorative thin films prepared by the reactive gas pulsing process. Journal Physics D: Applied Physics, 2009, 42, 195501.	2.8	24
39	Effect of spraying distance on the microstructure and mechanical properties of a Colmonoy 88 alloy deposited by HVOF thermal spraying. Surface and Coatings Technology, 2010, 205, 1799-1806.	4.8	24
40	Mechanical properties of carbon nanotube–PMMA based hybrid coatings: the importance of surface chemistry. RSC Advances, 2012, 2, 2462.	3.6	23
41	Properties of MoNxOy thin films as a function of the N/O ratio. Thin Solid Films, 2006, 494, 201-206.	1.8	22
42	Copper coverage effect on tungsten crystallites texture development in W/Cu nanocomposite thin films. Journal of Applied Physics, 2011, 109, 014305.	2.5	22
43	Nano-scale residual stress depth profiling in Cu/W nano-multilayers as a function of magnetron sputtering pressure. Surface and Coatings Technology, 2020, 381, 125142.	4.8	22
44	ORMOSIL Thin Films:Â Tuning Mechanical Properties via a Nanochemistry Approach. Langmuir, 2006, 22, 11158-11162.	3 . 5	21
45	Elastic behavior of polycrystalline thin films inferred from in situ micromechanical testing and modeling. Applied Physics Letters, 2006, 89, 061911.	3 . 3	21
46	The influence of structure changes in the properties of TiCxOy decorative thin films. Thin Solid Films, 2007, 515, 5424-5429.	1.8	21
47	Carbon nanotube–poly(methyl methacrylate) hybrid films: Preparation using diazonium salt chemistry and mechanical properties. Journal of Colloid and Interface Science, 2014, 433, 115-122.	9.4	21
48	Indentation mechanics and its application to thin film characterization. Vacuum, 2008, 82, 1353-1359.	3.5	20
49	Structure and Mechanical Properties of Mesostructured Functional Hybrid Coatings Based on Anisotropic Nanoparticles Dispersed in Poly(hydroxylethyl methacrylate). Chemistry of Materials, 2008, 20, 4602-4611.	6.7	20
50	Deformation modes of nanostructured thin film under controlled biaxial deformation. Thin Solid Films, 2013, 530, 30-34.	1.8	20
51	Controlled nanostructuration of polycrystalline tungsten thin films. Journal of Applied Physics, 2013, 113, .	2.5	20
52	Structure-mechanical function relations at nano-scale in heat-affected human dental tissue. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 32, 113-124.	3.1	20
53	Effect of water ageing on nanoindentation response of single hemp yarn/epoxy composites. Composites Part A: Applied Science and Manufacturing, 2016, 84, 216-223.	7.6	20
54	Indentation-induced deformations of GaAs(011) at a high temperature. Philosophical Magazine, 2003, 83, 1653-1673.	1.6	19

#	Article	IF	Citations
55	Elastic–plastic resistance profile of PBII nitrided titanium. Scripta Materialia, 2004, 51, 899-903.	5.2	19
56	Benefits of two-dimensional detectors for synchrotron X-ray diffraction studies of thin film mechanical behavior. Journal of Applied Crystallography, 2008, 41, 1076-1088.	4.5	19
57	Evolution of the functional properties of titanium–silver thin films for biomedical applications: Influence of in-vacuum annealing. Surface and Coatings Technology, 2015, 261, 262-271.	4.8	19
58	Improved nitridation efficiency and mechanical property of stainless steel surface after N2–H2 plasma nitridation at low temperature. Materials Letters, 2002, 56, 76-79.	2.6	18
59	Polarity-induced changes in the nanoindentation response of GaAs. Journal of Materials Research, 2004, 19, 131-136.	2.6	18
60	Effect of thermal treatments on the structure of MoNxOy thin films. Vacuum, 2008, 82, 1428-1432.	3.5	18
61	Effect of TiAlN PVD coatings on corrosion performance of WC–6%Co. Surface Engineering, 2010, 26, 562-566.	2.2	18
62	Comparative study of the mechanical properties of nanostructured thin films on stretchable substrates. Journal of Applied Physics, 2014, 116 , .	2.5	18
