
Michael Gozin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7610898/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Halophyte biorefinery for polyhydroxyalkanoates production from Ulva sp. Hydrolysate with Haloferax mediterranei in pneumatically agitated bioreactors and ultrasound harvesting. Bioresource Technology, 2022, 344, 125964.	4.8	10
2	Design of coke-free methane dry reforming catalysts by molecular tuning of nitrogen-rich combustion precursors. Materials Today Chemistry, 2022, 24, 100765.	1.7	6
3	Power of sulfur – Chemistry, properties, laser ignition and theoretical studies of energetic perchlorate-free 1,3,4-thiadiazole nitramines. Chemical Engineering Journal, 2022, 443, 136246.	6.6	15
4	Turning mannitol-rich agricultural waste to poly(3-hydroxybutyrate) with Cobetia amphilecti fermentation and recovery with methyl levulinate as a green solvent. Bioresource Technology, 2022, 352, 127075.	4.8	11
5	Insights on hydrogen spillover on carbonaceous supports. Nanoscale, 2022, 14, 9068-9077.	2.8	4
6	Applying machine learning to balance performance and stability of high energy density materials. IScience, 2021, 24, 102240.	1.9	28
7	Marine bacteria associated with the green seaweed Ulva sp. for the production of polyhydroxyalkanoates. Bioresource Technology, 2021, 328, 124815.	4.8	23
8	Polyhydroxyalkanoates and biochar from green macroalgal Ulva sp. biomass subcritical hydrolysates: Process optimization and a priori economic and greenhouse emissions break-even analysis. Science of the Total Environment, 2021, 770, 145281.	3.9	8
9	Hydride- and boron-free solid hypergolic H2O2-ignitophores. Chemical Engineering Journal, 2021, 426, 131806.	6.6	13
10	Nitration of Chitin Monomer: From Glucosamine to Energetic Compound. Molecules, 2021, 26, 7531.	1.7	0
11	Molecular and Crystal Features of Thermostable Energetic Materials: Guidelines for Architecture of "Bridged―Compounds. ACS Central Science, 2020, 6, 54-75.	5.3	89
12	Controlled reactivity of metastable n-Al@Bi(IO3)3 by employment of tea polyphenols as an interfacial layer. Chemical Engineering Journal, 2020, 381, 122747.	6.6	29
13	Hydrothermal processing of a green seaweed Ulva sp. for the production of monosaccharides, polyhydroxyalkanoates, and hydrochar. Bioresource Technology, 2020, 318, 124263.	4.8	33
14	Energetic Materials: Novel Syntheses and Diagnostics. Engineering, 2020, 6, 974-975.	3.2	6
15	Strategies for Achieving Balance between Detonation Performance and Crystal Stability of High-Energy-Density Materials. IScience, 2020, 23, 100944.	1.9	21
16	"Tandem-action―ferrocenyl iodocuprates promoting low temperature hypergolic ignitions of "green― ElL–H ₂ O ₂ bipropellants. Journal of Materials Chemistry A, 2020, 8, 14661-14670.	5.2	21
17	Jellyfishâ€Based Smart Wound Dressing Devices Containing In Situ Synthesized Antibacterial Nanoparticles. Advanced Functional Materials, 2019, 29, 1902783.	7.8	39
18	Co-production of Monosaccharides and Hydrochar from Green Macroalgae Ulva (Chlorophyta) sp. with Subcritical Hydrolysis and Carbonization. Bioenergy Research, 2019, 12, 1090-1103.	2.2	10

#	Article	IF	CITATIONS
19	Methane dry reforming catalyst prepared by the co-deflagration of high-nitrogen energetic complexes. Journal of Materials Chemistry A, 2019, 7, 141-149.	5.2	15
