
Gitta Coaker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7611897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Host-Microbe Interactions: Shaping the Evolution of the Plant Immune Response. Cell, 2006, 124, 803-814.	13.5	2,467
2	Plant-Pathogen Effectors: Cellular Probes Interfering with Plant Defenses in Spatial and Temporal Manners. Annual Review of Phytopathology, 2016, 54, 419-441.	3.5	515
3	Beyond Glycolysis: GAPDHs Are Multi-functional Enzymes Involved in Regulation of ROS, Autophagy, and Plant Immune Responses. PLoS Genetics, 2015, 11, e1005199.	1.5	336
4	A Receptor-like Cytoplasmic Kinase Phosphorylates the Host Target RIN4, Leading to the Activation of a Plant Innate Immune Receptor. Cell Host and Microbe, 2011, 9, 137-146.	5.1	282
5	RIN4 Functions with Plasma Membrane H+-ATPases to Regulate Stomatal Apertures during Pathogen Attack. PLoS Biology, 2009, 7, e1000139.	2.6	240
6	Activation of a Phytopathogenic Bacterial Effector Protein by a Eukaryotic Cyclophilin. Science, 2005, 308, 548-550.	6.0	220
7	Stress-induced reactive oxygen species compartmentalization, perception and signalling. Nature Plants, 2021, 7, 403-412.	4.7	191
8	The Plant Pathogen Pseudomonas syringae pv. tomato Is Genetically Monomorphic and under Strong Selection to Evade Tomato Immunity. PLoS Pathogens, 2011, 7, e1002130.	2.1	186
9	The type III effector HopF2 <i> _{Pto} </i> targets <i>Arabidopsis</i> RIN4 protein to promote <i>Pseudomonas syringae</i> virulence. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2349-2354.	3.3	146
10	The Role of the Plasma Membrane H+-ATPase in Plant–Microbe Interactions. Molecular Plant, 2011, 4, 416-427.	3.9	145
11	An effector from the Huanglongbing-associated pathogen targets citrus proteases. Nature Communications, 2018, 9, 1718.	5.8	142
12	Regulation of reactive oxygen species during plant immunity through phosphorylation and ubiquitination of RBOHD. Nature Communications, 2020, 11, 1838.	5.8	140
13	Plant NB-LRR signaling: upstreams and downstreams. Current Opinion in Plant Biology, 2011, 14, 365-371.	3.5	137
14	A Cysteine-Rich Protein Kinase Associates with a Membrane Immune Complex and the Cysteine Residues Are Required for Cell Death. Plant Physiology, 2017, 173, 771-787.	2.3	134
15	Plant NLR-triggered immunity: from receptor activation to downstream signaling. Current Opinion in Immunology, 2020, 62, 99-105.	2.4	124
16	The <i>Pseudomonas syringae</i> Type III Effector AvrRpt2 Promotes Pathogen Virulence via Stimulating Arabidopsis Auxin/Indole Acetic Acid Protein Turnover Â. Plant Physiology, 2013, 162, 1018-1029.	2.3	113
17	Recognition of bacterial plant pathogens: local, systemic and transgenerational immunity. New Phytologist, 2013, 199, 908-915.	3.5	107
18	Quantitative phosphoproteomic analysis reveals common regulatory mechanisms between effector― and PAMPâ€ŧriggered immunity in plants. New Phytologist, 2019, 221, 2160-2175.	3.5	102

