Patricia D Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7613296/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Urinary exosome proteomic profiling defines stage-specific rapid progression of autosomal dominant polycystic kidney disease and tolvaptan efficacy. BBA Advances, 2021, 1, 100013.	1.6	4
2	Chronic activation of AMP-activated protein kinase leads to early-onset polycystic kidney phenotype. Clinical Science, 2021, 135, 2393-2408.	4.3	8
3	Collecting duct cells show differential retinoic acid responses to acute versus chronic kidney injury stimuli. Scientific Reports, 2020, 10, 16683.	3.3	4
4	Atmin modulates Pkhd1 expression and may mediate Autosomal Recessive Polycystic Kidney Disease (ARPKD) through altered non-canonical Wnt/Planar Cell Polarity (PCP) signalling. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 378-390.	3.8	14
5	FP042ATMIN MODULATES PKHD1 EXPRESSION AND THROUGH ALTERED NON-CANONICAL WNT/PLANAR CELL POLARITY (PCP) SIGNALLING MEDIATES ARPKD SEVERITY. Nephrology Dialysis Transplantation, 2018, 33, i61-i61.	0.7	0
6	Polycystic Kidney Disease with Hyperinsulinemic Hypoglycemia Caused by a Promoter Mutation in Phosphomannomutase 2. Journal of the American Society of Nephrology: JASN, 2017, 28, 2529-2539.	6.1	99
7	Novel biomarkers in kidney disease: roles for cilia, Wnt signalling and ATMIN in polycystic kidney disease. Biochemical Society Transactions, 2016, 44, 1745-1751.	3.4	6
8	Therapeutic targets for polycystic kidney disease. Expert Opinion on Therapeutic Targets, 2016, 20, 35-45.	3.4	5
9	Urine MicroRNA as Potential Biomarkers of Autosomal Dominant Polycystic Kidney Disease Progression: Description of miRNA Profiles at Baseline. PLoS ONE, 2014, 9, e86856.	2.5	86
10	Corrigendum to "PRKX critically regulates endothelial cell proliferation, migration, and vascular-like structure formation―[Dev. Biol. 356 (2011) 475–485]. Developmental Biology, 2013, 381, 502.	2.0	0
11	Retinoic Acid Receptor-Dependent, Cell-Autonomous, Endogenous Retinoic Acid Signaling and Its Target Genes in Mouse Collecting Duct Cells. PLoS ONE, 2012, 7, e45725.	2.5	15
12	Epidermal growth factor-mediated proliferation and sodium transport in normal and PKD epithelial cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1301-1313.	3.8	52
13	Receptor protein tyrosine phosphatases are novel components of a polycystin complex. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1225-1238.	3.8	18
14	Molecular Mechanisms of Polycystic Kidney Disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1201.	3.8	6
15	PRKX critically regulates endothelial cell proliferation, migration, and vascular-like structure formation. Developmental Biology, 2011, 356, 475-485.	2.0	23
16	Apico-basal polarity in polycystic kidney disease epithelia. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1239-1248.	3.8	90
17	c-Src inactivation reduces renal epithelial cell-matrix adhesion, proliferation, and cyst formation. American Journal of Physiology - Cell Physiology, 2011, 301, C522-C529.	4.6	57
18	EGF and its related growth factors mediate sodium transport in mpkCCD _{c14} cells via ErbB2 (neu/HERâ€2) receptor. Journal of Cellular Physiology, 2010, 223, 252-259.	4.1	22

#	Article	IF	CITATIONS
19	Abnormalities in focal adhesion complex formation, regulation, and function in human autosomal recessive polycystic kidney disease epithelial cells. American Journal of Physiology - Cell Physiology, 2010, 298, C831-C846.	4.6	34
20	Activator of G Protein Signaling 3 Promotes Epithelial Cell Proliferation in PKD. Journal of the American Society of Nephrology: JASN, 2010, 21, 1275-1280.	6.1	52