20	Jellyfishâ€Based Plastic. Advanced Sustainable Systems, 2019, 3, 1900016.	2.7	11
21	Tuning the crystal morphology and catalytic behavior of graphene-templated energetic bis-tetrazole copper coordination polymers. Advanced Composites and Hybrid Materials, 2019, 2, 289-300.	9.9	24
22	Energetic Butterfly: Heat-Resistant Diaminodinitro trans-Bimane. Molecules, 2019, 24, 4324.	1.7	17
23	Insensitive Energetic Materials Containing Two-Dimensional Nanostructures as Building Blocks. , 2019, , 81-111.		5
24	Starch from the sea: The green macroalga Ulva ohnoi as a potential source for sustainable starch production in the marine biorefinery. Algal Research, 2019, 37, 215-227.	2.4	78
25	Macroalgal biomass subcritical hydrolysates for the production of polyhydroxyalkanoate (PHA) by Haloferax mediterranei. Bioresource Technology, 2019, 271, 166-173.	4.8	101
26	Design of New Bridge-Ring Energetic Compounds Obtained by Diels–Alder Reactions of Tetranitroethylene Dienophile. Journal of Physical Chemistry A, 2018, 122, 3320-3327.	1.1	18
27	Photosensitive but mechanically insensitive graphene oxide-carbohydrazide-metal hybrid crystalline energetic nanomaterials. Chemical Engineering Journal, 2018, 338, 240-247.	6.6	28
28	Decomposition kinetics and thermolysis products analyses of energetic diaminotriazole-substituted tetrazine structures. Thermochimica Acta, 2018, 667, 19-26.	1.2	8
29	Nitrogenâ€Rich Salts based on 1,1'â€Dihydroxyâ€5,5'â€Azobistetrazole: aNew Family of Energetic Mate Promising Properties. ChemistrySelect, 2018, 3, 3463-3473.	rials with	7
30	Nitrogen-rich salts of 5,5′-bistetrazole-1,1′-diolate: Syntheses, structures and properties. Journal of Molecular Structure, 2018, 1156, 544-549.	1.8	12
31	Silver Nanoparticles Complexed with Bovine Submaxillary Mucin Possess Strong Antibacterial Activity and Protect against Seedling Infection. Applied and Environmental Microbiology, 2018, 84, .	1.4	14
32	lodocuprate-containing ionic liquids as promoters for green propulsion. Journal of Materials Chemistry A, 2018, 6, 22819-22829.	5.2	44
33	Alkaline and Earth Alkaline Energetic Materials Based on a Versatile and Multifunctional 1-Aminotetrazol-5-one Ligand. Inorganic Chemistry, 2018, 57, 15105-15111.	1.9	31
34	Design of Zero Oxygen Balance Energetic Materials on the Basis of Diels–Alder Chemistry. Journal of Organic Chemistry, 2018, 83, 14698-14702.	1.7	28
35	Microbial Degradation of Epoxy. Materials, 2018, 11, 2123.	1.3	19
36	Effects of <i>closo</i> -icosahedral periodoborane salts on hypergolic reactions of 70% H ₂ O ₂ with energetic ionic liquids. Journal of Materials Chemistry A, 2018, 6, 19989-19997.	5.2	43

#	Article	IF	CITATIONS
37	Stabilizing Metastable Polymorphs of Metal–Organic Frameworks via Encapsulation of Graphene Oxide and Mechanistic Studies. ACS Applied Materials & Interfaces, 2018, 10, 32828-32837.	4.0	16
38	Polymorphism, phase transformation and energetic properties of 3-nitro-1,2,4-triazole. RSC Advances, 2018, 8, 24627-24632.	1.7	7
39	Highly Reactive Metastable Intermixed Composites (MICs): Preparation and Characterization. Advanced Materials, 2018, 30, e1706293.	11.1	217
40	Combustion of energetic iodine-rich coordination polymer – Engineering of new biocidal materials. Chemical Engineering Journal, 2018, 350, 1084-1091.	6.6	18