63	Low-load deformation of InP under contact loading; comparison with GaAs. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2002, 82, 1953-1961.	0.6	17
64	The effect of bombarding conditions on the properties of multifunctional Ti–C–O thin films grown by magnetron sputtering. Surface and Coatings Technology, 2007, 202, 946-951.	4.8	17
65	Strain transfer through film-substrate interface and surface curvature evolution during a tensile test. Applied Surface Science, 2018, 434, 771-780.	6.1	17
66	Deformations induced by a Vickers indentor in InP at room temperature. EPJ Applied Physics, 2000, 12, 31-36.	0.7	16
67	Indentation punching through thin (011) InP. Journal of Materials Science, 2004, 39, 943-949.	3.7	16
68	Optimization and thermal stability of TiAlN/Mo multilayers. Surface and Coatings Technology, 2005, 200, 288-292.	4.8	16
69	X-ray diffraction study of thermal stress relaxation in ZnO films deposited by magnetron sputtering. Thin Solid Films, 2010, 519, 1563-1567.	1.8	16
70	Time dependence of the indentation behavior of hybrid coatings. Journal of Non-Crystalline Solids, 2004, 345-346, 610-614.	3.1	15
71	Room-Temperature Plasticity of InAs. Physica Status Solidi A, 2000, 179, 153-158.	1.7	14
72	In-depth deformation of InP under a Vickers indentor. Journal of Materials Science, 2001, 36, 1343-1347.	3.7	14

#	Article	IF	Citations
73	TEM-nanoindentation studies of semiconducting structures. Micron, 2007, 38, 377-389.	2.2	14
74	Probing the deformation and fracture properties of Cu/W nano-multilayers by in situ SEM and synchrotron XRD strain microscopy. Surface and Coatings Technology, 2017, 320, 158-167.	4.8	14
75	Structure of nanoindentations in heavily n- and p-doped (001) GaAs. Acta Materialia, 2008, 56, 1417-1426.	7.9	13
76	Evaluation of the surface bonding energy of an InP membrane bonded oxide-free to Si using instrumented nanoindentation. Applied Physics Letters, 2013, 103, 081901.	3.3	13
77	Twist-bonded compliant substrates for III–V semiconductors heteroepitaxy. Applied Surface Science, 2001, 178, 134-139.	6.1	12
78	Absolute determination of the asymmetry of the in-plane deformation of GaAs (001). Journal of Applied Physics, 2004, 95, 3984-3987.	2.5	12
79	Elastic behaviour of titanium dioxide films on polyimide substrates studied by in situ tensile testing in a X-ray diffractometer. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 365-369.	1.4	12
80	Structure-Property Relationships in Arapaima Gigas Scales Revealed by Nanoindentation Tests. Polymers and Polymer Composites, 2014, 22, 369-374.	1.9	12
81	<i>In situ</i> monitoring of X-ray strain pole figures of a biaxially deformed ultra-thin film on a flexible substrate. Journal of Applied Crystallography, 2014, 47, 181-187.	4.5	12
82	Stress-Assisted Thermal Diffusion Barrier Breakdown in Ion Beam Deposited Cu/W Nano-Multilayers on Si Substrate Observed by <i>in Situ</i> GISAXS and Transmission EDX. ACS Applied Materials & Interfaces, 2021, 13, 6795-6804.	8.0	12
83	Third-order elastic constants determination in soda–lime–silica glass by Brillouin scattering. Journal of Non-Crystalline Solids, 1999, 260, 235-241.	3.1	11
84	Non-linear solid solution strengthening of InGaAs alloy. Journal of Materials Science Letters, 2001, 20, 43-45.	0.5	11
85	Solid-solution strengthening in ordered InxGa1 â^' xP alloys. Philosophical Magazine Letters, 2004, 84, 373-381.	1.2	11
86	Mechanical response of wall-patterned GaAs surface. Acta Materialia, 2005, 53, 1907-1912.	7.9	11
87	Sin2 Ï^ analysis in thin films using 2D detectors: Non-linearity due to set-up, stress state and microstructure. Thin Solid Films, 2013, 530, 25-29.	1.8	11
88	Deformations of (011) GaAs under concentrated load. Journal of Materials Science Letters, 2001, 20, 1361-1364.	0.5	10
89	Vickers indentation of thin GaAs (001) samples. Philosophical Magazine, 2004, 84, 3281-3298.	1.6	10
