List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7609907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<scp>BUDAâ€MESMERISE</scp> : Rapid acquisition and unsupervised parameter estimation for <scp>T₁</scp> , <scp>T₂</scp> , <scp>M₀</scp> , <scp>B₀</scp> , and <scp>B₁</scp> maps. Magnetic Resonance in Medicine, 2022, 88, 292-308.	1.9	4
2	Dedicated container for postmortem human brain ultra-high field magnetic resonance imaging. NeuroImage, 2021, 235, 118010.	2.1	2
3	MESMERISED: Super-accelerating T1 relaxometry and diffusion MRI with STEAM at 7 T for quantitative multi-contrast and diffusion imaging. NeuroImage, 2021, 239, 118285.	2.1	9
4	Human larynx motor cortices coordinate respiration for vocal-motor control. NeuroImage, 2021, 239, 118326.	2.1	13
5	Power of mind: Attentional focus rather than palatability dominates neural responding to visual food stimuli in females with overweight. Appetite, 2020, 148, 104609.	1.8	14
6	Gray matter network reorganization in multiple sclerosis from 7â€Tesla and 3â€Tesla MRI data. Annals of Clinical and Translational Neurology, 2020, 7, 543-553.	1.7	10
7	<i>Ex vivo</i> diffusion MRI of the human brain: Technical challenges and recent advances. NMR in Biomedicine, 2019, 32, e3941.	1.6	106
8	Ultra-high resolution and multi-shell diffusion MRI of intact ex vivo human brains using kT-dSTEAM at 9.4T. NeuroImage, 2019, 202, 116087.	2.1	24
9	Scalable Labeling for Cytoarchitectonic Characterization of Large Optically Cleared Human Neocortex Samples. Scientific Reports, 2019, 9, 10880.	1.6	26
10	The mesoSPIM initiative: open-source light-sheet microscopes for imaging cleared tissue. Nature Methods, 2019, 16, 1105-1108.	9.0	174
11	Characterizing Microstructural Tissue Properties in Multiple Sclerosis with Diffusion MRI at 7†T and 3†T: The Impact of the Experimental Design. Neuroscience, 2019, 403, 17-26.	1.1	54
12	Individualized parcellation of the subthalamic nucleus in patients with Parkinson's disease with 7T MRI. NeuroImage, 2018, 168, 403-411.	2.1	106
13	SAR and scanâ€time optimized 3D wholeâ€brain double inversion recovery imaging at 7T. Magnetic Resonance in Medicine, 2018, 79, 2620-2628.	1.9	3
14	Robust and Fast Markov Chain Monte Carlo Sampling of Diffusion MRI Microstructure Models. Frontiers in Neuroinformatics, 2018, 12, 97.	1.3	23
15	Compressed Sensing Diffusion Spectrum Imaging for Accelerated Diffusion Microstructure MRI in Long-Term Population Imaging. Frontiers in Neuroscience, 2018, 12, 650.	1.4	26
16	Curvilinear locus coeruleus functional connectivity trajectories over the adult lifespan: a 7T MRI study. Neurobiology of Aging, 2018, 69, 167-176.	1.5	37
17	Differential Time Course of Microstructural White Matter in Patients With Psychotic Disorder and Individuals at Risk: A 3-Year Follow-up Study. Schizophrenia Bulletin, 2017, 43, 160-170.	2.3	19
18	A "kissing lesion― In-vivo 7T evidence of meningeal inflammation in early multiple sclerosis. Multiple Sclerosis Journal, 2017, 23, 1167-1169.	1.4	14

#	Article	IF	CITATIONS
19	On the importance of modeling fMRI transients when estimating effective connectivity: A dynamic causal modeling study using ASL data. NeuroImage, 2017, 155, 217-233.	2.1	24
20	Determining Excitatory and Inhibitory Neuronal Activity from Multimodal fMRI Data Using a Generative Hemodynamic Model. Frontiers in Neuroscience, 2017, 11, 616.	1.4	98
21	Ultra-High Field MRI Post Mortem Structural Connectivity of the Human Subthalamic Nucleus, Substantia Nigra, and Globus Pallidus. Frontiers in Neuroanatomy, 2016, 10, 66.	0.9	42
22	Automatic Segmentation of Human Cortical Layer-Complexes and Architectural Areas Using Ex vivo Diffusion MRI and Its Validation. Frontiers in Neuroscience, 2016, 10, 487.	1.4	25
23	Assessing Microstructural Substrates of White Matter Abnormalities: A Comparative Study Using DTI and NODDI. PLoS ONE, 2016, 11, e0167884.	1.1	65
24	T 1 relaxometry of crossing fibres in the human brain. NeuroImage, 2016, 141, 133-142.	2.1	50
25	Including diffusion time dependence in the extra-axonal space improves in vivo estimates of axonal diameter and density in human white matter. NeuroImage, 2016, 130, 91-103.	2.1	92
26	A Specialized Multi-Transmit Head Coil for High Resolution fMRI of the Human Visual Cortex at 7T. PLoS ONE, 2016, 11, e0165418.	1.1	23
27	Unraveling the multiscale structural organization and connectivity of the human brain: the role of diffusion MRI. Frontiers in Neuroanatomy, 2015, 9, 77.	0.9	26
28	Histological validation of high-resolution DTI in human post mortem tissue. Frontiers in Neuroanatomy, 2015, 9, 98.	0.9	118
29	The When and Where of Working Memory Dysfunction in Early-Onset Schizophrenia—A Functional Magnetic Resonance Imaging Study. Cerebral Cortex, 2015, 25, 2494-2506.	1.6	50
30	White matter microstructure pathology in classic galactosemia revealed by neurite orientation dispersion and density imaging. Journal of Inherited Metabolic Disease, 2015, 38, 295-304.	1.7	58
31	Physiologically informed dynamic causal modeling of fMRI data. NeuroImage, 2015, 122, 355-372.	2.1	109
32	Neural predictors of chocolate intake following chocolate exposure. Appetite, 2015, 87, 98-107.	1.8	20
33	Ultra-high field magnetic resonance imaging of the basal ganglia and related structures. Frontiers in Human Neuroscience, 2014, 8, 876.	1.0	47
34	TMS affects moral judgment, showing the role of DLPFC and TPJ in cognitive and emotional processing. Frontiers in Neuroscience, 2014, 8, 18.	1.4	64
35	Comparative Analysis of the Macroscale Structural Connectivity in the Macaque and Human Brain. PLoS Computational Biology, 2014, 10, e1003529.	1.5	68
36	General overview on the merits of multimodal neuroimaging data fusion. NeuroImage, 2014, 102, 3-10.	2.1	179

