Gergely Lukacs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7612294/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ins and outs of AlphaFold2 transmembrane protein structure predictions. Cellular and Molecular Life Sciences, 2022, 79, 73.	2.4	77
2	Mechanism of PINK1 activation by autophosphorylation and insights into assembly on the TOM complex. Molecular Cell, 2022, 82, 44-59.e6.	4.5	42
3	Ubr1-induced selective endophagy/autophagy protects against the endosomal and Ca2+-induced proteostasis disease stress. Cellular and Molecular Life Sciences, 2022, 79, 167.	2.4	6
4	A PI3KÎ ³ mimetic peptide triggers CFTR gating, bronchodilation, and reduced inflammation in obstructive airway diseases. Science Translational Medicine, 2022, 14, eabl6328.	5.8	6
5	Nanomechanics combined with HDX reveals allosteric drug binding sites of CFTR NBD1. Computational and Structural Biotechnology Journal, 2022, 20, 2587-2599.	1.9	1
6	Measuring EGFR plasma membrane density, stability, internalization, and recycling in alive adherent cells by cell surface ELISA. STAR Protocols, 2022, 3, 101475.	0.5	0
7	A Precision Medicine Approach to Optimize Modulator Therapy for Rare CFTR Folding Mutants. Journal of Personalized Medicine, 2021, 11, 643.	1.1	20
8	Control of membrane protein homeostasis by a chaperone-like glial cell adhesion molecule at multiple subcellular locations. Scientific Reports, 2021, 11, 18435.	1.6	8
9	Elexacaftor co-potentiates the activity of F508del and gating mutants of CFTR. Journal of Cystic Fibrosis, 2021, 20, 895-898.	0.3	53
10	Endofin is required for HD-PTP and ESCRT-0 interdependent endosomal sorting of ubiquitinated transmembrane cargoes. IScience, 2021, 24, 103274.	1.9	7
11	Mutation-specific dual potentiators maximize rescue of CFTR gating mutants. Journal of Cystic Fibrosis, 2020, 19, 236-244.	0.3	29
12	High-throughput phenotyping of heteromeric human ether-Ã-go-go-related gene potassium channel variants can discriminate pathogenic from rare benign variants. Heart Rhythm, 2020, 17, 492-500.	0.3	54
13	Selective Binding of HSC70 and its Co-Chaperones to Structural Hotspots on CFTR. Scientific Reports, 2020, 10, 4176.	1.6	25
14	Correction of hERG Functional Expression and Defective Peripheral Processing in Inherited and Acquired LQT2 Syndromes. Biophysical Journal, 2020, 118, 110a.	0.2	1
15	Allosteric folding correction of F508del and rare CFTR mutants by elexacaftor-tezacaftor-ivacaftor (Trikafta) combination. JCI Insight, 2020, 5, .	2.3	159
16	Bioactive Thymosin Alpha-1 Does Not Influence F508del-CFTR Maturation and Activity. Scientific Reports, 2019, 9, 10310.	1.6	8
17	Single Cell Fluorescence Ratio Image Analysis for Studying ESCRT Function in Receptor Trafficking. Methods in Molecular Biology, 2019, 1998, 93-103.	0.4	5
18	Phosphorylation-dependent modulation of CFTR macromolecular signalling complex activity by cigarette smoke condensate in airway epithelia. Scientific Reports, 2019, 9, 12706.	1.6	11

#	Article	IF	CITATIONS
19	Mutation-specific peripheral and ER quality control of hERG channel cell-surface expression. Scientific Reports, 2019, 9, 6066.	1.6	22
20	Transcytosis maintains CFTR apical polarity in the face of constitutive and mutation-induced basolateral missorting. Journal of Cell Science, 2019, 132, .	1.2	6