90	Structural and mechanical studies of Fe-Cr thin films deposited by ion-beam sputtering. EPJ Applied Physics, 2005, 30, 33-39.	0.7	10

#	Article	IF	Citations
91	Characterization and modelling of the elastic properties of nano-structured W/Cu multilayers. Thin Solid Films, 2007, 516, 320-324.	1.8	10
92	Correlation Between Processing and Properties of Titanium Oxycarbide, TiCxOy, Thin Films. Plasma Processes and Polymers, 2007, 4, S83-S88.	3.0	10
93	X-ray diffraction analysis of thermally-induced stress relaxation in ZnO films deposited by magnetron sputtering on (100) Si substrates. Thin Solid Films, 2010, 518, 5237-5241.	1.8	10
94	Material Flow at the Surface of Indented Indium Phosphide. Physica Status Solidi A, 1997, 161, 415-427.	1.7	9
95	Effects of annealing on structure of GaAs(001) nanoindentations. Philosophical Magazine Letters, 2003, 83, 149-158.	1.2	8
96	Elastic properties of polycrystalline gold thin films: Simulation and X-ray diffraction experiments. Surface and Coatings Technology, 2006, 201, 4300-4304.	4.8	8
97	Controlled biaxial deformation of nanostructured W/Cu thin films studied by X-ray diffraction. Surface and Coatings Technology, 2010, 205, 1420-1425.	4.8	8
98	Ti–Si–C Thin Films Produced by Magnetron Sputtering: Correlation Between Physical Properties, Mechanical Properties and Tribological Behavior. Journal of Nanoscience and Nanotechnology, 2010, 10, 2926-2932.	0.9	8
99	Deposition of ultra-thin gold film on in situ loaded polymeric substrate for compression tests. Materials Letters, 2012, 73, 99-102.	2.6	8
100	Mastering the biaxial stress state in nanometric thin films on flexible substrates. Applied Surface Science, 2014, 306, 70-74.	6.1	8
101	In situ thermal residual stress evolution in ultrathin ZnO and Ag films studied by synchrotron x-ray diffraction. Thin Solid Films, 2011, 520, 1390-1394.	1.8	7
102	Structure-stress-resistivity relationship in WTi alloy ultra-thin and thin films prepared by magnetron sputtering. Journal of Applied Physics, 2013, 113, 213504.	2.5	7
103	Phase transition signature on elastic constants in Al1-xCrxNy ternary alloys thin films. Applied Physics Letters, 2013, 103, 041601.	3.3	7
104	Real-time curvature and optical spectroscopy monitoring of magnetron-sputtered WTi alloy thin films. Surface and Coatings Technology, 2013, 237, 112-117.	4.8	6
105	Stress evaluation in thin films: Micro-focus synchrotron X-ray diffraction combined with focused ion beam patterning for do evaluation. Thin Solid Films, 2013, 549, 245-250.	1.8	6
106	An ultra-thin SiO2 ALD layer for void-free bonding of Ill–V material on silicon. Microelectronic Engineering, 2016, 162, 40-44.	2.4	6
107	Cyclic testing of thin Ni films on a pre-tensile compliant substrate. Materials Science & Description of the Cyclic testing of thin Ni films on a pre-tensile compliant substrate. Materials Science & Description of the Cyclic testing of thin Ni films on a pre-tensile compliant substrate. Materials Science & Description of the Cyclic testing of the Cyc	5.6	6
108	Low-load deformation of InP under contact loading; comparison with GaAs. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2002, 82, 1953-1961.	0.6	5

#	Article	IF	Citations
109	TEM study of the indentation behaviour of thin Au film on GaAs. Thin Solid Films, 2004, 460, 150-155.	1.8	5
110	Polarity influence on the indentation punching of thin $\{111\}$ GaAs foils at elevated temperatures. Journal Physics D: Applied Physics, 2005, 38, 1140-1147.	2.8	5
111	X-ray strain analysis of {111} fiber-textured thin films independent of grain-interaction models. Journal of Applied Crystallography, 2011, 44, 409-413.	4.5	5
112	Oxide-Free Bonding of III-V-Based Material on Silicon and Nano-Structuration of the Hybrid Waveguide for Advanced Optical Functions. Photonics, 2015, 2, 1054-1064.	2.0	5
