
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7612517/publications.pdf Version: 2024-02-01

ΝινιλΝΙ Μαρςηι

#	Article	IF	CITATIONS
1	The Early Motor Repertoire in Preterm Infancy and Cognition in Young Adulthood: Preliminary Findings. Journal of the International Neuropsychological Society, 2023, 29, 80-91.	1.2	5
2	Early prediction of neurodevelopmental outcomes at 12 years in children born extremely preterm. Pediatric Research, 2022, 91, 1522-1529.	1.1	15
3	The development of visual attention in early infancy: Insights from a freeâ€viewing paradigm. Infancy, 2022, 27, 433-458.	0.9	5
4	Spontaneous movements, motor milestones, and temperament of pretermâ€born infants: Associations with mother–infant attunement. Infancy, 2022, , .	0.9	2
5	Looking for "fNIRS Signature―in Autism Spectrum: A Systematic Review Starting From Preschoolers. Frontiers in Neuroscience, 2022, 16, 785993.	1.4	9
6	Asymmetry in sleep spindles and motor outcome in infants with unilateral brain injury. Developmental Medicine and Child Neurology, 2022, , .	1.1	2
7	Early motor behavior of infants exposed to maternal mental health disorders — A South African perspective. Early Human Development, 2022, 168, 105572.	0.8	2
8	Expanding the Spectrum of Oculocutaneous Albinism: Does Isolated Foveal Hypoplasia Really Exist?. International Journal of Molecular Sciences, 2022, 23, 7825.	1.8	2
9	The general movement checklist: A guide to the assessment of general movements during preterm and term age. Jornal De Pediatria, 2021, 97, 445-452.	0.9	15
10	Towards multimodal brain monitoring in asphyxiated newborns with amplitude-integrated EEG and simultaneous somatosensory evoked potentials. Early Human Development, 2021, 153, 105287.	0.8	6
11	Clinical Implications of the General Movement Optimality Score: Beyond the Classes of Rasch Analysis. Journal of Clinical Medicine, 2021, 10, 1069.	1.0	3
12	Movements and posture in infants born extremely preterm in comparison to term-born controls. Early Human Development, 2021, 154, 105304.	0.8	22
13	The future of General Movement Assessment: The role of computer vision and machine learning – A scoping review. Research in Developmental Disabilities, 2021, 110, 103854.	1.2	54
14	Building an Open Source Classifier for the Neonatal EEG Background: A Systematic Feature-Based Approach From Expert Scoring to Clinical Visualization. Frontiers in Human Neuroscience, 2021, 15, 675154.	1.0	12
15	Novel AI driven approach to classify infant motor functions. Scientific Reports, 2021, 11, 9888.	1.6	39
16	The Effects of Different Exteroceptive Experiences on the Early Motor Repertoire in Infants With Down Syndrome. Physical Therapy, 2021, 101, .	1.1	2
17	Prediction of Neurodevelopmental Outcomes in SARS-CoV-2 Infections. Pediatric Neurology, 2021, 120, 3.	1.0	1
18	Early intervention and its short-term effect on the temporal organization of fidgety movements. Early Human Development, 2020, 151, 105197.	0.8	7