21	Identification of Allosteric Inhibitors against Active Caspase-6. Scientific Reports, 2019, 9, 5504.	1.6	15
22	Differential Scanning Fluorimetry and Hydrogen Deuterium Exchange Mass Spectrometry to Monitor the Conformational Dynamics of NBD1 in Cystic Fibrosis. Methods in Molecular Biology, 2019, 1873, 53-67.	0.4	8
23	Chaperone-Independent Peripheral Quality Control of CFTR by RFFL E3 Ligase. Developmental Cell, 2018, 44, 694-708.e7.	3.1	57
24	<scp>PINK</scp> 1 autophosphorylation is required for ubiquitin recognition. EMBO Reports, 2018, 19, .	2.0	88
25	î"F508-CFTR Modulator Screen Based on Cell Surface Targeting of a Chimeric Nucleotide Binding Domain 1 Reporter. SLAS Discovery, 2018, 23, 823-831.	1.4	5
26	Structure-guided combination therapy to potently improve the function of mutant CFTRs. Nature Medicine, 2018, 24, 1732-1742.	15.2	117
27	Mechanism of parkin activation by phosphorylation. Nature Structural and Molecular Biology, 2018, 25, 623-630.	3.6	128
28	Extracellular oxidation in cystic fibrosis airway epithelium causes enhanced EGFR/ADAM17 activity. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L555-L568.	1.3	15
29	Correctors and Potentiators Rescue Function of the Truncated W1282X-Cystic Fibrosis Transmembrane Regulator (CFTR) Translation Product. Journal of Biological Chemistry, 2017, 292, 771-785.	1.6	73
30	Single-particle electron microscopy structure of UDP-glucose:glycoprotein glucosyltransferase suggests a selectivity mechanism for misfolded proteins. Journal of Biological Chemistry, 2017, 292, 11499-11507.	1.6	26
31	Hormonal vitamin D up-regulates tissue-specific PD-L1 and PD-L2 surface glycoprotein expression in humans but not mice. Journal of Biological Chemistry, 2017, 292, 20657-20668.	1.6	59
32	Mutation-specific downregulation of CFTR2 variants by gating potentiators. Human Molecular Genetics, 2017, 26, 4873-4885.	1.4	42
33	Leukoencephalopathyâ€causing <i>CLCN2</i> mutations are associated with impaired Cl ^{â^'} channel function and trafficking. Journal of Physiology, 2017, 595, 6993-7008.	1.3	33
34	Chaperones rescue the energetic landscape of mutant CFTR at single molecule and in cell. Nature Communications, 2017, 8, 398.	5.8	57
35	New insights into interactions between the nucleotideâ€binding domain of CFTR and keratin 8. Protein Science, 2017, 26, 343-354.	3.1	10
36	Epithelial Anion Transport as Modulator of Chemokine Signaling. Mediators of Inflammation, 2016, 2016, 2016, 1-20.	1.4	10

#	Article	IF	CITATIONS
37	hERG quality control and the long QT syndrome. Journal of Physiology, 2016, 594, 2469-2481.	1.3	37
38	Chaperoning for hearing loss. Nature Chemical Biology, 2016, 12, 388-389.	3.9	3
39	Development and characterization of synthetic antibodies binding to the cystic fibrosis conductance regulator. MAbs, 2016, 8, 1167-1176.	2.6	3
40	A Christianson syndrome-linked deletion mutation (â^†287ES288) in SLC9A6 disrupts recycling endosomal function and elicits neurodegeneration and cell death. Molecular Neurodegeneration, 2016, 11, 63.	4.4	22
41	Rattlesnake Phospholipase A2 Increases CFTR-Chloride Channel Current and Corrects â^† F508CFTR Dysfunction: Impact in Cystic Fibrosis. Journal of Molecular Biology, 2016, 428, 2898-2915.	2.0	22
42	From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. Molecular Biology of the Cell, 2016, 27, 424-433.	0.9	446