41	Energetic isomers of 1,2,4,5-tetrazine-bis-1,2,4-triazoles with low toxicity. Dalton Transactions, 2017, 46, 5994-6002.	1.6	21
42	Synthesis of Denser Energetic Metal–Organic Frameworks via a Tandem Anion–Ligand Exchange Strategy. Inorganic Chemistry, 2017, 56, 10281-10289.	1.9	24
43	Green Energetic Nitrogenâ€Rich Salts of 1,1′â€Dinitraminoâ€5,5′â€bistetrazolate. Chemistry - A European 2017, 23, 11159-11168.	Journal, 1.7	32
44	Explosive Properties and Thermal Stability of Urea-Hydrogen Peroxide Adduct. Propellants, Explosives, Pyrotechnics, 2017, 42, 198-203.	1.0	14
45	Alkali and alkaline earth metal salts of tetrazolone: structurally interesting and excellently thermostable. Dalton Transactions, 2017, 46, 8422-8430.	1.6	16
46	Formation of Highly Thermostable Copper-Containing Energetic Coordination Polymers Based on Oxidized Triaminoguanidine. ACS Applied Materials & Interfaces, 2016, 8, 21674-21682.	4.0	25
47	Highly Thermostable and Insensitive Energetic Hybrid Coordination Polymers Based on Graphene Oxide–Cu(II) Complex. Chemistry of Materials, 2016, 28, 6118-6126.	3.2	85
48	A layered 2D triaminoguanidine–glyoxal polymer and its transition metal complexes as novel insensitive energetic nanomaterials. Journal of Materials Chemistry A, 2016, 4, 18401-18408.	5.2	43
49	Highly insensitive and thermostable energetic coordination nanomaterials based on functionalized graphene oxides. Journal of Materials Chemistry A, 2016, 4, 9941-9948.	5.2	58
50	Highly energetic compositions based on functionalized carbon nanomaterials. Nanoscale, 2016, 8, 4799-4851.	2.8	290
51	Thermobaric effects formed by aluminum foils enveloping cylindrical charges. Combustion and Flame, 2016, 166, 148-157.	2.8	10
52	Systemic Gene Silencing in Primary T Lymphocytes Using Targeted Lipid Nanoparticles. ACS Nano, 2015, 9, 6706-6716.	7.3	146
53	Novel nitrogen-rich energetic macromolecules based on 3,6-dihydrazinyl-1,2,4,5-tetrazine. RSC Advances, 2015, 5, 106971-106980.	1.7	9
54	Thermal behavior of 1,3,5-trinitroso-1,3,5-triazinane and its melt-castable mixtures with cyclic nitramines. Thermochimica Acta, 2015, 615, 51-60.	1.2	8

#	Article	IF	CITATIONS
55	The nitration pattern of energetic 3,6-diamino-1,2,4,5-tetrazine derivatives containing azole functional groups. Dalton Transactions, 2015, 44, 13939-13946.	1.6	23
56	Hydroxyapatite coatings electrodeposited at near-physiological conditions. Materials Letters, 2014, 119, 24-27.	1.3	26
57	Diameter-selective dispersion of carbon nanotubes by β-lactoglobulin whey protein. Colloids and Surfaces B: Biointerfaces, 2013, 112, 16-22.	2.5	13
58	New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media. Journal of Hazardous Materials, 2013, 260, 676-688.	6.5	35
59	Gated-Controlled Rectification of a Self-Assembled Monolayer-Based Transistor. Journal of Physical Chemistry C, 2013, 117, 8468-8474.	1.5	38
60	Doped Biomolecules in Miniaturized Electric Junctions. Journal of the American Chemical Society, 2012, 134, 8468-8473.	6.6	33
61	Measurement and optimization of organic chemical reaction yields by GC–MS with supersonic molecular beams. Tetrahedron, 2012, 68, 5793-5799.	1.0	19
62	Citrate-Capped Gold Nanoparticle Electrophoretic Heat Production in Response to a Time-Varying Radio-Frequency Electric Field. Journal of Physical Chemistry C, 2012, 116, 24380-24389.	1.5	60