#	Article	IF	CITATIONS
19	Enhancing early detection of neurological and developmental disorders and provision of intervention in low-resource settings in Uttar Pradesh, India: study protocol of the G.A.N.E.S.H. programme. BMJ Open, 2020, 10, e037335.	0.8	12
20	Correlates of Normal and Abnormal General Movements in Infancy and Long-Term Neurodevelopment of Preterm Infants: Insights from Functional Connectivity Studies at Term Equivalence. Journal of Clinical Medicine, 2020, 9, 834.	1.0	22
21	Neonatal neuroimaging and neurophysiology predict infantile onset epilepsy after perinatal hypoxic ischemic encephalopathy. Seizure: the Journal of the British Epilepsy Association, 2020, 80, 249-256.	0.9	12
22	Movement analysis in early infancy: Towards a motion biomarker of age. Early Human Development, 2020, 142, 104942.	0.8	11
23	Automatic Posture and Movement Tracking of Infants with Wearable Movement Sensors. Scientific Reports, 2020, 10, 169.	1.6	69
24	Measuring Cot-Side the Effects of Parenteral Nutrition on Preterm Cortical Function. Frontiers in Human Neuroscience, 2020, 14, 69.	1.0	2
25	Psychometric Properties of the General Movement Optimality Score using Rasch Measurement. Journal of Applied Measurement, 2020, 21, 17-37.	0.3	1
26	Cerebral Palsy: Early Markers of Clinical Phenotype and Functional Outcome. Journal of Clinical Medicine, 2019, 8, 1616.	1.0	116
27	Association of Infants Exposed to Prenatal Zika Virus Infection With Their Clinical, Neurologic, and Developmental Status Evaluated via the General Movement Assessment Tool. JAMA Network Open, 2019, 2, e187235.	2.8	95
28	Occurrence of and temporal trends in fidgety general movements in infants born extremely preterm/extremely low birthweight and term-born controls. Early Human Development, 2019, 135, 11-15.	0.8	17
29	Automated pose estimation captures key aspects of General Movements at eight to 17Âweeks from conventional videos. Acta Paediatrica, International Journal of Paediatrics, 2019, 108, 1817-1824.	0.7	32
30	Early Intervention to Improve Sucking in Preterm Newborns. Advances in Neonatal Care, 2019, 19, 97-109.	0.5	17
31	Early motor and pre-linguistic verbal development in Prader-Willi syndrome – A case report. Research in Developmental Disabilities, 2019, 88, 16-21.	1.2	12
32	The general movement assessment in non-European low- and middle-income countries. Revista De Saude Publica, 2018, 52, 6.	0.7	15
33	Early neonatal morbidities and neurological functioning of preterm infants 2 weeks after birth. Journal of Perinatology, 2018, 38, 1518-1525.	0.9	7
34	T87. EEG and simultaneously recorded SEPs in evaluation of newborns with hypoxic ischemic encephalopathy or stroke in the NICU. Clinical Neurophysiology, 2018, 129, e35.	0.7	0
35	Evaluation of SEPs in asphyxiated newborns using a 4-electrode aEEG brain monitoring set-up. Clinical Neurophysiology Practice, 2018, 3, 122-126.	0.6	10
36	Evoked potentials recorded during routine EEG predict outcome after perinatal asphyxia. Clinical Neurophysiology, 2017, 128, 1337-1343.	0.7	23

#	Article	IF	CITATIONS
37	The motor repertoire in 3- to 5-month old infants with Down syndrome. Research in Developmental Disabilities, 2017, 67, 1-8.	1.2	36
38	The association between the early motor repertoire and language development in term children born after normal pregnancy. Early Human Development, 2017, 111, 30-35.	0.8	39
39	A Novel Way to Measure and Predict Development: A Heuristic Approach to Facilitate the Early Detection of Neurodevelopmental Disorders. Current Neurology and Neuroscience Reports, 2017, 17, 43.	2.0	66
40	Early, Accurate Diagnosis and Early Intervention in Cerebral Palsy. JAMA Pediatrics, 2017, 171, 897.	3.3	898
41	The General Movement Assessment Helps Us to Identify Preterm Infants at Risk for Cognitive Dysfunction. Frontiers in Psychology, 2016, 7, 406.	1.1	123
42	The general movement optimality score: a detailed assessment of general movements during preterm and term age. Developmental Medicine and Child Neurology, 2016, 58, 361-368.	1.1	71
43	Relationship between white matter pathology and performance on the General Movement Assessment and the Test of Infant Motor Performance in very preterm infants. Early Human Development, 2016, 95, 23-27.	0.8	20
44	Very low birth weight infants in China: the predictive value of the motor repertoire at 3 to 5months for the motor performance at 12months. Early Human Development, 2016, 100, 27-32.	0.8	35
45	The ontogeny of fidgety movements from 4 to 20 weeks post-term age in healthy full-term infants. Early Human Development, 2016, 103, 219-224.	0.8	31
46	Fidgety movements – tiny in appearance, but huge in impact. Jornal De Pediatria, 2016, 92, S64-S70.	0.9	102
47	Brain representation of action observation in human infants. Developmental Medicine and Child Neurology, 2015, 57, 26-30.	1.1	8
48	General Movements in preterm infants undergoing craniosacral therapy: a randomised controlled pilot-trial. BMC Complementary and Alternative Medicine, 2015, 16, 12.	3.7	24
49	What do home videos tell us about early motor and socio-communicative behaviours in children with autistic features during the second year of life — An exploratory study. Early Human Development, 2015, 91, 569-575.	0.8	45
50	The first 1000 days of the autistic brain: a systematic review of diffusion imaging studies. Frontiers in Human Neuroscience, 2015, 9, 159.	1.0	46
51	Are sporadic fidgety movements as clinically relevant as is their absence?. Early Human Development, 2015, 91, 247-252.	0.8	55
52	A20 RECOVERY OF AMPLITUDE INTEGRATED ELECTROENCEPHALOGRAPHIC BACKGROUND PATTERNS WITHIN 24 HOURS OF HYPOTHERMIA. Early Human Development, 2013, 89, S80.	0.8	0
53	UP-BEAT (Upper Limb Baby Early Action–observation Training): protocol of two parallel randomised controlled trials of action–observation training for typically developing infants and infants with asymmetric brain lesions. BMJ Open, 2013, 3, e002512.	0.8	28
54	Cerebral palsy in children: Movements and postures during early infancy, dependent on preterm vs. full term birth. Early Human Development, 2012, 88, 837-843.	0.8	53

