

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7612109/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of biochar-amended alkali-activated slag on the stabilization of coral sand in coastal areas. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15, 760-772.	3.7	5
2	Sustainable utilization of slags. , 2022, , 321-341.		0
3	The engineering properties and reaction mechanism of MgO-activated slag cement-clayey sand-bentonite (MSB) cutoff wall backfills. Construction and Building Materials, 2021, 271, 121890.	3.2	16
4	One-pot synthesis of Mg Al layered double hydroxide (LDH) using MgO and metakaolin (MK) as precursors. Applied Clay Science, 2021, 206, 106070.	2.6	13
5	Green remediation of Cd and Hg contaminated soil using humic acid modified montmorillonite: Immobilization performance under accelerated ageing conditions. Journal of Hazardous Materials, 2020, 387, 122005.	6.5	87
6	Long-term effectiveness of inÂsitu solidification/stabilization. , 2020, , 247-278.		3
7	Magnesium oxychloride cement. , 2020, , 29-74.		3
8	Introduction $\hat{a} \in \hat{C}$ Characterization of MgO. , 2020, , 1-10.		1
9	Magnesia in alkali activated cements. , 2020, , 213-241.		1
10	Effects of excessive impregnation, magnesium content, and pyrolysis temperature on MgO-coated watermelon rind biochar and its lead removal capacity. Environmental Research, 2020, 183, 109152.	3.7	60
11	Microstructure and carbon storage capacity of hydrated magnesium carbonates synthesized from different sources and conditions. Journal of CO2 Utilization, 2019, 34, 353-361.	3.3	17
12	Temporal effect of MgO reactivity on the stabilization of lead contaminated soil. Environment International, 2019, 131, 104990.	4.8	49
13	Engineering Properties of Vertical Cutoff Walls Consisting of Reactive Magnesia-Activated Slag and Bentonite: Workability, Strength, and Hydraulic Conductivity. Journal of Materials in Civil Engineering, 2019, 31, .	1.3	26
14	Solidification/Stabilization for Soil Remediation: An Old Technology with New Vitality. Environmental Science & Technology, 2019, 53, 11615-11617.	4.6	131
15	Risk evaluation of biochars produced from Cd-contaminated rice straw and optimization of its production for Cd removal. Chemosphere, 2019, 233, 149-156.	4.2	54
16	Performance of magnesia-modified sodium carbonate-activated slag/fly ash concrete. Cement and Concrete Composites, 2019, 103, 160-174.	4.6	39
17	Influence of wet-dry cycles on vertical cutoff walls made of reactive magnesia-slag-bentonite-soil mixtures. Journal of Zhejiang University: Science A, 2019, 20, 948-960.	1.3	12
18	Adsorption of methyl tert-butyl ether (MTBE) onto ZSM-5 zeolite: Fixed-bed column tests, breakthrough curve modelling and regeneration. Chemosphere, 2019, 220, 422-431.	4.2	55