43	Channel Gating Regulation by the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) First Cytosolic Loop. Journal of Biological Chemistry, 2016, 291, 1854-1865.	1.6	16
44	CFTR: A New Horizon in the Pathomechanism and Treatment of Pancreatitis. Reviews of Physiology, Biochemistry and Pharmacology, 2016, 170, 37-66.	0.9	82
45	Non-native Conformers of Cystic Fibrosis Transmembrane Conductance Regulator NBD1 Are Recognized by Hsp27 and Conjugated to SUMO-2 for Degradation. Journal of Biological Chemistry, 2016, 291, 2004-2017.	1.6	28
46	Ribosomal Stalk Protein Silencing Partially Corrects the ΔF508-CFTR Functional Expression Defect. PLoS Biology, 2016, 14, e1002462.	2.6	49
47	Interplay of Endosomal pH and Ligand Occupancy in Integrin α5β1ÂUbiquitination, Endocytic Sorting, and Cell Migration. Cell Reports, 2015, 13, 599-609.	2.9	48
48	Alcohol Disrupts Levels and Function of the Cystic Fibrosis Transmembrane Conductance Regulator to Promote Development of Pancreatitis. Gastroenterology, 2015, 148, 427-439.e16.	0.6	159
49	Potentiators of Defective ΔF508–CFTR Gating that Do Not Interfere with Corrector Action. Molecular Pharmacology, 2015, 88, 791-799.	1.0	38
50	Degradation mechanism of a Golgi-retained distal renal tubular acidosis mutant of the kidney anion exchanger 1 in renal cells. American Journal of Physiology - Cell Physiology, 2014, 307, C296-C307.	2.1	12
51	Some gating potentiators, including VX-770, diminish ΔF508-CFTR functional expression. Science Translational Medicine, 2014, 6, 246ra97.	5.8	264
52	Ubiquitin-Dependent Sorting in Endocytosis. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016808.	2.3	174
53	Protein Homeostasis at the Plasma Membrane. Physiology, 2014, 29, 265-277.	1.6	38
54	Synergy-Based Small-Molecule Screen Using a Human Lung Epithelial Cell Line Yields ΔF508-CFTR Correctors That Augment VX-809 Maximal Efficacy. Molecular Pharmacology, 2014, 86, 42-51.	1.0	58

#	Article	IF	CITATIONS
55	CFTR loss of function after alcohol consumption and in alcoholic pancreatitis. Pancreatology, 2014, 14, S16.	0.5	0
56	Discovery of novel potent <scp>î"F</scp> 508― <scp>CFTR</scp> correctors that target the nucleotide binding domain. EMBO Molecular Medicine, 2013, 5, 1484-1501.	3.3	77
57	Mechanism-based corrector combination restores ΔF508-CFTR folding and function. Nature Chemical Biology, 2013, 9, 444-454.	3.9	361
58	Insights into MLC pathogenesis: GlialCAM is an MLC1 chaperone required for proper activation of volume-regulated anion currents. Human Molecular Genetics, 2013, 22, 4405-4416.	1.4	50
59	Ubiquitination-dependent quality control of hERG K ⁺ channel with acquired and inherited conformational defect at the plasma membrane. Molecular Biology of the Cell, 2013, 24, 3787-3804.	0.9	38
60	Small heat shock proteins target mutant cystic fibrosis transmembrane conductance regulator for degradation via a small ubiquitin-like modifier–dependent pathway. Molecular Biology of the Cell, 2013, 24, 74-84.	0.9	88
61	Comparative Processing and Function of Human and Ferret Cystic Fibrosis Transmembrane Conductance Regulator. Journal of Biological Chemistry, 2012, 287, 21673-21685.	1.6	29
62	Fixing cystic fibrosis by correcting CFTR domain assembly. Journal of Cell Biology, 2012, 199, 199-204.	2.3	38
