Yong-beom Lim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/761180/publications.pdf

Version: 2024-02-01

84 papers 3,599 citations

168829 31 h-index 58 g-index

94 all docs 94 docs citations

times ranked

94

4713 citing authors

#	Article	IF	CITATIONS
1	Unique behaviour of the α-helix in bending deformation. Chemical Communications, 2022, 58, 4368-4371.	2.2	5
2	Structural control of self-assembled peptide nanostructures to develop peptide vesicles for photodynamic therapy of cancer. Materials Today Bio, 2022, 16, 100337.	2.6	5
3	Selfâ€assembling cyclic peptideâ€oligonucleotide conjugates: Synthetic strategies and the effect of cyclic topology on selfâ€assembly and base pairing. Peptide Science, 2021, 113, e24193.	1.0	3
4	Determination of Genotoxicity Attributed to Diesel Exhaust Particles in Normal Human Embryonic Lung Cell (WI-38) Line. Biomolecules, 2021, 11, 291.	1.8	4
5	Age and Gender Effects on Genotoxicity in Diesel Exhaust Particles Exposed C57BL/6 Mice. Biomolecules, 2021, 11, 374.	1.8	8
6	A Three-Dimensional Sensor to Recognize Amyloid- \hat{l}^2 in Blood Plasma of Patients. ACS Omega, 2020, 5, 27295-27303.	1.6	1
7	Disaggregation of Amyloid- \hat{l}^2 Plaques by a Local Electric Field Generated by a Vertical Nanowire Electrode Array. ACS Applied Materials & Samp; Interfaces, 2020, 12, 55596-55604.	4.0	5
8	A Dodecapeptide Selected by Phage Display as a Potential Theranostic Probe for Colon Cancers. Translational Oncology, 2020, 13, 100798.	1.7	7
9	Slow-Motion Self-Assembly: Access to Intermediates with Heterochiral Peptides to Gain Control over Alignment Media Development. ACS Nano, 2020, 14, 3344-3352.	7.3	6
10	Real-Time Detection of Markers in Blood. Nano Letters, 2019, 19, 2291-2298.	4.5	9
11	A fluorescent supramolecular biosensor for bacterial detection via binding-induced changes in coiled-coil molecular assembly. Sensors and Actuators B: Chemical, 2019, 290, 93-99.	4.0	21
12	A CMOS VEGF Sensor for Cancer Diagnosis Using a Peptide Aptamer-Based Functionalized Microneedle. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 1288-1299.	2.7	27
13	Self-Assembling Peptides and Their Application in the Treatment of Diseases. International Journal of Molecular Sciences, 2019, 20, 5850.	1.8	131
14	Investigation of the Hydration State of Self-Assembled Peptide Nanostructures with Advanced Electron Paramagnetic Resonance Spectroscopy. ACS Omega, 2019, 4, 114-120.	1.6	4
15	3D ² Selfâ€Assembling Janus Peptide Dendrimers with Tailorable Supermultivalency. Advanced Functional Materials, 2019, 29, 1808020.	7.8	11
16	Modular Selfâ€Assembling Peptide Platform with a Tunable Thermoresponsiveness via a Single Amino Acid Substitution. Advanced Functional Materials, 2018, 28, 1803114.	7.8	17
17	Synthesis and purification of selfâ€assembling peptideâ€oligonucleotide conjugates by solidâ€phase peptide fragment condensation. Journal of Peptide Science, 2018, 24, e3092.	0.8	6
18	pH-Dependent In-Cell Self-Assembly of Peptide Inhibitors Increases the Anti-Prion Activity While Decreasing the Cytotoxicity. Biomacromolecules, 2017, 18, 943-950.	2.6	16