Fei Jin

#	Article	IF	CITATIONS
19	Effect of production temperature on lead removal mechanisms by rice straw biochars. Science of the Total Environment, 2019, 655, 751-758.	3.9	214
20	Breakthrough Curve Modelling of ZSM-5 Zeolite Packed Fixed-Bed Columns for the Removal of MTBE. Environmental Science and Engineering, 2019, , 724-730.	0.1	0
21	Leaching and microstructural properties of lead contaminated kaolin stabilized by GGBS-MgO in semi-dynamic leaching tests. Construction and Building Materials, 2018, 172, 626-634.	3.2	78
22	Kinetic and equilibrium modelling of MTBE (methyl tert-butyl ether) adsorption on ZSM-5 zeolite: Batch and column studies. Journal of Hazardous Materials, 2018, 347, 461-469.	6.5	52
23	Comparison of nickel adsorption on biochars produced from mixed softwood and Miscanthus straw. Environmental Science and Pollution Research, 2018, 25, 14626-14635.	2.7	30
24	Preliminary Investigation on the Development and Performance of Self-immune and Self-healing Soil-Cement Systems Under Freeze-Thaw Cycles. , 2018, , 84-91.		2
25	Assessing long-term stability of cadmium and lead in a soil washing residue amended with MgO-based binders using quantitative accelerated ageing. Science of the Total Environment, 2018, 643, 1571-1578.	3.9	57
26	Investigation of the properties of MgO recovered from reject brine obtained from desalination plants. Journal of Cleaner Production, 2018, 196, 100-108.	4.6	52
27	The embryotoxicity of ZnO nanoparticles to marine medaka, Oryzias melastigma. Aquatic Toxicology, 2017, 185, 11-18.	1.9	56
28	Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk. Environmental Science and Pollution Research, 2017, 24, 12809-12819.	2.7	145
29	Stabilization and solidification of a heavy metal contaminated site soil using a hydroxyapatite based binder. Construction and Building Materials, 2017, 156, 199-207.	3.2	97
30	Accelerated carbonation and performance of concrete made with steel slag as binding materials and aggregates. Cement and Concrete Composites, 2017, 83, 138-145.	4.6	194
31	Qualitative and quantitative characterisation of adsorption mechanisms of lead on four biochars. Science of the Total Environment, 2017, 609, 1401-1410.	3.9	151
32	Evaluation of Sulfate Resistance of Calcined Dolomite Activated Ground Granulated Blast Furnace Slag. Journal of Materials in Civil Engineering, 2016, 28, .	1.3	13
33	Salisbury biochar did not affect the mobility or speciation of lead in kaolin in a short-term laboratory study. Journal of Hazardous Materials, 2016, 316, 214-220.	6.5	32
34	Three-year performance of in-situ mass stabilised contaminated site soils using MgO-bearing binders. Journal of Hazardous Materials, 2016, 318, 302-307.	6.5	47
35	Multiscale Study of Sodium Sulfate Soaking Durability of Low Plastic Clay Stabilized by Reactive Magnesia-Activated Ground Granulated Blast-Furnace Slag. Journal of Materials in Civil Engineering, 2016, 28, .	1.3	35
36	Development of greener alkali-activated cement: utilisation of sodium carbonate for activating slag and fly ash mixtures. Journal of Cleaner Production, 2016, 113, 66-75.	4.6	276

Fei Jin

#	Article	IF	CITATIONS
37	Magnesia reactivity on activating efficacy for ground granulated blastfurnace slag for soft clay stabilisation. Applied Clay Science, 2016, 126, 57-62.	2.6	64
38	Mechanism of reactive magnesia – ground granulated blastfurnace slag (GGBS) soil stabilization. Canadian Geotechnical Journal, 2016, 53, 773-782.	1.4	87
39	Long-term impact of biochar on the immobilisation of nickel (II) and zinc (II) and the revegetation of a contaminated site. Science of the Total Environment, 2016, 542, 771-776.	3.9	120
40	Three-year performance of in-situ solidified/stabilised soil using novel MgO-bearing binders. Chemosphere, 2016, 144, 681-688.	4.2	89
41	Durability of reactive magnesia-activated slag-stabilized low plasticity clay subjected to drying–wetting cycle. European Journal of Environmental and Civil Engineering, 2016, 20, 215-230.	1.0	81
42	Magnesium sulfate attack on clays stabilised by carbide slag- and magnesia-ground granulated blast furnace slag. Geotechnique Letters, 2015, 5, 306-312.	0.6	48
43	Incorporation of reactive magnesia and quicklime in sustainable binders for soil stabilisation. Engineering Geology, 2015, 195, 53-62.	2.9	44
44	Workability, compressibility and hydraulic conductivity of zeolite-amended clayey soil/calcium-bentonite backfills for slurry-trench cutoff walls. Engineering Geology, 2015, 195, 258-268.	2.9	95
45	Sorption of lead by Salisbury biochar produced from British broadleaf hardwood. Bioresource Technology, 2015, 193, 553-556.	4.8	100
46	Characterisation of reactive magnesia and sodium carbonate-activated fly ash/slag paste blends. Construction and Building Materials, 2015, 93, 506-513.	3.2	111
47	Strength and drying shrinkage of slag paste activated by sodium carbonate and reactive MgO. Construction and Building Materials, 2015, 81, 58-65.	3.2	82
48	Effects of Different Reactive MgOs on the Hydration of MgO-Activated GGBS Paste. Journal of Materials in Civil Engineering, 2015, 27, .	1.3	58
49	Strength and hydration properties of reactive MgO-activated ground granulated blastfurnace slag paste. Cement and Concrete Composites, 2015, 57, 8-16.	4.6	214
50	The performance of blended conventional and novel binders in the in-situ stabilisation/solidification of a contaminated site soil. Journal of Hazardous Materials, 2015, 285, 46-52.	6.5	82
51	Characterisation of different commercial reactive magnesia. Advances in Cement Research, 2014, 26, 101-113.	0.7	113
52	Initial Investigation of Soil Stabilization with Calcined Dolomite-GGBS Blends. , 2014, , .		3
53	Strength and drying shrinkage of reactive MgO modified alkali-activated slag paste. Construction and Building Materials, 2014, 51, 395-404	3.2	230
54	Engineering properties and microstructural characteristics of cement-stabilized zinc-contaminated kaolin. Canadian Geotechnical Journal, 2014, 51, 289-302.	1.4	283