63	Disruption of cytokeratin-8 interaction with F508del-CFTR corrects its functional defect. Human Molecular Genetics, 2012, 21, 623-634.	1.4	44
64	Reduced PDZ Interactions of Rescued ΔF508CFTR Increases Its Cell Surface Mobility. Journal of Biological Chemistry, 2012, 287, 43630-43638.	1.6	18
65	Proinflammatory cytokine secretion is suppressed by TMEM16A or CFTR channel activity in human cystic fibrosis bronchial epithelia. Molecular Biology of the Cell, 2012, 23, 4188-4202.	0.9	96
66	CFTR: folding, misfolding and correcting the ΔF508 conformational defect. Trends in Molecular Medicine, 2012, 18, 81-91.	3.5	329
67	Correction of Both NBD1 Energetics and Domain Interface Is Required to Restore ΔF508 CFTR Folding and Function. Cell, 2012, 148, 150-163.	13.5	263
68	hERG Quality Control at the Plasma Membrane. Biophysical Journal, 2012, 102, 677a.	0.2	0
69	Comparative Analysis Of Human And Ferret Wild Type And ?F508 CFTR. , 2011, , .		0
70	Protein quality control at the plasma membrane. Current Opinion in Cell Biology, 2011, 23, 483-491.	2.6	70
71	Cyanoquinolines with Independent Corrector and Potentiator Activities Restore ΔPhe508-Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Function in Cystic Fibrosis. Molecular Pharmacology, 2011, 80, 683-693.	1.0	61
72	Introduction to Section III: Biochemical Methods to Study CFTR Protein. Methods in Molecular Biology, 2011, 741, 213-218.	0.4	1

#	Article	IF	CITATIONS
73	Endocytic Sorting of CFTR Variants Monitored by Single-Cell Fluorescence Ratiometric Image Analysis (FRIA) in Living Cells. Methods in Molecular Biology, 2011, 741, 301-317.	0.4	13
74	CFTR Folding Consortium: Methods Available for Studies of CFTR Folding and Correction. Methods in Molecular Biology, 2011, 742, 335-353.	0.4	30
75	Reduced histone deacetylase 7 activity restores function to misfolded CFTR in cystic fibrosis. Nature Chemical Biology, 2010, 6, 25-33.	3.9	237
76	Quality control for unfolded proteins at the plasma membrane. Journal of Cell Biology, 2010, 191, 553-570.	2.3	52
77	The Cystic Fibrosis-causing Mutation ΔF508 Affects Multiple Steps in Cystic Fibrosis Transmembrane Conductance Regulator Biogenesis. Journal of Biological Chemistry, 2010, 285, 35825-35835.	1.6	160
78	Peripheral Protein Quality Control Removes Unfolded CFTR from the Plasma Membrane. Science, 2010, 329, 805-810.	6.0	377
79	Introduction / Introduction. Biochemistry and Cell Biology, 2010, 88, v-vii.	0.9	Ο
80	N-glycans are direct determinants of CFTR folding and stability in secretory and endocytic membrane traffic. Journal of Cell Biology, 2009, 184, 847-862.	2.3	118
81	Cooperative Assembly and Misfolding of CFTR Domains In Vivo. Molecular Biology of the Cell, 2009, 20, 1903-1915.	0.9	133
82	Revisiting the Role of Cystic Fibrosis Transmembrane Conductance Regulator and Counterion Permeability in the pH Regulation of Endocytic Organelles. Molecular Biology of the Cell, 2009, 20, 3125-3141.	0.9	73
83	Reduced Cell Surface Stability Of Rescued Herg Trafficking Mutants. Biophysical Journal, 2009, 96, 331a.	0.2	0
84	Membrane protein quality control in postâ€Golgi compartments. FASEB Journal, 2009, 23, 668.3.	0.2	0
85	Analysis of Endocytic Trafficking by Singleâ€Cell Fluorescence Ratio Imaging. Current Protocols in Cell Biology, 2008, 40, Unit 15.13.	2.3	17
