Mengjiao Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7612227/publications.pdf

Version: 2024-02-01

516710 713466 22 856 16 21 citations g-index h-index papers 22 22 22 1345 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Reaction-based fluorescent and chemiluminescent probes for formaldehyde detection and imaging. Chemical Communications, 2022, 58, 1442-1453.	4.1	24
2	Carrier-free nanodrugs for safe and effective cancer treatment. Journal of Controlled Release, 2021, 329, 805-832.	9.9	90
3	Polymeric nanomaterials for targeting the cellular suborganelles. , 2021, , 267-290.		2
4	Stimuli-activatable nanomaterials for phototherapy of cancer. Biomedical Materials (Bristol), 2021, 16, 042008.	3.3	16
5	Chemodynamic nanomaterials for cancer theranostics. Journal of Nanobiotechnology, 2021, 19, 192.	9.1	51
6	Combining histone deacetylase inhibitors (HDACis) with other therapies for cancer therapy. European Journal of Medicinal Chemistry, 2021, 226, 113825.	5.5	34
7	Recent Advances in Paclitaxel-based Self-Delivery Nanomedicine for Cancer Therapy. Current Medicinal Chemistry, 2021, 28, 6358-6374.	2.4	11
8	Hypoxia-activated nanomedicines for effective cancer therapy. European Journal of Medicinal Chemistry, 2020, 195, 112274.	5.5	36
9	pH and redox dual responsive carrier-free anticancer drug nanoparticles for targeted delivery and synergistic therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 20, 102008.	3.3	24
10	Doxorubicin@Bcl-2 siRNA Core@Shell Nanoparticles for Synergistic Anticancer Chemotherapy. ACS Applied Bio Materials, 2018, 1, 289-297.	4.6	14
11	A Novel Type of Aqueous Dispersible Ultrathin-Layered Double Hydroxide Nanosheets for in Vivo Bioimaging and Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2017, 9, 34185-34193.	8.0	42
12	Surface engineering of organic nanoparticles for highly improved bioimaging. Colloids and Surfaces B: Biointerfaces, 2017, 159, 596-604.	5.0	2
13	Mitochondrial-Targeting Lonidamine-Doxorubicin Nanoparticles for Synergistic Chemotherapy to Conquer Drug Resistance. ACS Applied Materials & Samp; Interfaces, 2017, 9, 43498-43507.	8.0	72
14	Smart surface coating of drug nanoparticles with cross-linkable polyethylene glycol for bio-responsive and highly efficient drug delivery. Nanoscale, 2016, 8, 8118-8125.	5.6	34
15	Shape regulated anticancer activities and systematic toxicities of drug nanocrystals in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 181-189.	3.3	36
16	Smart doxorubicin nanoparticles with high drug payload for enhanced chemotherapy against drug resistance and cancer diagnosis. Nanoscale, 2015, 7, 5683-5690.	5.6	84
17	The aspect ratio effect of drug nanocrystals on cellular internalization efficiency, uptake mechanisms, and in vitro and in vivo anticancer efficiencies. Nanoscale, 2015, 7, 3588-3593.	5.6	12
18	Near-infrared fluorescence imaging using organic dye nanoparticles. Biomaterials, 2014, 35, 3356-3364.	11.4	55

#	Article	IF	CITATIONS
19	Highly luminescent and photostable core–shell dye nanoparticles for high efficiency bioimaging. Chemical Communications, 2014, 50, 737-739.	4.1	17
20	Functional Core/Shell Drug Nanoparticles for Highly Effective Synergistic Cancer Therapy. Advanced Healthcare Materials, 2014, 3, 1475-1485.	7.6	22
21	Carrier-free functionalized multidrug nanorods for synergistic cancer therapy. Biomaterials, 2013, 34, 8960-8967.	11.4	104
22	Ultrabright and ultrastable near-infrared dye nanoparticles for inÂvitro and inÂvivo bioimaging. Biomaterials, 2012, 33, 7803-7809.	11.4	74