Torbjørn Haugaasen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7612997/publications.pdf

Version: 2024-02-01

59 papers 2,986 citations

30 h-index 53 g-index

61 all docs

61 docs citations

times ranked

61

3012 citing authors

#	Article	IF	CITATIONS
1	Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecology Letters, 2002, 6, 6-8.	6.4	197
2	Mammal assemblage structure in Amazonian flooded and unflooded forests. Journal of Tropical Ecology, 2005, 21, 133-145.	1.1	169
3	Effects of ground fires on understorey bird assemblages in Amazonian forests. Biological Conservation, 2002, 105, 157-169.	4.1	155
4	Tree Phenology in Adjacent Amazonian Flooded and Unflooded Forests 1. Biotropica, 2005, 37, 620-630.	1.6	150
5	Floristic, edaphic and structural characteristics of flooded and unflooded forests in the lower Rio Purðs region of central Amazonia, Brazil. Acta Amazonica, 2006, 36, 25-35.	0.7	149
6	Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism. Nature Climate Change, 2014, 4, 503-507.	18.8	142
7	Primate assemblage structure in amazonian flooded and unflooded forests. American Journal of Primatology, 2005, 67, 243-258.	1.7	136
8	Vertebrate responses to fruit production in Amazonian flooded and unflooded forests. Biodiversity and Conservation, 2007, 16, 4165-4190.	2.6	126
9	Impacts of wildlife trade on terrestrial biodiversity. Nature Ecology and Evolution, 2021, 5, 540-548.	7.8	99
10	Phyllostomid Bat Assemblage Structure in Amazonian Flooded and Unflooded Forests. Biotropica, 2014, 46, 312-321.	1.6	92
11	Interspecific primate associations in Amazonian flooded and unflooded forests. Primates, 2009, 50, 239-251.	1.1	90
12	Vertebrate responses to surface wildfires in a central Amazonian forest. Oryx, 2003, 37, .	1.0	85
13	Patterns of tree diversity and composition in Amazonian floodplain paleoâ€várzea forest. Journal of Vegetation Science, 2015, 26, 312-322.	2.2	78
14	EDITOR'S CHOICE: Surrounding habitats mediate the tradeâ€off between landâ€sharing and landâ€sparing agriculture in the tropics. Journal of Applied Ecology, 2014, 51, 1337-1346.	4.0	77
15	Terrestrial Activity in Pitheciins (<i><scp>C</scp>acajao</i> , <i><scp>C</scp>hiropotes</i> , and) Tj ETQq1 1 0.2	784314 rg 	BT_/Overlock
16	Effects of hydroperiod and substrate properties on tree alpha diversity and composition in Amazonian floodplain forests. Plant Ecology, 2015, 216, 41-54.	1.6	70
17	Surface wildfires in central Amazonia: short-term impact on forest structure and carbon loss. Forest Ecology and Management, 2003, 179, 321-331.	3.2	69
18	Seed dispersal of the Brazil nut tree (Bertholletia excelsa) by scatter-hoarding rodents in a central Amazonian forest. Journal of Tropical Ecology, 2010, 26, 251-262.	1.1	63

#	Article	IF	CITATIONS
19	Minimizing the biodiversity impact of Neotropical oil palm development. Global Change Biology, 2015, 21, 1531-1540.	9.5	60
20	Land-Sparing Agriculture Best Protects Avian Phylogenetic Diversity. Current Biology, 2015, 25, 2384-2391.	3.9	55
21	Age and Growth Patterns of Brazil Nut Trees (<i>Bertholletia excelsa</i> Bonpl.) in Amazonia, Brazil. Biotropica, 2015, 47, 550-558.	1.6	53
22	Extreme thermal heterogeneity in structurally complex tropical rain forests. Biotropica, 2017, 49, 35-44.	1.6	47
23	Landâ€sparing agriculture sustains higher levels of avian functional diversity than land sharing. Global Change Biology, 2019, 25, 1576-1590.	9.5	46
24	Flood pulse dynamics affects exploitation of both aquatic and terrestrial prey by Amazonian floodplain settlements. Biological Conservation, 2016, 201, 129-136.	4.1	44
25	Optimizing carbon storage and biodiversity protection in tropical agricultural landscapes. Global Change Biology, 2014, 20, 2162-2172.	9.5	43
26	Tropical secondary forest regeneration conserves high levels of avian phylogenetic diversity. Biological Conservation, 2017, 209, 432-439.	4.1	43
27	Thermally buffered microhabitats recovery in tropical secondary forests following land abandonment. Biological Conservation, 2016, 201, 385-395.	4.1	42
28	Reducing the impacts of Neotropical oil palm development on functional diversity. Biological Conservation, 2016, 197, 139-145.	4.1	40
29	Population abundance and biomass of large-bodied birds in Amazonian flooded and unflooded forests. Bird Conservation International, 2008, 18, 87-101.	1.3	38
30	Frogs as potential biological control agents in the rice fields of Chitwan, Nepal. Agriculture, Ecosystems and Environment, 2016, 230, 307-314.	5.3	35
31	Grass allometry and estimation of above-ground biomass in tropical alpine tussock grasslands. Austral Ecology, 2014, 39, 408-415.	1.5	33
32	Quantifying carbon and amphibian coâ€benefits from secondary forest regeneration in the Tropical Andes. Animal Conservation, 2016, 19, 548-560.	2.9	31
33	Managing <scp>N</scp> eotropical oil palm expansion to retain phylogenetic diversity. Journal of Applied Ecology, 2016, 53, 150-158.	4.0	29
34	Thermal tolerance and the importance of microhabitats for Andean frogs in the context of land use and climate change. Journal of Animal Ecology, 2020, 89, 2451-2460.	2.8	26
35	Terrestrial Behavior in Titi Monkeys (Callicebus, Cheracebus, and Plecturocebus): Potential Correlates, Patterns, and Differences between Genera. International Journal of Primatology, 2019, 40, 553-572.	1.9	23
36	Fruit Removal and Natural Seed Dispersal of the Brazil Nut Tree (<i>Bertholletia excelsa</i>) in Central Amazonia, Brazil. Biotropica, 2012, 44, 205-210.	1.6	22

