
Laura Castoldi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7612491/publications.pdf Version: 2024-02-01

LAURA CASTOLDI

#	Article	IF	CITATIONS
1	2â€Methyltetrahydrofuran (2â€MeTHF): A Biomassâ€Derived Solvent with Broad Application in Organic Chemistry. ChemSusChem, 2012, 5, 1369-1379.	6.8	520
2	Addition of lithium carbenoids to isocyanates: a direct access to synthetically useful N-substituted 2-haloacetamides. Chemical Communications, 2013, 49, 8383.	4.1	85
3	Recent advancements on the use of 2-methyltetrahydrofuran in organometallic chemistry. Monatshefte Für Chemie, 2017, 148, 37-48.	1.8	84
4	Efficient Access to All arbon Quaternary and Tertiary αâ€Functionalized Homoallylâ€ŧype Aldehydes from Ketones. Angewandte Chemie - International Edition, 2017, 56, 12677-12682.	13.8	71
5	Homologation chemistry with nucleophilic α-substituted organometallic reagents: chemocontrol, new concepts and (solved) challenges. Chemical Communications, 2018, 54, 6692-6704.	4.1	58
6	Synthesis of α,β-Unsaturated α′-Haloketones through the Chemoselective Addition of Halomethyllithiums to Weinreb Amides. Journal of Organic Chemistry, 2013, 78, 7764-7770.	3.2	57
7	lsocyanates and isothiocyanates as versatile platforms for accessing (thio)amide-type compounds. Organic and Biomolecular Chemistry, 2016, 14, 7848-7854.	2.8	55
8	Highly regioselective control of 1,2-addition of organolithiums to α,β-unsaturated compounds promoted by lithium bromide in 2-methyltetrahydrofuran: a facile and eco-friendly access to allylic alcohols and amines. Tetrahedron, 2011, 67, 2670-2675.	1.9	52
9	Evidence and isolation of tetrahedral intermediates formed upon the addition of lithium carbenoids to Weinreb amides and N-acylpyrroles. Chemical Communications, 2017, 53, 9498-9501.	4.1	52
10	Chemoselective Addition of Halomethyllithiums to Functionalized Isatins:A Straightforward Access to Spiroâ€Epoxyoxindoles. Advanced Synthesis and Catalysis, 2016, 358, 172-177.	4.3	47
11	Homologation of Isocyanates with Lithium Carbenoids: A Straightforward Access to α-Halomethyl- and α,α-Dihalomethylamides. Synthesis, 2014, 46, 2897-2909.	2.3	45
12	New Perspectives in Lithium Carbenoid Mediated Homologations. Synlett, 2017, 28, 879-888.	1.8	45
13	Chemoselective efficient synthesis of functionalized β-oxonitriles through cyanomethylation of Weinreb amides. Organic and Biomolecular Chemistry, 2015, 13, 1969-1973.	2.8	41
14	Expeditious and Chemoselective Synthesis of α-Aryl and α-Alkyl Selenomethylketones via Homologation Chemistry. Organic Letters, 2018, 20, 2685-2688.	4.6	39
15	Weinreb Amides as Privileged Acylating Agents for Accessing α-Substituted Ketones. Synthesis, 2019, 51, 2792-2808.	2.3	39
16	A Robust, Ecoâ€Friendly Access to Secondary Thioamides through the Addition of Organolithium Reagents to Isothiocyanates in Cyclopentyl Methyl Ether (CPME). Chemistry - A European Journal, 2015, 21, 18966-18970.	3.3	38
17	Robust eco-friendly protocol for the preparation of γ-hydroxy-α,β-acetylenic esters by sequential one-pot elimination–addition of 2-bromoacrylates to aldehydes promoted by LTMP in 2-MeTHF. Green Chemistry, 2012, 14, 1859.	9.0	30
18	Chemoselective Additions of Chloromethyllithium Carbenoid to Cyclic Enones: A Direct Access to Chloromethyl Allylic Alcohols. Advanced Synthesis and Catalysis, 2014, 356, 1761-1766.	4.3	30