63	Multiple Selfâ€Assembly Functional Structures Based on Versatile Binding Sites of <i>β</i> ‣actoglobulin. Advanced Functional Materials, 2012, 22, 3765-3776.	7.8	12
64	Tuning the Critical Temperature of Cuprate Superconductor Films with Selfâ€Assembled Organic Layers. Angewandte Chemie - International Edition, 2012, 51, 7162-7165.	7.2	19
65	Bio-inspired synthesis of chiral silver nanoparticles in mucin glycoprotein—the natural choice. Chemical Communications, 2011, 47, 7419.	2.2	37
66	Enhanced Bioavailability of Polyaromatic Hydrocarbons in the Form of Mucin Complexes. Chemical Research in Toxicology, 2011, 24, 314-320.	1.7	13
67	Toward the Development of the Direct and Selective Detection of Nitrates by a Bioinspired Mo–Cu System. Organic Letters, 2011, 13, 5532-5535.	2.4	18
68	The impact of highly hydrophobic material on the structure of transferrin and its ability to bind iron. Toxicology Letters, 2011, 203, 33-39.	0.4	2
69	Selective Sulfoxidation of Thioethers and Thioaryl Boranes with Nitrate, Promoted by a Molybdenum–Copper Catalytic System. Journal of Organic Chemistry, 2011, 76, 5240-5246.	1.7	37
70	Efficient Separation of Dyes by Mucin: Toward Bioinspired White‣uminescent Devices. Advanced Materials, 2011, 23, 4261-4264.	11.1	39
71	High-Yield Fabrication of Molecular Vertical Junctions. Journal of Nanoscience and Nanotechnology, 2010, 10, 8260-8264.	0.9	3
72	Mucin Complexes of Nanomaterials: First Biochemical Encounter. Small, 2010, 6, 262-269.	5.2	19

5

#	Article	IF	CITATIONS
73	Vertically Stacked Molecular Junctions: Toward a Three-Dimensional Multifunctional Molecular Circuit. Journal of Physical Chemistry Letters, 2010, 1, 1574-1579.	2.1	7
74	Toward Development of Targeted Nonsteroidal Antiandrogen-1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic Acidâ^'Gadolinium Complex for Prostate Cancer Diagnostics. Journal of Medicinal Chemistry, 2010, 53, 6316-6325.	2.9	10
75	Organic Reactions Promoted by Mucin Glycoproteins. Journal of the American Chemical Society, 2009, 131, 12074-12075.	6.6	7
76	Multipeak Negativeâ€Differentialâ€Resistance Molecular Device. Small, 2008, 4, 55-58.	5.2	63
77	Reversal of axonal loss and disability in a mouse model of progressive multiple sclerosis. Journal of Clinical Investigation, 2008, 118, 1532-1543.	3.9	193
78	β-Lactoglobulin as a Versatile Vehicle for Various Ligands - Mapping of the Elusive Binding Sites ECS Meeting Abstracts, 2008, , .	0.0	0
79	Phenanthroline-Derived Ratiometric Chemosensor for Ureas. Journal of Organic Chemistry, 2007, 72, 2318-2328.	1.7	32
80	Biodelivery of a Fullerene Derivative. Bioconjugate Chemistry, 2007, 18, 1095-1100.	1.8	18
81	Catalytic Oxidation of Hydrazo Derivatives Promoted by a TiCl ₃ /HBr System. Journal of the American Chemical Society, 2007, 129, 13784-13785.	6.6	58
82	Synthesis and Evaluation of a Pseudocyclic Tristhiourea-Based Anion Host. Journal of Organic Chemistry, 2007, 72, 2289-2296.	1.7	45
83	Treatment with a Fullerene Derivative (ABS-75) Reduces Disease Progression and Axonal Loss in MOG-induced Progressive EAE in NOD Mice. Clinical Immunology, 2007, 123, S151.	1.4	Ο
84	Can Apomyoglobin Form a Complex with a Spherical Ligand? Interactions Between Apomyoglobin and [C60] Fullerene Derivative. Journal of Nanoscience and Nanotechnology, 2007, 7, 1389-1394.	0.9	2