GITTA COAKER

#	Article	IF	CITATIONS
19	Quantitative Proteomics Reveals Dynamic Changes in the Plasma Membrane During Arabidopsis Immune Signaling. Molecular and Cellular Proteomics, 2012, 11, M111.014555.	2.5	100
20	The MAP4 Kinase SIK1 Ensures Robust Extracellular ROS Burst and Antibacterial Immunity in Plants. Cell Host and Microbe, 2018, 24, 379-391.e5.	5.1	95
21	Phosphorylation of the Plant Immune Regulator RPM1-INTERACTING PROTEIN4 Enhances Plant Plasma Membrane H ⁺ -ATPase Activity and Inhibits Flagellin-Triggered Immune Responses in Arabidopsis. Plant Cell, 2015, 27, 2042-2056.	3.1	91
22	The <i>Pseudomonas syringae</i> Effector HopQ1 Promotes Bacterial Virulence and Interacts with Tomato 14-3-3 Proteins in a Phosphorylation-Dependent Manner Â. Plant Physiology, 2013, 161, 2062-2074.	2.3	86
23	Plant Immune Mechanisms: From Reductionistic to Holistic Points of View. Molecular Plant, 2020, 13, 1358-1378.	3.9	82
24	A Lectin Receptor-Like Kinase Mediates Pattern-Triggered Salicylic Acid Signaling. Plant Physiology, 2017, 174, 2501-2514.	2.3	70
25	Regulated Disorder: Posttranslational Modifications Control the RIN4 Plant Immune Signaling Hub. Molecular Plant-Microbe Interactions, 2019, 32, 56-64.	1.4	68
26	Bacterial AvrRpt2-Like Cysteine Proteases Block Activation of the Arabidopsis Mitogen-Activated Protein Kinases, MPK4 and MPK11. Plant Physiology, 2016, 171, 2223-2238.	2.3	67
27	miRNA863-3p sequentially targets negative immune regulator ARLPKs and positive regulator SERRATE upon bacterial infection. Nature Communications, 2016, 7, 11324.	5.8	66
28	Eukaryotic cyclophilin as a molecular switch for effector activation. Molecular Microbiology, 2006, 61, 1485-1496.	1.2	64
29	Genomeâ€wide analyses of <i>Liberibacter</i> species provides insights into evolution, phylogenetic relationships, and virulence factors. Molecular Plant Pathology, 2020, 21, 716-731.	2.0	62
30	Citrus CsACD2 Is a Target of <i>Candidatus</i> Liberibacter Asiaticus in Huanglongbing Disease. Plant Physiology, 2020, 184, 792-805.	2.3	60
31	PBL13 is a serine/threonine protein kinase that negatively regulates Arabidopsis immune responses Plant Physiology, 2015, 169, pp.01391.2015.	2.3	57
32	The Pseudomonas syringae Type III Effector HopF2 Suppresses Arabidopsis Stomatal Immunity. PLoS ONE, 2014, 9, e114921.	1.1	57
33	Genomic Analysis of <i>Clavibacter michiganensis</i> Reveals Insight Into Virulence Strategies and Genetic Diversity of a Gram-Positive Bacterial Pathogen. Molecular Plant-Microbe Interactions, 2017, 30, 786-802.	1.4	56
34	Molecular and Evolutionary Analyses of <i>Pseudomonas syringae</i> pv. <i>tomato</i> Race 1. Molecular Plant-Microbe Interactions, 2010, 23, 415-424.	1.4	51
35	Direct and Indirect Visualization of Bacterial Effector Delivery into Diverse Plant Cell Types during Infection. Plant Cell, 2017, 29, 1555-1570.	3.1	50
36	Proline Isomerization of the Immune Receptor-Interacting Protein RIN4 by a Cyclophilin Inhibits Effector-Triggered Immunity in Arabidopsis. Cell Host and Microbe, 2014, 16, 473-483.	5.1	48