113	Mode I fracture toughness determination in Cu/W nano-multilayers on polymer substrate by SEM - Digital Image Correlation. Journal of the Mechanics and Physics of Solids, 2020, 145, 104145.	4.8	5
114	Plastic behaviour of an AlAs/GaAs superlattice with a short period. Philosophical Magazine Letters, 2001, 81, 223-231.	1.2	4
115	Plasticity of misoriented (001) GaAs surface. Journal of Materials Science Letters, 2003, 22, 565-567.	0.5	4
116	Indentation deformation of thin $\{111\}$ GaAs and InSb foils: influence of polarity. Philosophical Magazine Letters, 2005, 85, 1-12.	1.2	4
117	Nanoindentation response of a single micrometer-sized GaAs wall. Applied Physics Letters, 2005, 86, 163107.	3.3	4
118	Mechanical properties and size effect in nanometric W/Cu multilayers. Materials Research Society Symposia Proceedings, 2005, 875, 1.	0.1	4
119	Nanoindentation response of compound semiconductors. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 3002-3009.	0.8	4
120	Small scale mechanical properties of polycrystalline materials: in situ diffraction studies. International Journal of Nanotechnology, 2008, 5, 609.	0.2	4
121	Contact response of ceramics. Comptes Rendus - Mecanique, 2011, 339, 466-472.	2.1	4
122	Influence of Structure and Organicâ€Inorganic Phase Interactions on Coating Mechanical Properties in the Ternary Goethite:Poly(HEMA):Silica System. European Journal of Inorganic Chemistry, 2012, 2012, 2675-2683.	2.0	4
123	Heteroepitaxial bonding of Si for hybrid photonic devices. Materials Research Society Symposia Proceedings, 2013, 1510, 1.	0.1	4
124	Exploring the mechanical properties of hard botanical structures of two tropical plants. Bioinspired, Biomimetic and Nanobiomaterials, 2016, 5, 96-105.	0.9	4
125	Elastic property determination of nanostructured W/Cu multilayer films on a flexible substrate. Acta Mechanica Sinica/Lixue Xuebao, 2019, 35, 1210-1216.	3.4	4
126	Extrinsic Measurement of Carbon Black Aggregate Distribution within a Fluoroelastomer Matrix from Nanoindentation Experiments. ACS Applied Materials & Samp; Interfaces, 2020, 12, 6716-6726.	8.0	4

#	Article	lF	Citations
127	Instrumented indentation of an elastomeric material, protocol and application to vulcanization gradient. Polymer Testing, 2020, 81, 106278.	4.8	4
128	Mechanical Properties of Natural Fiber Composites. , 2021, , 135-148.		4
129	Surfaces et interfaces – Indentation, rayages et abrasion. Materiaux Et Techniques, 2005, 93, 185-185.	0.9	4
130	Comportements mécaniques sous indentation. Materiaux Et Techniques, 2015, 103, 601.	0.9	4
131	Mechanical Properties of Thin Films and Nanometric Multilayers Using Tensile Testing and Synchrotron X-Ray Diffraction. Plasma Processes and Polymers, 2007, 4, 311-317.	3.0	3
132	Size effects on the Mechanical Behavior of Nanometric W/Cu Multilayers. Materials Research Society Symposia Proceedings, 2008, 1086, 1.	0.1	3
133	Micromechanical Modeling of the Elastic Behavior of Multilayer Thin Films; Comparison with In Situ Data from X-Ray Diffraction. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2009, , 99-108.	0.2	3
134	Residual stresses in AlCrN PVD thin films. EPJ Web of Conferences, 2010, 6, 26002.	0.3	3
135	X-ray elastic response of metallic thin film supported by polyimide substrates. Journal of Strain Analysis for Engineering Design, 2011, 46, 639-649.	1.8	3
136	Non-equibiaxial deformation of W/Cu nanocomposite thin films on stretchable substrate: Effect of loading path. Thin Solid Films, 2013, 549, 239-244.	1.8	3
137	Locally measuring the adhesion of InP directly bonded on sub-100 nm patterned Si. Nanotechnology, 2016, 27, 115707.	2.6	3
138	Hybrid piezochromic coatings for impact detection on composite substrates for aeronautic. Materials Letters, 2019, 253, 140-143.	2.6	3
139	Mechanical properties of PVD Al _{1â^'<i>x</i>} Cr _{<i>x</i>} N thin films. Materiaux Et Techniques, 2011, 99, 239-244.	0.9	3