#	Article	IF	Citations
19	Inhibition of Multimolecular RNA–Protein Interactions Using Multitarget-Directed Nanohybrid System. ACS Applied Materials & Interfaces, 2017, 9, 11537-11545.	4.0	8
20	Fabrication of Multicomponent Multivesicular Peptidoliposomes and Their Directed Cytoplasmic Delivery. ACS Macro Letters, 2017, 6, 359-364.	2.3	5
21	Cell-Penetrating Cross- \hat{l}^2 Peptide Assemblies with Controlled Biodegradable Properties. Biomacromolecules, 2017, 18, 27-35.	2.6	13
22	Simultaneous Stabilization and Multimerization of a Peptide αâ∈Helix by Stapling Polymerization. Macromolecular Rapid Communications, 2016, 37, 1021-1026.	2.0	2
23	Tuning Oligovalent Biomacromolecular Interfaces Using Double-Layered α-Helical Coiled-Coil Nanoassemblies from Lariat-Type Building Blocks. ACS Macro Letters, 2016, 5, 1406-1410.	2.3	11
24	Nanomorphological Diversity of Self-Assembled Cyclopeptisomes Investigated via Thermodynamic and Kinetic Controls. Macromolecules, 2016, 49, 7426-7433.	2.2	7
25	Sensitive and Selective Detection of HIV-1 RRE RNA Using Vertical Silicon Nanowire Electrode Array. Nanoscale Research Letters, 2016, 11, 341.	3.1	11
26	Reciprocal Self-Assembly of Peptide-DNA Conjugates into a Programmable Sub-10-nm Supramolecular Deoxyribonucleoprotein. Angewandte Chemie, 2016, 128, 12182-12186.	1.6	6
27	Reciprocal Self-Assembly of Peptide-DNA Conjugates into a Programmable Sub-10-nm Supramolecular Deoxyribonucleoprotein. Angewandte Chemie - International Edition, 2016, 55, 12003-12007.	7.2	33
28	Photoactivation of Noncovalently Assembled Peptide Ligands on Carbon Nanotubes Enables the Dynamic Regulation of Stem Cell Differentiation. ACS Applied Materials & Samp; Interfaces, 2016, 8, 26470-26481.	4.0	22
29	Cyclic Peptide-Decorated Self-Assembled Nanohybrids for Selective Recognition and Detection of Multivalent RNAs. Bioconjugate Chemistry, 2016, 27, 799-808.	1.8	4
30	Highly efficient and fast pre-activation cyclization of the long peptide: Succinimidyl ester-amine reaction revisited. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5335-5338.	1.0	7
31	Covalent capture of î±-helical peptides in polymer hydrogel network for polyacrylamide gel stabilization electrophoresis. Journal of Polymer Science Part A, 2014, 52, 596-599.	2.5	4
32	Macromolecular Sensing of RNAs by Exploiting Conformational Changes in Supramolecular Nanostructures. Biomacromolecules, 2014, 15, 2642-2647.	2.6	1
33	Synthesis and conformational analysis of macrocyclic peptides consisting of both αâ€helix and polyproline helix segments. Biopolymers, 2014, 101, 279-286.	1.2	4
34	Macrocyclic Peptides Self-Assemble into Robust Vesicles with Molecular Recognition Capabilities. Bioconjugate Chemistry, 2014, 25, 1996-2003.	1.8	19
35	Multiplexing Natural Orientation: Oppositely Directed Self-Assembling Peptides. Biomacromolecules, 2014, 15, 2138-2145.	2.6	11
36	Facile synthesis, optical and conformational characteristics, and efficient intracellular delivery of a peptide–DNA conjugate. Bioorganic and Medicinal Chemistry, 2014, 22, 4204-4209.	1.4	6