86	Molecular pathogenesis of megalencephalic leukoencephalopathy with subcortical cysts: mutations in MLC1 cause folding defects. Human Molecular Genetics, 2008, 17, 3728-3739.	1.4	60
87	Polyubiquitination of Prolactin Receptor Stimulates Its Internalization, Postinternalization Sorting, and Degradation via the Lysosomal Pathway. Molecular and Cellular Biology, 2008, 28, 5275-5287.	1.1	78
88	FRET assessment of CFTR molecular assembly. FASEB Journal, 2008, 22, 934.17.	0.2	0
89	Molecular Proximity of Cystic Fibrosis Transmembrane Conductance Regulator and Epithelial Sodium Channel Assessed by Fluorescence Resonance Energy Transfer. Journal of Biological Chemistry, 2007, 282, 36481-36488.	1.6	40
90	Decoding ubiquitin sorting signals for clathrin-dependent endocytosis by CLASPs. Journal of Cell Science, 2007, 120, 543-553.	1.2	86

#	Article	IF	CITATIONS
91	Site-specific ubiquitination exposes a linear motif to promote interferon-α receptor endocytosis. Journal of Cell Biology, 2007, 179, 935-950.	2.3	124
92	Plasticity of Polyubiquitin Recognition as Lysosomal Targeting Signals by the Endosomal Sorting Machinery. Molecular Biology of the Cell, 2007, 18, 3952-3965.	0.9	80
93	Cell surface dynamics of CFTR: The ins and outs. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 476-479.	1.9	30
94	Visualizing the CFTR and ENaC association in living cells. FASEB Journal, 2007, 21, A547.	0.2	1
95	Nucleocytoplasmic Transport of Plasmid DNA: A Perilous Journey from the Cytoplasm to the Nucleus. Human Gene Therapy, 2006, 17, 882-889.	1.4	83
96	Dominant and Recessive Distal Renal Tubular Acidosis Mutations of Kidney Anion Exchanger 1 Induce Distinct Trafficking Defects in MDCK Cells. Traffic, 2006, 7, 117-128.	1.3	81
97	Molecular Basis of Oligoubiquitin-Dependent Internalization of Membrane Proteins in Mammalian Cells. Traffic, 2006, 7, 282-297.	1.3	113
98	CFTR Chloride Channel Drug Discovery - Inhibitors as Antidiarrheals and Activators for Therapy of Cystic Fibrosis. Current Pharmaceutical Design, 2006, 12, 2235-2247.	0.9	81
99	Tracking of Quantum Dot-labeled CFTR Shows Near Immobilization by C-Terminal PDZ Interactions. Molecular Biology of the Cell, 2006, 17, 4937-4945.	0.9	131
100	Importin 13 Regulates Nuclear Import of the Glucocorticoid Receptor in Airway Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2006, 35, 668-680.	1.4	81
101	The ESCRT-III Subunit hVps24 Is Required for Degradation but Not Silencing of the Epidermal Growth Factor Receptor. Molecular Biology of the Cell, 2006, 17, 2513-2523.	0.9	159
102	Nucleocytoplasmic Transport of Plasmid DNA: A Perilous Journey from the Cytoplasm to the Nucleus. Human Gene Therapy, 2006, .	1.4	0
103	Intracellular Processing of CFTR. , 2005, 34, 21-28.		0
104	Intracellular routing of plasmid DNA during non-viral gene transfer. Advanced Drug Delivery Reviews, 2005, 57, 755-767.	6.6	317
105	The ΔF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR. Nature Structural and Molecular Biology, 2005, 12, 17-25.	3.6	330
106	Oligomerization State of the DNA Fragmentation Factor in Normal and Apoptotic Cells. Journal of Biological Chemistry, 2005, 280, 40216-40225.	1.6	26
107	Destabilization of the Transmembrane Domain Induces Misfolding in a Phenotypic Mutant of Cystic Fibrosis Transmembrane Conductance Regulator. Journal of Biological Chemistry, 2005, 280, 4968-4974.	1.6	22
