
## Alexey Karpechko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7613228/publications.pdf Version: 2024-02-01



ALEVEN KARDECHKO

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Attribution of polar warming to humanÂinfluence. Nature Geoscience, 2008, 1, 750-754.                                                                                                                                             | 5.4 | 222       |
| 2  | Seasonal winter forecasts and the stratosphere. Atmospheric Science Letters, 2016, 17, 51-56.                                                                                                                                     | 0.8 | 159       |
| 3  | Northern winter climate change: Assessment of uncertainty in CMIP5 projections related to<br>stratosphere-troposphere coupling. Journal of Geophysical Research D: Atmospheres, 2014, 119,<br>7979-7998.                          | 1.2 | 131       |
| 4  | The Role of the Stratosphere in Subseasonal to Seasonal Prediction: 2. Predictability Arising From<br>Stratosphereâ€Troposphere Coupling. Journal of Geophysical Research D: Atmospheres, 2020, 125,<br>e2019JD030923.            | 1.2 | 119       |
| 5  | Predictability of downward propagation of major sudden stratospheric warmings. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 1459-1470.                                                                       | 1.0 | 118       |
| 6  | Stratosphereâ€ŧroposphere coupling and annular mode variability in chemistry limate models. Journal<br>of Geophysical Research, 2010, 115, .                                                                                      | 3.3 | 107       |
| 7  | Predicting Sudden Stratospheric Warming 2018 and Its Climate Impacts With a Multimodel Ensemble.<br>Geophysical Research Letters, 2018, 45, 13,538.                                                                               | 1.5 | 95        |
| 8  | The Climateâ€system Historical Forecast Project: do stratosphereâ€resolving models make better seasonal<br>climate predictions in boreal winter?. Quarterly Journal of the Royal Meteorological Society, 2016,<br>142, 1413-1427. | 1.0 | 91        |
| 9  | Observed and modeled tropospheric cold anomalies associated with sudden stratospheric warmings.<br>Journal of Geophysical Research D: Atmospheres, 2016, 121, 1591-1610.                                                          | 1.2 | 81        |
| 10 | The Role of the Stratosphere in Subseasonal to Seasonal Prediction: 1. Predictability of the Stratosphere. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030920.                                              | 1.2 | 78        |
| 11 | Stratospheric influence on tropospheric climate change in the Northern Hemisphere. Journal of<br>Geophysical Research, 2012, 117, .                                                                                               | 3.3 | 61        |
| 12 | Predictability of Sudden Stratospheric Warmings in the ECMWF Extended-Range Forecast System.<br>Monthly Weather Review, 2018, 146, 1063-1075.                                                                                     | 0.5 | 61        |
| 13 | Revisiting the Mystery of Recent Stratospheric Temperature Trends. Geophysical Research Letters, 2018, 45, 9919-9933.                                                                                                             | 1.5 | 51        |
| 14 | Effects of the tropospheric largeâ€scale circulation on European winter temperatures during the period of amplified Arctic warming. International Journal of Climatology, 2020, 40, 509-529.                                      | 1.5 | 43        |
| 15 | A model study of tropospheric impacts of the Arctic ozone depletion 2011. Journal of Geophysical<br>Research D: Atmospheres, 2014, 119, 7999-8014.                                                                                | 1.2 | 41        |
| 16 | Sub-seasonal Predictability and the Stratosphere. , 2019, , 223-241.                                                                                                                                                              |     | 41        |
| 17 | Attribution of observed changes in stratospheric ozone and temperature. Atmospheric Chemistry and Physics, 2011, 11, 599-609.                                                                                                     | 1.9 | 40        |
| 18 | Mesosphere-to-stratosphere descent of odd nitrogen in February–March 2009 after sudden<br>stratospheric warming. Atmospheric Chemistry and Physics, 2011, 11, 4645-4655.                                                          | 1.9 | 39        |