LAURA CASTOLDI

#	Article	IF	CITATIONS
19	Electrophilic Vinylation of Thiols under Mild and Transition Metalâ€Free Conditions. Angewandte Chemie - International Edition, 2020, 59, 15512-15516.	13.8	27
20	Efficient Access to All arbon Quaternary and Tertiary αâ€Functionalized Homoallylâ€ŧype Aldehydes from Ketones. Angewandte Chemie, 2017, 129, 12851-12856.	2.0	23
21	Highly efficient and environmentally benign preparation of Weinreb amides in the biphasic system 2-MeTHF/water. RSC Advances, 2013, 3, 10158.	3.6	22
22	Eco-friendly chemoselective N-functionalization of isatins mediated by supported KF in 2-MeTHF. Green Chemistry, 2015, 17, 4194-4197.	9.0	22
23	Merging lithium carbenoid homologation and enzymatic reduction: A combinative approach to the HIV-protease inhibitor Nelfinavir. Tetrahedron, 2018, 74, 2211-2217.	1.9	21
24	Highly chemoselective synthesis of aryl allylic sulfoxides through calcium hypobromite oxidation of aryl allylic sulfides. Tetrahedron Letters, 2012, 53, 967-972.	1.4	20
25	Homologation of halostannanes with carbenoids: a convenient and straightforward one-step access to α-functionalized organotin reagents. Chemical Communications, 2018, 54, 10112-10115.	4.1	18
26	Halogenâ€Imparted Reactivity in Lithium Carbenoid Mediated Homologations of Imine Surrogates: Direct Assembly of bisâ€Trifluoromethylâ€Î²â€Diketiminates and the Dual Role of LiCH 2 I. Angewandte Chemie - International Edition, 2020, 59, 20852-20857.	13.8	17
27	Transition metal-free and regioselective vinylation of phosphine oxides and <i>H</i> -phosphinates with VBX reagents. Chemical Communications, 2020, 56, 14389-14392.	4.1	17
28	α-Arylamino Diazoketones: Diazomethane-Loading Controlled Synthesis, Spectroscopic Investigations, and Structural X-ray Analysis. Journal of Organic Chemistry, 2018, 83, 4336-4347.	3.2	13
29	α-Amino-α´-Halomethylketones: Synthetic Methodologies and Pharmaceutical Applications as Serine and Cysteine Protease Inhibitors. Mini-Reviews in Medicinal Chemistry, 2013, 13, 988-996.	2.4	12
30	Multinuclear NMR spectra and GIAO/DFT calculations of N-benzylazoles and N-benzylbenzazoles. Structural Chemistry, 2019, 30, 1729-1735.	2.0	10
31	Electrophilic Vinylation of Thiols under Mild and Transition Metalâ€Free Conditions. Angewandte Chemie, 2020, 132, 15642-15646.	2.0	10
32	Chemoselective oxidative hydrolysis of EWG protected α-arylamino vinyl bromides to α-arylamino-α′-bromoacetones. Tetrahedron Letters, 2013, 54, 4369-4372.	1.4	9
33	A practical guide for using lithium halocarbenoids in homologation reactions. Monatshefte Für Chemie, 2018, 149, 1285-1291.	1.8	9
34	Recent advances in the synthesis and reactivity of spiro-epoxyoxindoles. Chemistry of Heterocyclic Compounds, 2018, 54, 389-393.	1.2	8
35	Synthesis of tetrasubstituted pyrazoles containing pyridinyl substituents. Beilstein Journal of Organic Chemistry, 2017, 13, 895-902.	2.2	5
36	Straightforward synthesis of bench-stable heteroatom-centered difluoromethylated entities <i>via</i> controlled nucleophilic transfer from activated TMSCHF ₂ . Chemical Communications, 2022, 58, 5761-5764.	4.1	4

#	Article	IF	CITATIONS
37	Halogenâ€Imparted Reactivity in Lithium Carbenoid Mediated Homologations of Imine Surrogates: Direct Assembly of bisâ€Trifluoromethylâ€Î²â€Diketiminates and the Dual Role of LiCH 2 I. Angewandte Chemie, 2020, 132, 21038-21043.	2.0	3

13.6 2