#	Article	IF	CITATIONS
37	Microstructural white matter alterations in psychotic disorder: A family-based diffusion tensor imaging study. Schizophrenia Research, 2013, 146, 291-300.	1.1	19
38	Histological Validation of DW-MRI Tractography in Human Postmortem Tissue. Cerebral Cortex, 2013, 23, 442-450.	1.6	93
39	Integration of "what―and "where―in frontal cortex during visual imagery of scenes. NeuroImage, 2012, 60, 47-58.	2.1	51
40	Fighting food temptations: The modulating effects of short-term cognitive reappraisal, suppression and up-regulation on mesocorticolimbic activity related to appetitive motivation. Neurolmage, 2012, 60, 213-220.	2.1	130
41	A short history of causal modeling of fMRI data. NeuroImage, 2012, 62, 856-863.	2.1	96
42	Human cortical connectome reconstruction from diffusion weighted MRI: The effect of tractography algorithm. Neurolmage, 2012, 62, 1732-1749.	2.1	164
43	Effective connectivity: Influence, causality and biophysical modeling. NeuroImage, 2011, 58, 339-361.	2.1	361
44	The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution. NeuroImage, 2011, 58, 296-302.	2.1	195
45	Reply to Friston and David. NeuroImage, 2011, 58, 310-311.	2.1	32
46	Specialization in the default mode: Taskâ€induced brain deactivations dissociate between visual working memory and attention. Human Brain Mapping, 2010, 31, 126-139.	1.9	171
47	Ground truth hardware phantoms for validation of diffusionâ€weighted MRI applications. Journal of Magnetic Resonance Imaging, 2010, 32, 482-488.	1.9	63
48	Multimodal imaging: an evaluation of univariate and multivariate methods for simultaneous EEG/fMRI. Magnetic Resonance Imaging, 2010, 28, 1104-1112.	1.0	31
49	Mapping the information flow from one brain to another during gestural communication. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9388-9393.	3.3	303
50	Imagery of a moving object: The role of occipital cortex and human MT/V5+. NeuroImage, 2010, 49, 794-804.	2.1	77
51	Brain Network Dynamics Underlying Visuospatial Judgment: An fMRI Connectivity Study. Journal of Cognitive Neuroscience, 2010, 22, 2012-2026.	1.1	40
52	Anatomical brain connectivity and positive symptoms of schizophrenia: A diffusion tensor imaging study. Psychiatry Research - Neuroimaging, 2009, 174, 9-16.	0.9	118
53	Hunger is the best spice: An fMRI study of the effects of attention, hunger and calorie content on food reward processing in the amygdala and orbitofrontal cortex. Behavioural Brain Research, 2009, 198, 149-158.	1.2	313
54	Interaction of speech and script in human auditory cortex: Insights from neuro-imaging and effective connectivity. Hearing Research, 2009, 258, 152-164.	0.9	55

#	Article	IF	CITATIONS
55	FMRI Effective Connectivity and TMS Chronometry: Complementary Accounts of Causality in the Visuospatial Judgment Network. PLoS ONE, 2009, 4, e8307.	1.1	31
56	High-resolution diffusion tensor imaging and tractography of the human optic chiasm at 9.4ÂT. NeuroImage, 2008, 39, 157-168.	2.1	92
57	Investigating directed influences between activated brain areas in a motor-response task using fMRI. Magnetic Resonance Imaging, 2006, 24, 181-185.	1.0	95
58	Mapping directed influence over the brain using Granger causality and fMRI. NeuroImage, 2005, 25, 230-242.	2.1	919
59	Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magnetic Resonance Imaging, 2003, 21, 1251-1261.	1.0	599