GITTA COAKER

#	Article	IF	CITATIONS
37	ldentification of QTLs controlling resistance to Pseudomonas syringae pv. tomato race 1 strains from the wild tomato, Solanum habrochaites LA1777. Theoretical and Applied Genetics, 2015, 128, 681-692.	1.8	47
38	Two serine residues in <i><scp>P</scp>seudomonas syringae</i> effector HopZ1a are required for acetyltransferase activity and association with the host coâ€factor. New Phytologist, 2015, 208, 1157-1168.	3.5	45
39	Bacterial Vector-Borne Plant Diseases: Unanswered Questions and Future Directions. Molecular Plant, 2020, 13, 1379-1393.	3.9	45
40	A Pathogen Secreted Protein as a Detection Marker for Citrus Huanglongbing. Frontiers in Microbiology, 2017, 8, 2041.	1.5	40
41	Bacterial effector targeting of a plant iron sensor facilitates iron acquisition and pathogen colonization. Plant Cell, 2021, 33, 2015-2031.	3.1	40
42	The HopQ1 Effector's Nucleoside Hydrolase-Like Domain Is Required for Bacterial Virulence in Arabidopsis and Tomato, but Not Host Recognition in Tobacco. PLoS ONE, 2013, 8, e59684.	1.1	38
43	The intracellular nucleotideâ€binding leucineâ€rich repeat receptor (SINRC4a) enhances immune signalling elicited by extracellular perception. Plant, Cell and Environment, 2018, 41, 2313-2327.	2.8	38
44	The Evolution, Ecology, and Mechanisms of Infection by Gram-Positive, Plant-Associated Bacteria. Annual Review of Phytopathology, 2019, 57, 341-365.	3.5	38
45	Investigating the functions of the RIN4 protein complex during plant innate immune responses. Plant Signaling and Behavior, 2009, 4, 1107-1110.	1.2	36
46	Harnessing Effector-Triggered Immunity for Durable Disease Resistance. Phytopathology, 2017, 107, 912-919.	1.1	26
47	Dissection of Cell Death Induction by Wheat Stem Rust Resistance Protein Sr35 and Its Matching Effector AvrSr35. Molecular Plant-Microbe Interactions, 2020, 33, 308-319.	1.4	25
48	Three previously characterized resistances to yellow rust are encoded by a single locus Wtk1. Journal of Experimental Botany, 2020, 71, 2561-2572.	2.4	23
49	Phosphorylation of the Pseudomonas Effector AvrPtoB by Arabidopsis SnRK2.8 Is Required for Bacterial Virulence. Molecular Plant, 2020, 13, 1513-1522.	3.9	22
50	Citrus Vascular Proteomics Highlights the Role of Peroxidases and Serine Proteases during Huanglongbing Disease Progression. Molecular and Cellular Proteomics, 2020, 19, 1936-1952.	2.5	19
51	Tandem Protein Kinases Emerge as New Regulators of Plant Immunity. Molecular Plant-Microbe Interactions, 2021, 34, 1094-1102.	1.4	17
52	Variation in Streptomycin Resistance Mechanisms in <i>Clavibacter michiganensis</i> . Phytopathology, 2019, 109, 1849-1858.	1.1	16
53	Focus issue on plant immunity: from model systems to crop species. Frontiers in Plant Science, 2015, 6, 195.	1.7	14
54	Comparative Genomics to Develop a Specific Multiplex PCR Assay for Detection of <i>Clavibacter michiganensis</i> . Phytopathology, 2020, 110, 556-566.	1.1	11

GITTA COAKER

#	Article	IF	CITATIONS
55	Genome Sequences of Two Pseudomonas syringae pv. tomato Race 1 Strains, Isolated from Tomato Fields in California. Genome Announcements, 2016, 4, .	0.8	9
56	NRC proteins - a critical node for pattern and effector mediated signaling. Plant Signaling and Behavior, 2018, 13, 1-4.	1.2	9
57	Genome analysis of Spiroplasma citri strains from different host plants and its leafhopper vectors. BMC Genomics, 2021, 22, 373.	1.2	8
58	Novel Fusarium wilt resistance genes uncovered in natural and cultivated strawberry populations are found on three non-homoeologous chromosomes. Theoretical and Applied Genetics, 2022, 135, 2121-2145.	1.8	8
59	ER Bodies Are Induced by <i>Pseudomonas syringae</i> and Negatively Regulate Immunity. Molecular Plant-Microbe Interactions, 2021, 34, 1001-1009.	1.4	6
60	A Genetic Toolkit for Investigating <i>Clavibacter</i> Species: Markerless Deletion, Permissive Site Identification, and an Integrative Plasmid. Molecular Plant-Microbe Interactions, 2021, 34, 1336-1345.	1.4	6
61	XAP5 CIRCADIAN TIMEKEEPER Affects Both DNA Damage Responses and Immune Signaling in Arabidopsis. Frontiers in Plant Science, 2021, 12, 707923.	1.7	4
62	Pathogen Specialization. Science, 2014, 343, 496-497.	6.0	2