#	Article	IF	Citations
37	Helix Stabilized, Thermostable, and Protease-Resistant Self-Assembled Peptide Nanostructures as Potential Inhibitors of Protein–Protein Interactions. Biomacromolecules, 2013, 14, 2684-2689.	2.6	33
38	Chameleon-like Self-Assembling Peptides for Adaptable Biorecognition Nanohybrids. ACS Nano, 2013, 7, 6850-6857.	7.3	38
39	Stabilization of \hat{l} ±-helices by the self-assembly of macrocyclic peptides on the surface of gold nanoparticles for molecular recognition. Chemical Communications, 2013, 49, 7617.	2.2	20
40	Bioinspired Self-Assembled Peptide Nanofibers with Thermostable Multivalent \hat{l}_{\pm} -Helices. Biomacromolecules, 2013, 14, 1594-1599.	2.6	18
41	Cytotoxicity and Genotoxicity Induced by Photothermal Effects of Colloidal Gold Nanorods. Journal of Nanoscience and Nanotechnology, 2013, 13, 4437-4445.	0.9	15
42	Large current difference in Au-coated vertical silicon nanowire electrode array with functionalization of peptides. Nanoscale Research Letters, 2013, 8, 502.	3.1	10
43	Cyto-/Genotoxic Effect of CdSe/ZnS Quantum Dots in Human Lung Adenocarcinoma Cells for Potential Photodynamic UV Therapy Applications. Journal of Nanoscience and Nanotechnology, 2012, 12, 2160-2168.	0.9	37
44	Differential Self-Assembly Behaviors of Cyclic and Linear Peptides. Biomacromolecules, 2012, 13, 1991-1995.	2.6	42
45	Structural and Conformational Dynamics of Self-Assembling Bioactive Î ² -Sheet Peptide Nanostructures Decorated with Multivalent RNA-Binding Peptides. Journal of the American Chemical Society, 2012, 134, 16047-16053.	6.6	22
46	Combination Selfâ€Assembly of βâ€Sheet Peptides and Carbon Nanotubes: Functionalizing Carbon Nanotubes with Bioactive βâ€Sheet Block Copolypeptides. Macromolecular Bioscience, 2012, 12, 49-54.	2.1	14
47	Controlled self-assembly of î±-helix-decorated peptide nanostructures. Soft Matter, 2011, 7, 1675.	1.2	18
48	Toroidal \hat{I}^2 -barrels from self-assembling \hat{I}^2 -sheet peptides. Journal of Materials Chemistry, 2011, 21, 11680.	6.7	15
49	Designer Nanorings with Functional Cavities from Selfâ€Assembling βâ€Sheet Peptides. Chemistry - an Asian Journal, 2011, 6, 452-458.	1.7	35
50	Toroidal Nanostructures from Selfâ€Assembly of Block Copolypeptides Based on Poly(<scp>L</scp> â€Arginine) and βâ€Sheet Peptide. Macromolecular Rapid Communications, 2011, 32, 191-19	96 ^{2.0}	25
51	Terminally-crosslinked sulfonated poly(fluorenyl ether sulfone) as a highly conductive and stable proton exchange membrane. Macromolecular Research, 2010, 18, 992-1000.	1.0	12
52	Cyclic Peptide Facial Amphiphile Preprogrammed to Selfâ€Assemble into Bioactive Peptide Capsules. Chemistry - A European Journal, 2010, 16, 5305-5309.	1.7	29
53	The inhibition of prions through blocking prion conversion by permanently charged branched polyamines of low cytotoxicity. Biomaterials, 2010, 31, 2025-2033.	5.7	48
54	Self-assembled filamentous nanostructures for drug/gene delivery applications. Expert Opinion on Drug Delivery, 2010, 7, 341-351.	2.4	27

#	Article	IF	CITATIONS
55	Comparative studies on the genotoxicity and cytotoxicity of polymeric gene carriers polyethylenimine (PEI) and polyamidoamine (PAMAM) dendrimer in Jurkat T-cells. Drug and Chemical Toxicology, 2010, 33, 357-366.	1.2	78
56	Stabilization of an αâ€Helix by βâ€Sheetâ€Mediated Selfâ€Assembly of a Macrocyclic Peptide. Angewandte Ch International Edition, 2009, 48, 1601-1605.	emie - 7.2	72
57	Molecular Recognition in Selfâ€Assembled Integrated Circuits: Getting Smaller while under Control. Angewandte Chemie - International Edition, 2009, 48, 3394-3396.	7.2	6
58	Recent advances in functional supramolecular nanostructures assembled from bioactive building blocks. Chemical Society Reviews, 2009, 38, 925.	18.7	204
59	Selfâ€assembly of supramolecular polymers into tunable helical structures. Journal of Polymer Science Part A, 2008, 46, 1925-1935.	2.5	73
60	Supramolecular Capsules with Gated Pores from an Amphiphilic Rod Assembly. Angewandte Chemie - International Edition, 2008, 47, 4662-4666.	7.2	117
61	Filamentous Artificial Virus from a Selfâ€Assembled Discrete Nanoribbon. Angewandte Chemie - International Edition, 2008, 47, 4525-4528.	7.2	85
62	Rod–coil block molecules: their aqueous self-assembly and biomaterials applications. Journal of Materials Chemistry, 2008, 18, 2909.	6.7	116
63	A cyclic RGD-coated peptide nanoribbon as a selective intracellular nanocarrier. Organic and Biomolecular Chemistry, 2008, 6, 1944.	1.5	27
64	Self-assembly of a peptide rod–coil: a polyproline rod and a cell-penetrating peptide Tat coil. Chemical Communications, 2008, , 1892.	2.2	56
65	Nanostructures of \hat{l}^2 -sheet peptides: steps towards bioactive functional materials. Journal of Materials Chemistry, 2008, 18, 723-727.	6.7	54
66	Bioactive molecular sheets from self-assembly of polymerizable peptides. Chemical Communications, 2008, , 4001.	2.2	19
67	Self-assembled multivalent carbohydrate ligands. Organic and Biomolecular Chemistry, 2007, 5, 401-405.	1.5	50
68	Carbohydrate-Coated Supramolecular Structures: Â Transformation of Nanofibers into Spherical Micelles Triggered by Guest Encapsulation. Journal of the American Chemical Society, 2007, 129, 4808-4814.	6.6	117
69	Glycoconjugate Nanoribbons from the Self-Assembly of Carbohydrateâ^Peptide Block Molecules for Controllable Bacterial Cell Cluster Formation. Biomacromolecules, 2007, 8, 1404-1408.	2.6	66
70	Cell-Penetrating-Peptide-Coated Nanoribbons for Intracellular Nanocarriers. Angewandte Chemie - International Edition, 2007, 46, 3475-3478.	7.2	100
71	Controlled Bioactive Nanostructures from Selfâ€Assembly of Peptide Building Blocks. Angewandte Chemie - International Edition, 2007, 46, 9011-9014.	7.2	84
72	Tunable Bacterial Agglutination and Motility Inhibition by Selfâ€Assembled Glycoâ€Nanoribbons. Chemistry - an Asian Journal, 2007, 2, 1363-1369.	1.7	36