ALEXEY KARPECHKO

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Spaceâ€Based Observations for Understanding Changes in the Arcticâ€Boreal Zone. Reviews of Geophysics,<br>2020, 58, e2019RG000652.                                                                    | 9.0 | 39        |
| 20 | Predictability of European winter 2015/2016. Atmospheric Science Letters, 2017, 18, 38-44.                                                                                                            | 0.8 | 35        |
| 21 | Constraining Future Summer Austral Jet Stream Positions in the CMIP5 Ensemble by Process-Oriented<br>Multiple Diagnostic Regression*. Journal of Climate, 2016, 29, 673-687.                          | 1.2 | 33        |
| 22 | Climate Impacts of the Southern Annular Mode Simulated by the CMIP3 Models. Journal of Climate, 2009, 22, 3751-3768.                                                                                  | 1.2 | 32        |
| 23 | Variability of the Northern Hemisphere polar stratospheric cloud potential: the role of North Pacific disturbances. Quarterly Journal of the Royal Meteorological Society, 2009, 135, 1020-1029.      | 1.0 | 32        |
| 24 | Stratospheric influence on circulation changes in the Southern Hemisphere troposphere in coupled climate models. Geophysical Research Letters, 2008, 35, .                                            | 1.5 | 30        |
| 25 | Southern Hemisphere atmospheric circulation response to the El Chichón and Pinatubo eruptions in coupled climate models. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 1813-1822. | 1.0 | 27        |
| 26 | Influence of ozone recovery and greenhouse gas increases on Southern Hemisphere circulation.<br>Journal of Geophysical Research, 2010, 115, .                                                         | 3.3 | 27        |
| 27 | Improving Antarctic Total Ozone Projections by a Process-Oriented Multiple Diagnostic Ensemble Regression. Journals of the Atmospheric Sciences, 2013, 70, 3959-3976.                                 | 0.6 | 27        |
| 28 | Sensitivity of the southern annular mode to greenhouse gas emission scenarios. Climate Dynamics, 2012, 38, 563-572.                                                                                   | 1.7 | 26        |
| 29 | Constraining Uncertainties in CMIP5 Projections of September Arctic Sea Ice Extent with Observations. Journal of Climate, 2020, 33, 1487-1503.                                                        | 1.2 | 26        |
| 30 | Skilful seasonal predictions of Baltic Sea ice cover. Environmental Research Letters, 2015, 10, 044007.                                                                                               | 2.2 | 24        |
| 31 | Long-range prediction and the stratosphere. Atmospheric Chemistry and Physics, 2022, 22, 2601-2623.                                                                                                   | 1.9 | 24        |
| 32 | Impact of stratospheric variability on tropospheric climate change. Climate Dynamics, 2010, 34, 399-417.                                                                                              | 1.7 | 23        |
| 33 | Uncertainties in future climate attributable to uncertainties in future Northern Annular Mode trend.<br>Geophysical Research Letters, 2010, 37, .                                                     | 1.5 | 23        |
| 34 | Seasonal Forecasts of the Exceptional Northern Hemisphere Winter of 2020. Geophysical Research<br>Letters, 2020, 47, e2020GL090328.                                                                   | 1.5 | 23        |
| 35 | The Polar Vortex and Extreme Weather: The Beast from the East in Winter 2018. Atmosphere, 2020, 11,<br>664.                                                                                           | 1.0 | 22        |
| 36 | Mixed Layer Temperature Response to the Southern Annular Mode: Mechanisms and Model<br>Representation. Journal of Climate, 2010, 23, 664-678.                                                         | 1.2 | 20        |