140	Nanoindentation investigation of solid-solution strengthening in III-V semiconductor alloys. International Journal of Materials Research, 2005, 96, 1237-1241.	0.8	3
141	Indentation : fondamentaux et développements. Materiaux Et Techniques, 2017, 105, 101.	0.9	3
142	Nanoindentation investigation of solid-solution strengthening in III-V semiconductor alloys. International Journal of Materials Research, 2022, 96, 1237-1241.	0.3	3
143	Controlled crack propagation in alumina ceramic grinding wheel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 278, 255-260.	5.6	2
144	In-depth structure of rosette arms in indium phosphide. , 2000, 19, 167-168.		2

#	Article	IF	Citations
145	Plasticity of GaAs(011) at room temperature under concentrated load. Philosophical Magazine Letters, 2001, 81, 527-535.	1.2	2
146	Onset of plasticity in a \hat{l}_{Σ} = 5 GaAs compliant structure. Philosophical Magazine Letters, 2001, 81, 813-822.	1.2	2
147	Influence of the twist angle on the plasticity of the GaAs compliant substrates realized by wafer bonding. Journal of Physics Condensed Matter, 2002, 14, 12967-12974.	1.8	2
148	Strength Enhancement of Compensated Strained InP/AIP Superlattice. Physica Status Solidi A, 2002, 189, 175-181.	1.7	2
149	Improvement of heteroepitaxial growth by the use of twist-bonded compliant substrate: Role of the surface plasticity. Journal of Electronic Materials, 2003, 32, 861-867.	2.2	2
150	Polarity influence on the nanoindentation response of GaAs. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 2004-2009.	0.8	2
151	Strains, Stresses and Elastic Properties in Polycrystalline Metallic Thin Films: In Situ Deformation Combined with X-Ray Diffraction and Simulation Experiments. Materials Science Forum, 2006, 524-525, 735-740.	0.3	2
152	Study of texture effect on elastic properties of Au thin films by x-ray diffraction and Brillouin light scattering. Journal of Physics: Conference Series, 2007, 92, 012170.	0.4	2
153	Enhanced Mechanical Properties in Organofluorosilica Thin Films. Journal of Nanomaterials, 2008, 2008, 1-5.	2.7	2
154	Nanoindentation response of a thin InP membrane. Journal Physics D: Applied Physics, 2008, 41, 074003.	2.8	2
155	Structure of annealed nanoindentations in n- and p-doped (001)GaAs. Journal of Applied Physics, 2009, 106, .	2.5	2
156	Time resolved synchrotron x-ray strain measurements of gold thin film on flexible substrate. Thin Solid Films, 2011, 520, 1603-1607.	1.8	2
157	Structure and Mechanical Properties of AlCrN Thin Films Deposited by Magnetron Sputtering. Materials Science Forum, 2011, 695, 182-185.	0.3	2
158	X-ray elastic strain analysis of compressed Au thin film on polymer substrate. Surface and Coatings Technology, 2013, 215, 322-326.	4.8	2
159	Relationship between Nitrogen Content and Mechanical Properties in Al _{1-x} Cr _x N _y Thin Films. Materials Science Forum, 0, 761, 165-170.	0.3	2
160	Structure–Diffusion Relationship of Magnetron-Sputtered WTi Barriers Used in Indium Interconnections. Journal of Electronic Materials, 2014, 43, 641-647.	2.2	2
161	Instrumented nanoindentation and scanning electron transmission microscopy applied to the study of the adhesion of InP membranes heteroepitaxially bonded to Si. EPJ Applied Physics, 2014, 65, 20702.	0.7	2
162	Nano-structuration effect on the mechanical behavior of gold thin films studied by 2D synchrotron x-ray diffraction. Surface and Coatings Technology, 2016, 308, 418-423.	4.8	2

#	Article	IF	Citations
163	Controlled Dislocations Injection in N/P $Hg1\hat{a}^{\circ}$ 'xCdxTe Photodiodes by Indentations. Journal of Electronic Materials, 2019, 48, 6108-6112.	2.2	2
164	Development of a cryogenic indentation tool with in situ optical observation, application to the mechanical characterization of Il–VI semiconductors. Semiconductor Science and Technology, 2021, 36, 035015.	2.0	2
