Mykola Shandura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7610541/publications.pdf

Version: 2024-02-01

933447 940533 16 400 10 16 citations g-index h-index papers 16 16 16 576 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	â€~Hybrid' mero-anionic polymethines with a 1,3,2-dioxaborine core. New Journal of Chemistry, 2022, 46, 1273-1285.	2.8	3
2	Highly Fluorescent Dianionic Polymethines with a 1,3,2-Dioxaborine Core. Journal of Organic Chemistry, 2021, 86, 5227-5233.	3.2	10
3	Self-Assembly for Two Types of J-Aggregates: cis-Isomers of Dye on the Carbon Nanotube Surface and Free Aggregates of Dye trans-Isomers. Journal of Physical Chemistry C, 2019, 123, 19903-19911.	3.1	13
4	D–π–A–π–D Dyes with a 1,3,2â€Dioxaborine Cycle in the Polymethine Chain: Efficient Longâ€Waveleng Fluorophores. European Journal of Organic Chemistry, 2018, 2018, 240-246.	th 2.4	16
5	A dioxaborine cyanine dye as a photoluminescence probe for sensing carbon nanotubes. Beilstein Journal of Nanotechnology, 2016, 7, 1991-1999.	2.8	5
6	Emergence of Additional Visible-Range Photoluminescence Due to Aggregation of Cyanine Dye: Astraphloxin on Carbon Nanotubes Dispersed with Anionic Surfactant. Journal of Physical Chemistry C, 2016, 120, 20378-20386.	3.1	13
7	A sensing mechanism for the detection of carbon nanotubes using selective photoluminescent probes based on ionic complexes with organic dyes. Light: Science and Applications, 2016, 5, e16028-e16028.	16.6	44
8	Dehydroacetic Acid Based Dioxaborine Styryl Dye: Effective Fluorescent Probe for Ammonia and Amine Detection. Key Engineering Materials, 2014, 605, 159-162.	0.4	1
9	Two-Photon Absorption Spectrum of a Single Crystal Cyanine-like Dye. Journal of Physical Chemistry Letters, 2012, 3, 1222-1228.	4.6	27
10	Fluorescent labeling of proteins with amine-specific 1,3,2-(2H)-dioxaborine polymethine dye. Analytical Biochemistry, 2012, 420, 115-120.	2.4	18
11	Efficient Two-Photon Absorbing Acceptor-Ï€-Acceptor Polymethine Dyes. Journal of Physical Chemistry A, 2010, 114, 6493-6501.	2.5	67
12	Essential-State Model for Polymethine Dyes: Symmetry Breaking and Optical Spectra. Journal of Physical Chemistry Letters, 2010, 1, 1800-1804.	4.6	94
13	Nonlinear absorption in a series of Donor–π–Acceptor cyanines with different conjugation lengths. Journal of Materials Chemistry, 2009, 19, 7503.	6.7	62
14	Substituted xanthylocyanines, Part IV: Trinuclear dyes with a pyronine nucleus. Dyes and Pigments, 2008, 77, 369-373.	3.7	3
15	New heterocyclic analogues of rhodamines. Dyes and Pigments, 2007, 73, 25-30.	3.7	8
16	Substituted xanthylocyanines. II. Pyroninocyanines. Dyes and Pigments, 2005, 66, 171-177.	3.7	16