108	Small-molecule correctors of defective ÂF508-CFTR cellular processing identified by high-throughput screening. Journal of Clinical Investigation, 2005, 115, 2564-2571.	3.9	502

#	Article	IF	CITATIONS
109	Misfolding diverts CFTR from recycling to degradation. Journal of Cell Biology, 2004, 164, 923-933.	2.3	311
110	Contrasting nuclear dynamics of the caspase-activated DNase (CAD) in dividing and apoptotic cells. Journal of Cell Biology, 2004, 167, 851-862.	2.3	26
111	Antibodies for CFTR studies. Journal of Cystic Fibrosis, 2004, 3, 69-72.	0.3	33
112	Biochemical methods to assess CFTR expression and membrane localization. Journal of Cystic Fibrosis, 2004, 3, 73-77.	0.3	49
113	Proteomics techniques for cystic fibrosis research. Journal of Cystic Fibrosis, 2004, 3, 85-89.	0.3	19
114	Curcumin, a Major Constituent of Turmeric, Corrects Cystic Fibrosis Defects. Science, 2004, 304, 600-602.	6.0	532
115	Nanomolar Affinity Small Molecule Correctors of Defective ΔF508-CFTR Chloride Channel Gating. Journal of Biological Chemistry, 2003, 278, 35079-35085.	1.6	192
116	The Role of the C Terminus and Na+/H+ Exchanger Regulatory Factor in the Functional Expression of Cystic Fibrosis Transmembrane Conductance Regulator in Nonpolarized Cells and Epithelia. Journal of Biological Chemistry, 2003, 278, 22079-22089.	1.6	69
117	Pharmacologic Approaches to Correcting the Basic Defect in Cystic Fibrosis. New England Journal of Medicine, 2003, 349, 1401-1404.	13.9	23
118	Analysis of Differential Lipofection Efficiency in Primary and Established Myoblasts. Molecular Therapy, 2002, 5, 161-169.	3.7	35
119	CFTR Folding and Maturation in Cells. , 2002, 70, 229-244.		7
120	Intracellular Barriers to Non-Viral Gene Transfer. Current Gene Therapy, 2002, 2, 183-194.	0.9	201
121	Multiple endocytic signals in the C-terminal tail of the cystic fibrosis transmembrane conductance regulator. Biochemical Journal, 2001, 354, 561.	1.7	31
122	Multiple endocytic signals in the C-terminal tail of the cystic fibrosis transmembrane conductance regulator. Biochemical Journal, 2001, 354, 561-572.	1.7	46
123	Cooh-Terminal Truncations Promote Proteasome-Dependent Degradation of Mature Cystic Fibrosis Transmembrane Conductance Regulator from Post-Golgi Compartments. Journal of Cell Biology, 2001, 153, 957-970.	2.3	78
124	Conformational and Temperature-sensitive Stability Defects of the ΔF508 Cystic Fibrosis Transmembrane Conductance Regulator in Post-endoplasmic Reticulum Compartments. Journal of Biological Chemistry, 2001, 276, 8942-8950.	1.6	200
125	Determinants of the Nuclear Localization of the Heterodimeric DNA Fragmentation Factor (Icad/Cad). Journal of Cell Biology, 2000, 150, 321-334.	2.3	80
126	A Human Epithelium-Specific Vector Optimized in Rat Pneumocytes for Lung Gene Therapy. Pediatric Research, 2000, 48, 184-190.	1.1	16

#	Article	IF	CITATIONS
127	Cystic Fibrosis Mutations Lead to Carboxyl-terminal Fragments That Highlight an Early Biogenesis Step of the Cystic Fibrosis Transmembrane Conductance Regulator. Journal of Biological Chemistry, 2000, 275, 19577-19584.	1.6	13
128	Size-dependent DNA Mobility in Cytoplasm and Nucleus. Journal of Biological Chemistry, 2000, 275, 1625-1629.	1.6	649
129	C-terminal Truncations Destabilize the Cystic Fibrosis Transmembrane Conductance Regulator without Impairing Its Biogenesis. Journal of Biological Chemistry, 1999, 274, 21873-21877.	1.6	175