21	Polycystic kidney disease protein fibrocystin localizes to the mitotic spindle and regulates spindle bipolarity. Human Molecular Genetics, 2010, 19, 3306-3319.	2.9	35
22	Carboxy Terminal Tail of Polycystin-1 Regulates Localization of TSC2 to Repress mTOR. PLoS ONE, 2010, 5, e9239.	2.5	86
23	EGF and its related growth factors mediate sodium transport in mpkCCD c14 cells via ErbB2 (neu/HERâ€⊋) receptor. FASEB Journal, 2010, 24, 611.1.	0.5	0
24	Protein kinase-X interacts with Pin-1 and Polycystin-1 during mouse kidney development. Kidney International, 2009, 76, 54-62.	5.2	14
25	In Vitro Methods in Renal Research. , 2009, , 379-396.		2
26	Pathways of apoptosis in human autosomal recessive and autosomal dominant polycystic kidney diseases. Pediatric Nephrology, 2008, 23, 1473-1482.	1.7	23
27	Protein kinase X (PRKX) can rescue the effects of polycystic kidney disease-1 gene (PKD1) deficiency. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2008, 1782, 1-9.	3.8	21
28	Mechanoregulation of intracellular Ca2+ in human autosomal recessive polycystic kidney disease cyst-lining renal epithelial cells. American Journal of Physiology - Renal Physiology, 2008, 294, F890-F899.	2.7	33
29	Chapter 6 Mouse Models of Polycystic Kidney Disease. Current Topics in Developmental Biology, 2008, 84, 311-350.	2.2	74
30	Cystic Disease of the Kidney. Annual Review of Pathology: Mechanisms of Disease, 2007, 2, 341-368.	22.4	68
31	Mouse Embryonic Stem Cell–Derived Embryoid Bodies Generate Progenitors That Integrate Long Term into Renal Proximal Tubules In Vivo. Journal of the American Society of Nephrology: JASN, 2007, 18, 1709-1720.	6.1	145
32	Heterozygous Pkd1 mutation induces abnormal EGFR signaling. FASEB Journal, 2007, 21, A504.	0.5	0
33	Inhibition of HER-2(neu/ErbB2) restores normal function and structure to polycystic kidney disease (PKD) epithelia. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 647-655.	3.8	72
34	Branching morphogenesis of the ureteric epithelium during kidney development is coordinated by the opposing functions of GDNF and Sprouty1. Developmental Biology, 2006, 299, 466-477.	2.0	141
35	Stem cells and kidney injury. Current Opinion in Nephrology and Hypertension, 2006, 15, 238-244.	2.0	13
36	Stable Knockdown of Polycystin-1 Confers Integrin-α2β1–Mediated Anoikis Resistance. Journal of the American Society of Nephrology: JASN, 2006, 17, 3049-3058.	6.1	41

#	Article	IF	CITATIONS
37	Role of Ubiquitin-Like Protein FAT10 in Epithelial Apoptosis in Renal Disease. Journal of the American Society of Nephrology: JASN, 2006, 17, 996-1004.	6.1	75
38	Protein Kinase X Activates Ureteric Bud Branching Morphogenesis in Developing Mouse Metanephric Kidney. Journal of the American Society of Nephrology: JASN, 2005, 16, 3543-3552.	6.1	20
39	Sprouty1 Is a Critical Regulator of GDNF/RET-Mediated Kidney Induction. Developmental Cell, 2005, 8, 229-239.	7.0	327
40	Disruption of polycystin-1 function interferes with branching morphogenesis of the ureteric bud in developing mouse kidneys. Developmental Biology, 2005, 286, 16-30.	2.0	28
41	The Autosomal Recessive Polycystic Kidney Disease Protein Is Localized to Primary Cilia, with Concentration in the Basal Body Area. Journal of the American Society of Nephrology: JASN, 2004, 15, 592-602.	6.1	149
42	A plethora of epidermal growth factor–like proteins in polycystic kidneys. Kidney International, 2004, 65, 2441-2442.	5.2	10
43	Polycystic Kidney Disease. New England Journal of Medicine, 2004, 350, 151-164.	27.0	736
44	Polycystic kidney disease: new understanding in the pathogenesis. International Journal of Biochemistry and Cell Biology, 2004, 36, 1868-1873.	2.8	131