ALEXEY KARPECHKO

| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Improvements in statistical forecasts of monthly and twoâ€monthly surface air temperatures using a stratospheric predictor. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 2444-2456.                                                        | 1.0 | 18        |
| 38 | The link between springtime total ozone and summer UV radiation in Northern Hemisphere extratropics. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8649-8661.                                                                                      | 1.2 | 16        |
| 39 | Nonlinear Response of the Stratosphere and the North Atlanticâ€European Climate to Global Warming.<br>Geophysical Research Letters, 2018, 45, 4255-4263.                                                                                                        | 1.5 | 15        |
| 40 | Arctic Stratosphere Dynamical Response to Global Warming. Journal of Climate, 2017, 30, 7071-7086.                                                                                                                                                              | 1.2 | 14        |
| 41 | Quantitative assessment of Southern Hemisphere ozone in chemistry-climate model simulations.<br>Atmospheric Chemistry and Physics, 2010, 10, 1385-1400.                                                                                                         | 1.9 | 13        |
| 42 | The Influence of Eurasian Snow Extent on the Northern Extratropical Stratosphere in a QBO<br>Resolving Model. Journal of Geophysical Research D: Atmospheres, 2018, 123, 315-328.                                                                               | 1.2 | 13        |
| 43 | Statistical Learning Methods as a Basis for Skillful Seasonal Temperature Forecasts in Europe. Journal of Climate, 2019, 32, 5363-5379.                                                                                                                         | 1.2 | 11        |
| 44 | Atmospheric Circulation Response to Anomalous Siberian Forcing in October 2016 and its Longâ€Range<br>Predictability. Geophysical Research Letters, 2019, 46, 2800-2810.                                                                                        | 1.5 | 10        |
| 45 | Mechanisms and predictability of sudden stratospheric warming in winterÂ2018. Weather and Climate Dynamics, 2020, 1, 657-674.                                                                                                                                   | 1.2 | 8         |
| 46 | Variability of water vapour in the Arctic stratosphere. Atmospheric Chemistry and Physics, 2016, 16, 4307-4321.                                                                                                                                                 | 1.9 | 7         |
| 47 | Sensitivity of QBO teleconnection to model circulation biases. Quarterly Journal of the Royal<br>Meteorological Society, 2021, 147, 2147-2159.                                                                                                                  | 1.0 | 7         |
| 48 | Enhanced Stratosphere/Troposphere Coupling During Extreme Warm Stratospheric Events with Strong Polar-Night Jet Oscillation. Atmosphere, 2018, 9, 467.                                                                                                          | 1.0 | 6         |
| 49 | Siberian Snow Forcing in a Dynamically Bias-Corrected Model. Journal of Climate, 2020, 33, 10455-10467.                                                                                                                                                         | 1.2 | 6         |
| 50 | Estimation of water-vapor and ozone transport in the upper troposphere-lower stratosphere and<br>fluxes through the tropopause during the field campaign at the Sodankyla station (Finland). Izvestiya -<br>Atmospheric and Oceanic Physics, 2009, 45, 294-301. | 0.2 | 5         |
| 51 | Sudden stratospheric warmings during El Niño and La Niña: sensitivity to atmospheric model biases.<br>Weather and Climate Dynamics, 2022, 3, 45-58.                                                                                                             | 1.2 | 5         |
| 52 | Stratosphere–troposphere coupling enhances subseasonal predictability of Northern Eurasian cold spells. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 2769-2783.                                                                            | 1.0 | 5         |
| 53 | Influence of the Ural High on Air Temperatures over Eastern Europe and Northern China during<br>Extended Winter. Journal of Climate, 2022, 35, 1309-1325.                                                                                                       | 1.2 | 4         |
| 54 | Minimal impact of model biases on Northern Hemisphere El Niño–Southern Oscillation<br>teleconnections. Weather and Climate Dynamics, 2021, 2, 913-925.                                                                                                          | 1.2 | 3         |

| #  | Article                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | International regulations have paused a jet-stream shift in the Southern Hemisphere. Nature, 2020, 579, 500-501.                                                               | 13.7 | 3         |
| 56 | A Minimal Model to Diagnose the Contribution of the Stratosphere to Tropospheric Forecast Skill.<br>Journal of Geophysical Research D: Atmospheres, 2021, 126, .               | 1.2  | 3         |
| 57 | Linking uncertainty in simulated Arctic ozone loss to uncertainties in modelled tropical stratospheric water vapour. Atmospheric Chemistry and Physics, 2018, 18, 15047-15067. | 1.9  | 1         |