165	Investigation of the Plasticity of InP as a Function of Temperature. Journal De Physique III, 1995, 5, 1795-1801.	0.3	2
166	Influence des contraintes résiduelles et de la texture sur les propriétés mécaniques de films minces de Cr élaborés par pulvérisation cathodique RF. Materiaux Et Techniques, 2013, 101, 307.	0.9	2
167	Polarity-induced changes in the nanoindentation response of GaAs. Journal of Materials Research, 2004, 19, 131-136.	2.6	2
168	Controlling Thermal Diffusivity, Residual Stress and Texture in W/Cu Nano-Multilayers by Magnetron Chamber Pressure Variation. SSRN Electronic Journal, 0, , .	0.4	2
169	Indentation : techniques expérimentales et modélisation multiéchelle. Materiaux Et Techniques, 2019, 107, 204.	0.9	2
170	Plasticity of GaAs compliant substructures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 309-310, 478-482.	5.6	1
171	Evolution under annealing and nitrogen implantation of the mechanical properties of amorphous carbon films. Thin Solid Films, 2005, 482, 318-323.	1.8	1
172	Elastic behavior of fibre-textured gold films by combining synchrotron X-ray diffraction and in-situ tensile testing. Materials Research Society Symposia Proceedings, 2005, 875, 1.	0.1	1
173	Doping influence on the nanoindentation response of GaAs. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1841-1846.	0.8	1
174	Indentation of Ceramics, Some Highlights. Materials Science Forum, 2010, 662, 77-83.	0.3	1
175	Stored elastic energy influence on the elastic–plastic transition of GaAs structures. Journal of Materials Research, 2012, 27, 177-181.	2.6	1
176	Composition and Face Polarity Influences on Mechanical Properties of (111) Cd1â^yZnyTe Determined by Indentation. Journal of Electronic Materials, 2019, 48, 6985-6990.	2.2	1
177	Analytical multi-step homogenization methodology for a stack of thin films in microelectronics. , 2020, , .		1
178	Measuring the surface bonding energy: A comparison between the classical double-cantilever beam experiment and its nanoscale analog. AIP Advances, 2020, 10, 045006.	1.3	1
179	Extraction des proprietes mecaniques locales d'un elastomere par nanoindentation : developpement des protocoles et application. Materiaux Et Techniques, 2017, 105, 109.	0.9	1
180	Transformation de phase dans un film de germanium amorphe induite par nano-indentation. Materiaux Et Techniques, 2005, 93, 257-262.	0.9	1

#	Article	IF	CITATIONS
181	Apport de la nanoindentation à l'étude des propriétés mécaniques d'une interface textile/caouto Materiaux Et Techniques, 2015, 103, 608.	:ho.yc.	1
182	An indentation method to measure the CRSS of semiconducting materials at elevated temperature. Materials Science & Discretized Processing, 2005, 400-401, 451-455.	5.6	0
183	Conservative indentation flow throughout thin (011) InP foils. Journal of Materials Science, 2005, 40, 3809-3811.	3.7	0
184	Deviation of the mechanical response of Wall-patterned (001) GaAs Surface: a central-plastic-zone criterion. Materials Research Society Symposia Proceedings, 2005, 904, 1.	0.1	0
185	Indentation Crystallization and Phase Transformation of Amorphous Germanium. Materials Research Society Symposia Proceedings, 2005, 904, 1.	0.1	O
186	X-ray Diffraction Study of the Mechanical Elastic Properties of Nanometric W/Cu Multilayers. Materials Research Society Symposia Proceedings, 2006, 977, 1.	0.1	0
187	Mechanical response of a single and released InP membrane. Materials Research Society Symposia Proceedings, 2007, 1049, 1.	0.1	O
188	Mechanical Behavior of Functional Hybrid Coating Based on Anisotropic Iron Oxide Nanoparticles. Materials Research Society Symposia Proceedings, 2007, 1007, 1.	0.1	0
189	Study of Elastic Behavior of Metallic Thin Films by 2D Synchrotron XRD and in situ Tensile Testing. Materials Research Society Symposia Proceedings, 2007, 1027, 1.	0.1	O