45	The Receptor Tyrosine Kinase Regulator Sprouty1 Is a Target of the Tumor Suppressor WT1 and Important for Kidney Development. Journal of Biological Chemistry, 2003, 278, 41420-41430.	3.4	72
46	Na Transport in Autosomal Recessive Polycystic Kidney Disease (ARPKD) Cyst Lining Epithelial Cells. Journal of the American Society of Nephrology: JASN, 2003, 14, 827-836.	6.1	49
47	Towards Understanding the Polycystins. Nephron Experimental Nephrology, 2003, 93, e9-e17.	2.2	22
48	PRKX, a phylogenetically and functionally distinct cAMP-dependent protein kinase, activates renal epithelial cell migration and morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9260-9265.	7.1	48
49	Expression of the urate transporter/channel is developmentally regulated in human kidneys. American Journal of Physiology - Renal Physiology, 2001, 281, F875-F886.	2.7	16
50	Microcyst Formation and HIV-1 Gene Expression Occur in Multiple Nephron Segments in HIV-Associated Nephropathy. Journal of the American Society of Nephrology: JASN, 2001, 12, 2645-2651.	6.1	65
51	Polycystin. Journal of the American Society of Nephrology: JASN, 2001, 12, 834-845.	6.1	110
52	Apical Plasma Membrane Mispolarization of NaK-ATPase in Polycystic Kidney Disease Epithelia Is Associated with Aberrant Expression of the β2 Isoform. American Journal of Pathology, 2000, 156, 253-268.	3.8	89
53	Modification of the composition of polycystin-1 multiprotein complexes by calcium and tyrosine phosphorylation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2000, 1535, 21-35.	3.8	89
54	Expression of the β2-subunit and apical localization of Na ⁺ -K ⁺ -ATPase in metanephric kidney. American Journal of Physiology - Renal Physiology, 1999, 277, F391-F403.	2.7	27

#	Article	IF	CITATIONS
55	WT1 expression induces features of renal epithelial differentiation in mesenchymal fibroblasts. Oncogene, 1999, 18, 417-427.	5.9	47
56	Identification of Phosphorylation Sites in the PKD1-Encoded Protein C-Terminal Domain. Biochemical and Biophysical Research Communications, 1999, 259, 356-363.	2.1	53
57	Cystic Diseases of the Kidney: Role of Adhesion Molecules in Normal and Abnormal Tubulogenesis. Nephron Experimental Nephrology, 1999, 7, 114-124.	2.2	45
58	ATP Release Mechanisms in Primary Cultures of Epithelia Derived from the Cysts of Polycystic Kidneys. Journal of the American Society of Nephrology: JASN, 1999, 10, 218-229.	6.1	108
59	Functional Defects in Lysosomal Enzymes in Autosomal Dominant Polycystic Kidney Disease (ADPKD): Abnormalities in Synthesis, Molecular Processing, Polarity, and Secretion. Biochemical and Molecular Medicine, 1997, 60, 8-26.	1.4	17
60	Acidic FGF Regulation of Hyperproliferation of Fibroblasts in Human Autosomal Dominant Polycystic Kidney Disease. Biochemical and Molecular Medicine, 1997, 61, 178-191.	1.4	26
61	Abnormalities in Extracellular Matrix Regulation in Autosomal Dominant Polycystic Kidney Disease. Contributions To Nephrology, 1996, 118, 126-134.	1.1	23
62	Renal proximal tubular epithelium from patients with nephropathic cystinosis: Immortalized cell lines as in vitro model systems. Kidney International, 1995, 48, 536-543.	5.2	58
63	A putative Wilms tumor-secreted growth factor activity required for primary culture of human nephroblasts Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 6066-6070.	7.1	22
64	Abnormal extracellular matrix and excessive growth of human adult polycystic kidney disease epithelia. Journal of Cellular Physiology, 1992, 150, 360-369.	4.1	94
65	Monolayer cultures of microdissected renal tubule epithelial segments. Cytotechnology, 1991, 13, 137-142.	0.3	16
66	A new method for studying human polycystic kidney disease epithelia in culture. Kidney International, 1986, 30, 371-378.	5.2	107