130	Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Therapy, 1999, 6, 482-497.	2.3	576
131	Limited proteolysis as a probe for arrested conformational maturation of ΔF508 CFTR. Nature Structural Biology, 1998, 5, 180-183.	9.7	138
132	The Epithelial Sodium-Hydrogen Antiporter Na+/H+ Exchanger 3 Accumulates and Is Functional in Recycling Endosomes. Journal of Biological Chemistry, 1998, 273, 2035-2043.	1.6	190
133	Truncated SNAP-25 (1–197), Like Botulinum Neurotoxin A, Can Inhibit Insulin Secretion from HIT-T15 Insulinoma Cells. Molecular Endocrinology, 1998, 12, 1060-1070.	3.7	65
134	Endosomal Recycling of the Na+/H+Exchanger NHE3 Isoform Is Regulated by the Phosphatidylinositol 3-Kinase Pathway. Journal of Biological Chemistry, 1998, 273, 20828-20836.	1.6	147
135	Functional expression and apical localization of the cystic fibrosis transmembrane conductance regulator in MDCK I cells. Biochemical Journal, 1997, 322, 259-265.	1.7	65
136	Development of an epithelium-specific expression cassette with human DNA regulatory elements for transgene expression in lung airways. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 14695-14700.	3.3	72
137	Distinct Structural Domains Confer cAMP Sensitivity and ATP Dependence to the Na+/H+ Exchanger NHE3 Isoform. Journal of Biological Chemistry, 1996, 271, 3590-3599.	1.6	77
138	The chloride channel blocker 5-nitro-2-(3-phenylpropyl-amino) benzoic acid (NPPB) uncouples mitochondria and increases the proton permeability of the plasma membrane in phagocytic cells. FEBS Letters, 1991, 288, 17-20.	1.3	34
139	Pharmacological and biochemical properties of saxiphilin, a soluble saxitoxin-binding protein from the bullfrog (Rana catesbeiana). Toxicon, 1991, 29, 53-71.	0.8	74
140	A chloride channel from lobster walking leg nerves. Characterization of single-channel properties in planar bilayers Journal of General Physiology, 1990, 96, 707-733.	0.9	25
141	Characterization of the mitochondrial Na+î—,H+ exchange. The effect of amiloride analogues. Biochimica Et Biophysica Acta - Biomembranes, 1988, 944, 383-390.	1.4	33
142	Parallel measurement of oxoglutarate dehydrogenase activity and matrix free Ca2+in fura-2-loaded heart mitochondria. FEBS Letters, 1988, 229, 219-223.	1.3	44
143	The effect of inositol 1,4,5-trisphosphate and GTP on calcium release from rat liver microsomes. Biochimica Et Biophysica Acta - Molecular Cell Research, 1987, 931, 251-254.	1.9	10
144	Effect of inositol 1,4,5-trisphosphate and GTP on calcium release from pituitary microsomes. FEBS Letters, 1987, 217, 85-88.	1.3	17

#	Article	IF	CITATIONS
145	The Ba2+ sensitivity of the Na+-induced Ca2+ efflux in heart mitochondria: the site of inhibitory action. Biochimica Et Biophysica Acta - Biomembranes, 1986, 858, 125-134.	1.4	30
146	(+)-cyanidanol-3 prevents the functional deterioration of rat liver mitochondria induced by Fe2+ ions. Biochemical Pharmacology, 1986, 35, 2119-2122.	2.0	6
147	Ba2+ ions inhibit the release of Ca2+ ions from rat liver mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 1985, 809, 160-166.	0.5	19
148	Phosphate transport, membrane potential, and movements of calcium in rat liver mitochondria. Journal of Bioenergetics and Biomembranes, 1984, 16, 101-113.	1.0	19