#	Article	IF	CITATIONS
37	Sustainable-use protected areas catalyze enhanced livelihoods in rural Amazonia. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	22
38	Patterns of floristic diversity and composition in floodplain forests across four Southern Amazon river tributaries, Brazil. Flora: Morphology, Distribution, Functional Ecology of Plants, 2017, 229, 124-140.	1.2	21
39	Effects of surface fires on understorey insectivorous birds and terrestrial arthropods in central Brazilian Amazonia. Animal Conservation, 2003, 6, 299-306.	2.9	17
40	Birds of Two Oceans? Trans-Andean and Divergent Migration of Black Skimmers (Rynchops niger) Tj ETQq0 0 0	rgBT <i> </i> Over 2.5	lock 10 Tf 50
41	Geographic comparison of plant genera used in frugivory among the pitheciids <i>Cacajao </i> , <i>Callicebus </i> , <i>Chiropotes </i> , and <i>Pithecia </i> . American Journal of Primatology, 2016, 78, 493-506.	1.7	17
42	Invasive alien plant control improves foraging habitat quality of a threatened island flying fox. Journal for Nature Conservation, 2020, 54, 125805.	1.8	17
43	Wild dogs at stake: deforestation threatens the only Amazon endemic canid, the short-eared dog () Tj ETQq $1\ 1$	0.784314 2.4	rgBT/Overlo
44	Structure and Composition of Terra Firme and Seasonally Flooded VÃ irzea Forests in the Western Brazilian Amazon. Forests, 2020, 11, 1361.	2.1	15
45	Effect of scale on trait predictors of species responses to agriculture. Conservation Biology, 2015, 29, 463-472.	4.7	14
46	The impact of secondary forest regeneration on ground-dwelling ant communities in the Tropical Andes. Oecologia, 2019, 191, 475-482.	2.0	13
47	Above-ground woody biomass distribution in Amazonian floodplain forests: Effects of hydroperiod and substrate properties. Forest Ecology and Management, 2019, 432, 365-375.	3.2	13
48	Associations between primates and other mammals in a central Amazonian forest landscape. Primates, 2008, 49, 219-222.	1.1	11
49	Effects of illegal logging on Amazonian medium and large-sized terrestrial vertebrates. Forest Ecology and Management, 2020, 466, 118105.	3.2	10
50	Habitat use and ecology of Wattled Curassows on islands in the lower CaquetÃ; River, Colombia. Journal of Field Ornithology, 2013, 84, 23-31.	0.5	9
51	Forest type affects the capacity of Amazonian tree species to store carbon as woody biomass. Forest Ecology and Management, 2020, 473, 118297.	3.2	8
52	Seasonal abundance and breeding habitat occupancy of the Orinoco Goose (Neochen jubata) in western Brazilian Amazonia. Bird Conservation International, 2014, 24, 518-529.	1.3	7
53	A Lepidopteran defoliator attack on Brazil nut trees (<i>Bertholletia excelsa</i>) in Central Amazonia, Brazil. Biotropica, 2009, 41, 275-278.	1.6	6
54	A time-geographic approach to identifying daily habitat use patterns for Amazonian Black Skimmers. Applied Geography, 2020, 118, 102189.	3.7	6

Torbjørn Haugaasen

#	Article	IF	CITATIONS
55	Marked Differences in Butterfly Assemblage Composition between Forest Types in Central Amazonia, Brazil. Forests, 2021, 12, 942.	2.1	6
56	Response of Understory Avifauna to Annual Flooding of Amazonian Floodplain Forests. Forests, 2021, 12, 1004.	2.1	5
57	Cache pilferage may be prominent in Neotropical forests. Mammalia, 2010, 74, .	0.7	4
58	Ignoring variation in wood density drives substantial bias in biomass estimates across spatial scales. Environmental Research Letters, 2022, 17, 054002.	5.2	2
59	Replacing low-intensity cattle pasture with oil palm conserves dung beetle functional diversity when paired with forest protection. Journal of Environmental Management, 2021, 283, 112009.	7.8	1