#	Article	IF	CITATIONS
55	Early behavioural manifestation of Smith-Magenis syndrome (del 17p11.2) in a 4-month-old boy. Developmental Neurorehabilitation, 2012, 15, 313-316.	0.5	22
56	Movements and postures of infants aged 3 to 5months: To what extent is their optimality related to perinatal events and to the neurological outcome?. Early Human Development, 2011, 87, 231-237.	0.8	53
57	Quantitative aspects of the early motor repertoire in preterm infants: Do they predict minor neurological dysfunction at school age?. Early Human Development, 2009, 85, 25-36.	0.8	84
58	Inter-observer reliability of the "Assessment of Motor Repertoire — 3 to 5ÂMonths―based on video recordings of infants. Early Human Development, 2009, 85, 297-302.	0.8	67
59	Early motor repertoire is related to level of selfâ€mobility in children with cerebral palsy at school age. Developmental Medicine and Child Neurology, 2009, 51, 878-885.	1.1	58
60	The quality of preterm infants' spontaneous movements: an early indicator of intelligence and behaviour at school age. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2009, 50, 920-930.	3.1	95
61	The Quality of the Early Motor Repertoire in Preterm Infants Predicts Minor Neurologic Dysfunction at School Age. Journal of Pediatrics, 2008, 153, 32-39.e1.	0.9	105
62	Early markers for unilateral spastic cerebral palsy in premature infants. Nature Clinical Practice Neurology, 2008, 4, 186-187.	2.7	10
63	Does a detailed assessment of poor repertoire general movements help to identify those infants who will develop normally?. Early Human Development, 2006, 82, 53-59.	0.8	57
64	Prechtl's assessment of general movements: A diagnostic tool for the functional assessment of the young nervous system. Mental Retardation and Developmental Disabilities Research Reviews, 2005, 11, 61-67.	3.5	497
65	Cramped Synchronized General Movements in Preterm Infants as an Early Marker for Cerebral Palsy. JAMA Pediatrics, 2002, 156, 460.	3.6	205
66	Early Neurological Signs in Preterm Infants with Unilateral Intraparenchymal Echodensity. Neuropediatrics, 2000, 31, 240-251.	0.3	88
67	An early marker for neurological deficits after perinatal brain lesions. Lancet, The, 1997, 349, 1361-1363.	6.3	552
68	The qualitative assessment of general movements in preterm, term and young infants — review of the methodology. Early Human Development, 1997, 50, 47-60.	0.8	271