Fei Jin

#	Article	IF	CITATIONS
55	Compressibility of cement-stabilized zinc-contaminated high plasticity clay. Natural Hazards, 2014, 73, 671-683.	1.6	7
56	Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil. Journal of Hazardous Materials, 2014, 271, 131-140.	6.5	239
57	New phosphate-based binder for stabilization of soils contaminated with heavy metals: Leaching, strength and microstructure characterization. Journal of Environmental Management, 2014, 146, 179-188.	3.8	132
58	Activation of ground granulated blast furnace slag by using calcined dolomite. Construction and Building Materials, 2014, 68, 252-258.	3.2	45
59	Mechanical and hydration properties of ground granulated blastfurnace slag pastes activated with MgO–CaO mixtures. Construction and Building Materials, 2014, 69, 101-108.	3.2	85
60	Evaluation of novel reactive MgO activated slag binder for the immobilisation of lead and zinc. Chemosphere, 2014, 117, 285-294.	4.2	95
61	A study of the effect of temperature on the structural strength of a clayey soil using a micropenetrometer. Bulletin of Engineering Geology and the Environment, 2014, 73, 747-758.	1.6	34
62	Strength and hydration products of reactive MgO–silica pastes. Cement and Concrete Composites, 2014, 52, 27-33.	4.6	112
63	Stress–strain relation and strength characteristics of cement treated zinc-contaminated clay. Engineering Geology, 2013, 167, 20-26.	2.9	86
64	Thermogravimetric study on the hydration of reactive magnesia and silica mixture at room temperature. Thermochimica Acta, 2013, 566, 162-168.	1.2	116
65	Experimental investigation of influence of acid rain on leaching and hydraulic characteristics of cement-based solidified/stabilized lead contaminated clay. Journal of Hazardous Materials, 2012, 225-226, 195-201.	6.5	130
66	Evaluation of Cement Hydration Properties of Cement-Stabilized Lead-Contaminated Soils Using Electrical Resistivity Measurement. Journal of Hazardous, Toxic, and Radioactive Waste, 2011, 15, 312-320.	1.2	43
67	Strength Comparison of Cement Solidified/Stabilized Soils Contaminated by Lead and Copper. , 2010, , .		8
68	Application of Electrical Resistivity For Cement Solidified/Stabilized Heavy Metal Contaminated Soils. , 2010, , 259-264.		4
69	An Overview of Stabilization/Solidification Technique for Heavy Metals Contaminated Soils. , 2010, , 760-766.		9