Ka Yee C Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7610008/publications.pdf

Version: 2024-02-01

414414 430874 1,377 33 18 32 citations h-index g-index papers 33 33 33 2068 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Collapse Mechanisms of Langmuir Monolayers. Annual Review of Physical Chemistry, 2008, 59, 771-791.	10.8	200
2	Metal-coordination: using one of nature's tricks to control soft material mechanics. Journal of Materials Chemistry B, 2014, 2, 2467-2472.	5.8	178
3	Lipid membrane templates the ordering and induces the fibrillogenesis of Alzheimer's disease amyloidâ€Î² peptide. Proteins: Structure, Function and Bioinformatics, 2008, 72, 1-24.	2.6	131
4	Collapse of Particle-Laden Interfaces under Compression: Buckling vs Particle Expulsion. Langmuir, 2015, 31, 7764-7775.	3.5	90
5	Synchrotron X-Ray Study of Lung Surfactant-Specific Protein SP-B in Lipid Monolayers. Biophysical Journal, 2001, 81, 572-585.	0.5	69
6	Headgroup Percolation and Collapse of Condensed Langmuir Monolayersâ€. Journal of Physical Chemistry B, 2006, 110, 22079-22087.	2.6	64
7	Lateral stress relaxation and collapse in lipid monolayers. Soft Matter, 2008, 4, 2019.	2.7	62
8	Comparative Study of Poloxamer Insertion into Lipid Monolayersâ€. Langmuir, 2003, 19, 1809-1815.	3.5	60
9	Apparatus for the Continuous Monitoring of Surface Morphology via Fluorescence Microscopy during Monolayer Transfer to Substrates. Langmuir, 1998, 14, 2567-2572.	3.5	58
10	Membrane Sealing by Polymers. Annals of the New York Academy of Sciences, 2005, 1066, 310-320.	3.8	54
11	Antimicrobial Peptides Share a Common Interaction Driven by Membrane Line Tension Reduction. Biophysical Journal, 2016, 111, 2176-2189.	0.5	51
12	Mechanical Stability of Polystyrene and Janus Particle Monolayers at the Air/Water Interface. Journal of the American Chemical Society, 2015, 137, 15370-15373.	13.7	50
13	Templating Effect of Lipid Membranes on Alzheimer's Amyloid Beta Peptide. ChemPhysChem, 2005, 6, 226-229.	2.1	42
14	Effects of bilayer phases on phospholipid-poloxamer interactions. Soft Matter, 2009, 5, 1496.	2.7	36
15	Long-Range Organization of Membrane-Curving Proteins. ACS Central Science, 2017, 3, 1246-1253.	11.3	36
16	Impact of Surface Amphiphilicity on the Interfacial Behavior of Janus Particle Layers under Compression. Langmuir, 2019, 35, 15813-15824.	3.5	33
17	An ultrasensitive tool exploiting hydration dynamics to decipher weak lipid membrane–polymer interactions. Journal of Magnetic Resonance, 2012, 215, 115-119.	2.1	32
18	Beyond electrostatics: Antimicrobial peptide selectivity and the influence of cholesterol-mediated fluidity and lipid chain length on protegrin-1 activity. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 182977.	2.6	20

#	Article	IF	CITATIONS
19	Coupling X-Ray Reflectivity and In Silico Binding to Yield Dynamics of Membrane Recognition by Tim1. Biophysical Journal, 2017, 113, 1505-1519.	0.5	17
20	Thermodynamic and kinetic investigations of the release of oxidized phospholipids from lipid membranes and its effect on vascular integrity. Chemistry and Physics of Lipids, 2013, 175-176, 9-19.	3.2	16
21	Sensitivity of peripheral membrane proteins to the membrane context: A case study of phosphatidylserine and the TIM proteins. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2126-2133.	2.6	13
22	Tailoring Biomimetic Phosphorylcholine-Containing Block Copolymers as Membrane-Targeting Cellular Rescue Agents. Biomacromolecules, 2019, 20, 3385-3391.	5.4	11
23	Synergistic Interactions of Sugars/Polyols and Monovalent Salts with Phospholipids Depend upon Sugar/Polyol Complexity and Anion Identity. Langmuir, 2015, 31, 12688-12698.	3.5	8
24	î±-Synuclein Sterically Stabilizes Spherical Nanoparticle-Supported Lipid Bilayers. ACS Applied Bio Materials, 2019, 2, 1413-1419.	4.6	8
25	Triblock Copolymer as an Effective Membrane-Sealing Material. MRS Bulletin, 2006, 31, 532-535.	3.5	7
26	Enhanced Ordering in Monolayers Containing Glycosphingolipids: Impact of Carbohydrate Structure. Biophysical Journal, 2018, 114, 1103-1115.	0.5	7
27	Invited paper Fourier-transform heterodyne spectroscopy of liquid and solid surfaces. Applied Physics B: Lasers and Optics, 1996, 64, 1-13.	2.2	6
28	Osmotic Shock-Triggered Assembly of Highly Charged, Nanoparticle-Supported Membranes. Langmuir, 2018, 34, 13000-13005.	3.5	6
29	How Tim proteins differentially exploit membrane features to attain robust target sensitivity. Biophysical Journal, 2021, 120, 4891-4902.	0.5	5
30	The Câ€Terminal Domain of αâ€Synuclein Confers Steric Stabilization on Synaptic Vesicleâ€Like Surfaces. Advanced Materials Interfaces, 2020, 7, 1902151.	3.7	2
31	Structure of polymer-capped gold nanorods binding to model phospholipid monolayers. JPhys Materials, 2021, 4, 034004.	4.2	2
32	Multiscale geometry and mechanics of lipid monolayer collapse. Current Topics in Membranes, 2021, 87, 1-45.	0.9	2
33	Stressing Lipid Membranes: Effects of Polymers on Membrane Structural Integrity. Materials Research Society Symposia Proceedings, 2012, 1480, 1.	0.1	1