#	Article	IF	CITATIONS
73	BBr3-promoted cyclization to produce ladder-type conjugated polymer. Tetrahedron Letters, 2006, 47, 8689-8692.	0.7	16
74	New cationic lipids for gene transfer with high efficiency and low toxicity: T-shape cholesterol ester derivatives. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 2637-2641.	1.0	26
75	Polyplexes Assembled with Internally Quaternized PAMAM-OH Dendrimer and Plasmid DNA Have a Neutral Surface and Gene Delivery Potency. Bioconjugate Chemistry, 2003, 14, 1214-1221.	1.8	171
76	Biodegradable, Endosome Disruptive, and Cationic Network-type Polymer as a Highly Efficient and Nontoxic Gene Delivery Carrier. Bioconjugate Chemistry, 2002, 13, 952-957.	1.8	184
77	Self-Assembled Ternary Complex of Cationic Dendrimer, Cucurbituril, and DNA:  Noncovalent Strategy in Developing a Gene Delivery Carrier. Bioconjugate Chemistry, 2002, 13, 1181-1185.	1.8	114
78	Partial purification and characterization of an 80-kDa transcription factor binding to bHLH motif in the rat p53 promoter. Molecular Biology Reports, 2002, 29, 337-345.	1.0	O
79	Cationic Hyperbranched Poly(amino ester):Â A Novel Class of DNA Condensing Molecule with Cationic Surface, Biodegradable Three-Dimensional Structure, and Tertiary Amine Groups in the Interior. Journal of the American Chemical Society, 2001, 123, 2460-2461.	6.6	151
80	Biodegradable polyester, poly[alpha-(4-aminobutyl)-L-glycolic acid], as a non-toxic gene carrier. Pharmaceutical Research, 2000, 17, 811-816.	1.7	172
81	Development of a Safe Gene Delivery System Using Biodegradable Polymer, Poly[î±-(4-aminobutyl)-l-glycolic acid]. Journal of the American Chemical Society, 2000, 122, 6524-6525.	6.6	159
82	Liposome fusion induced by pH-sensitive copolymer: Poly(4-vinylpyridine-co-N,N?-diethylaminoethyl) Tj ETQq0 0	0 rgBT /0	verlock 10 Tf 5
83	A Self-Destroying Polycationic Polymer:Â Biodegradable Poly(4-hydroxy-l-proline ester). Journal of the American Chemical Society, 1999, 121, 5633-5639.	6.6	178

 $\label{liposome} \text{Liposome fusion induced by pH-sensitive copolymer: Poly(4-vinylpyridine-co-N,N$$\hat{e}^2$-diethylaminoethyl) Tj ETQq0 0 0 rgBT /Overlock 10 Theorem (Application of the property of the p$

6

84