190	Development of a Biaxial Tensile Module at Synchrotron Beamline for the Study of Mechanical Properties of Nanostructured Films. Materials Research Society Symposia Proceedings, 2009, 1224, 1.	0.1	0
191	Preface: Phys. Status Solidi C 6/8. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1797-1799.	0.8	O
192	Nanoindentation-induced structural phase transformations in crystalline and amorphous germanium. International Journal of Nano and Biomaterials, 2009, 2, 91.	0.1	0
193	Mechanical characterization of nanostructured thin films at different scales. EPJ Web of Conferences, 2010, 6, 26003.	0.3	O
194	X-ray strain analysis in thin films enhanced by 2D detection. EPJ Web of Conferences, 2010, 6, 26008.	0.3	0
195	Measurement of applied strains in thin films deposited onto polymer by synchrotron X-ray diffraction. Procedia Engineering, 2011, 10, 2701-2706.	1.2	О
196	Thermal Residual Stress Relaxation in Sputtered ZnO Film on (100) Si Substrate Studied <i>In Situ</i> by Synchrotron X-Ray Diffraction. Materials Science Forum, 0, 681, 127-132.	0.3	0
197	Nanostructured Materials. Advanced Engineering Materials, 2012, 14, 941-941.	3.5	O
198	Growth, structure and properties of magnetron sputtered ultra-thin WTi films. Materials Research Society Symposia Proceedings, 2013, 1580, 1.	0.1	0

#	Article	IF	CITATIONS
199	Time-Resolved X-Ray Stress Analysis in Multilayered Thin Films during Continuous Loading: Use of 2D Remote Detection. Advanced Materials Research, 0, 996, 878-883.	0.3	0
200	Wafer bonding of Si for hybrid photonic devices. Materials Research Society Symposia Proceedings, 2014, 1748, 1.	0.1	0
201	Plasticity and Fracture of InP/Si Substructures. Materials Science Forum, 0, 783-786, 1628-1633.	0.3	0
202	Electrical transport across the heterointerface of InP membranes bonded oxide-free on Si. , 2014, , .		0
203	Peculiar effective elastic anisotropy of nanometric multilayers studied by surface Brillouin scattering. Superlattices and Microstructures, 2015, 88, 551-560.	3.1	0
204	Local probing of the interfacial strength in InP/Si substructures. MRS Advances, 2016, 1, 779-784.	0.9	0
205	(Invited) Locally Measuring the Adhesion of InP Membranes Directly Bonded on Silicon. ECS Transactions, 2016, 75, 169-176.	0.5	o
206	Mechanical Properties of Polymer-Based Hybrid Films: Tailoring the Hybrid Interface Using Soft Chemistry. Materials Science Forum, 2016, 879, 1063-1067.	0.3	0
207	Materials characterisation and modelling on the small scale. Materials Science and Technology, 2018, 34, 1529-1530.	1.6	o
208	Indentation behaviour of (011) thin films of Ill–V semiconductors: polarity effect differences between GaAs and InP. International Journal of Materials Research, 2006, 97, 1230-1234.	0.3	0
209	Comportements mécaniques : approches expérimentales et modélisations à différentes échelles. Materiaux Et Techniques, 2015, 103, 301.	0.9	o
210	Machine biaxiale sur la ligne de lumiÃ"re Diffabs pour l'étude des propriétés mécaniques de films min déposés sur substrats polymÃ"res. Materiaux Et Techniques, 2015, 103, 610.	ces 0.9	0
211	Le FloatÂ: un procédé révolutionnaire. Materiaux Et Techniques, 2016, 104, 201.	0.9	O
212	Some cautions when applying nanoindentation tests on a fluoroelastomer: Experimental researches and application., 2017,, 191-196.		0
213	Large angle twist-bonded compliant substrates for the epitaxy of lattice mismatched III-V semiconductors., 2018,, 193-196.		O
214	<i>Note de correction</i> àꀉ: Machine biaxiale sur la ligne de lumière Diffabs pour l'étude des propriét mécaniques de films minces déposés sur substrats polymères. Materiaux Et Techniques, 2018, 106, 207.	és 0.9	0
215	Fatigue behavior evaluation using instrumented indentation. , 2019, , 429-434.		О
216	Indentation behaviour of (011) thin films of III–V semiconductors: polarity effect differences between GaAs and InP. International Journal of Materials Research, 2022, 97, 1230-1234.	0.3	0