85	Chiral dimethylamine flutamide derivatives—modeling, synthesis, androgen receptor affinities and carbon-11 labeling. Nuclear Medicine and Biology, 2006, 33, 695-704.	0.3	18
86	Interaction of C60-Fullerene and Carboxyfullerene with Proteins:Â Docking and Binding Site Alignment. Bioconjugate Chemistry, 2006, 17, 378-386.	1.8	111
87	Formation of a Soluble Stable Complex between Pristine C60-Fullerene and a Native Blood Protein. ChemBioChem, 2006, 7, 1783-1789.	1.3	48
88	Prostate cancer PET bioprobes: Synthesis of [18F]-radiolabeled hydroxyflutamide derivatives. Bioorganic and Medicinal Chemistry, 2005, 13, 6195-6205.	1.4	32
89	Construction of Dithiol-Based Nanostructures by a Layer-Exchange Process. Small, 2005, 1, 848-851.	5.2	12
90	In vitro synthesis of uniform poly(dG)-poly(dC) by Klenow exo- fragment of polymerase I. Nucleic Acids Research, 2005, 33, 525-535.	6.5	52

#	Article	IF	CITATIONS
91	Synthesis and Water Solubility of Adamantyl-OEG-fullerene Hybrids. Journal of Organic Chemistry, 2005, 70, 2660-2666.	1.7	23
92	Formation and Characterization of Stable Human Serum Albuminâ^'Tris-malonic Acid [C60]Fullerene Complex. Bioconjugate Chemistry, 2005, 16, 1058-1062.	1.8	67
93	Uridine-Conjugated Ferrocene DNA Oligonucleotides:Â Unexpected Cyclization Reaction of the Uridine Base. Journal of the American Chemical Society, 2000, 122, 6767-6768.	6.6	84
94	Electron Transfer at Electrodes through Conjugated "Molecular Wire―Bridges. Journal of the American Chemical Society, 1999, 121, 1059-1064.	6.6	414
95	Soluble Ferrocene Conjugates for Incorporation into Self-Assembled Monolayers. Journal of Organic Chemistry, 1999, 64, 2070-2079.	1.7	115
96	Carbonâ^'Carbon Bond Activation by Rhodium(I) in Solution. Comparison of sp2â^'sp3 vs sp3â^'sp3 Câ^'C, Câ^'H vs Câ^'C, and Arâ^'CH3 vs Arâ^'CH2CH3 Activation. Journal of the American Chemical Society, 1998, 120, 13415-13421.	6.6	58
97	Rhodium and Palladium Complexes of a 3,5-Lutidine-Based Phosphine Ligand. Inorganic Chemistry, 1996, 35, 1792-1797.	1.9	59
98	Formation and X-ray Structures of PCP Ligand Based Platinum(II) and Palladium(II) Macrocycles. Inorganic Chemistry, 1996, 35, 7068-7073.	1.9	43
99	Directly Observed Oxidative Addition of a Strong Carbon-Carbon Bond to a Soluble Metal Complex. Journal of the American Chemical Society, 1995, 117, 9774-9775.	6.6	110
100	Carbon–carbon activation by rhodium in solution; sp2–sp3is preferred over sp3–sp3bond cleavage. Journal of the Chemical Society Chemical Communications, 1995, , 1965-1966.	2.0	43
101	Transfer of methylene groups promoted by metal complexation. Nature, 1994, 370, 42-44.	13.7	119
102	Activation of a carbon–carbon bond in solution by transition-metal insertion. Nature, 1993, 364, 699-701.	13.7	282
103	Palladium-catalyzed vinylation of aryl chlorides. Chelate effect in catalysis. Organometallics, 1992, 11, 1995-1996.	1.1	143
104	Reductive dechlorination of aryl chlorides catalyzed by palladium complexes containing basic, chelating phosphines. Journal of Molecular Catalysis, 1992, 73, 173-180.	1.2	49
105	Crystal and molecular structures of dimesitylketene and bis(3,5-dibromo-2,4,6-trimethylphenyl)ketene. Intrinsic torsional angles and buttressing effects in 1,1-dimesitylvinyl propellers. Journal of Physical Organic Chemistry. 1989. 2. 271-280.	0.9	15