
Fabio Sterpone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7609753/publications.pdf Version: 2024-02-01

FARIO STEDDONE

#	Article	IF	CITATIONS
1	Small Oligomers of Aβ42 Protein in the Bulk Solution with AlphaFold2. ACS Chemical Neuroscience, 2022, 13, 711-713.	1.7	14
2	Mesoscale biosimulations within a unified framework: from proteins to plasmids. Molecular Simulation, 2021, 47, 101-112.	0.9	2
3	Hydroxy Channels–Adaptive Pathways for Selective Water Cluster Permeation. Journal of the American Chemical Society, 2021, 143, 4224-4233.	6.6	27
4	Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chemical Reviews, 2021, 121, 2545-2647.	23.0	406
5	Stabilizing or Destabilizing: Simulations of Chymotrypsin Inhibitor 2 under Crowding Reveal Existence of a Crossover Temperature. Journal of Physical Chemistry Letters, 2021, 12, 1741-1746.	2.1	11
6	Multi-Scale Simulations and Neutron Scattering Experiments Reveal Dynamical Properties of the Bacterial Cytoplasm Near Cell-Death Temperature. Biophysical Journal, 2021, 120, 298a-299a.	0.2	0
7	Molecular dynamics simulations reveal statistics and microscopic mechanisms of water permeation in membrane-embedded artificial water channel nanoconstructs. Journal of Chemical Physics, 2021, 154, 184102.	1.2	5
8	Specific Interactions and Environment Flexibility Tune Protein Stability under Extreme Crowding. Journal of Physical Chemistry B, 2021, 125, 6103-6111.	1.2	7
9	Biochemical, structural and dynamical studies reveal strong differences in the thermal-dependent allosteric behavior of two extremophilic lactate dehydrogenases. Journal of Structural Biology, 2021, 213, 107769.	1.3	4
10	In-silico analysis of airflow dynamics and particle transport within a human nasal cavity. Journal of Computational Science, 2021, 54, 101411.	1.5	1
11	Computational Insights into the Unfolding of a Destabilized Superoxide Dismutase 1 Mutant. Biology, 2021, 10, 1240.	1.3	1
12	Sequestration of Proteins in Stress Granules Relies on the In-Cell but Not the <i>In Vitro</i> Folding Stability. Journal of the American Chemical Society, 2021, 143, 19909-19918.	6.6	14
13	Exposure of Von Willebrand Factor Cleavage Site in A1A2A3-Fragment under Extreme Hydrodynamic Shear. Polymers, 2021, 13, 3912.	2.0	10
14	Aggregation of disease-related peptides. Progress in Molecular Biology and Translational Science, 2020, 170, 435-460.	0.9	19
15	Differences in thermal structural changes and melting between mesophilic and thermophilic dihydrofolate reductase enzymes. Physical Chemistry Chemical Physics, 2020, 22, 18361-18373.	1.3	18
16	Thermal Adaptation of Enzymes: Impacts of Conformational Shifts on Catalytic Activation Energy and Optimum Temperature. Chemistry - A European Journal, 2020, 26, 10045-10056.	1.7	19
17	Protein thermal stability. Progress in Molecular Biology and Translational Science, 2020, 170, 239-272.	0.9	11
18	The Unfolding Journey of Superoxide Dismutase 1 Barrels under Crowding: Atomistic Simulations Shed Light on Intermediate States and Their Interactions with Crowders. Journal of Physical Chemistry Letters, 2020, 11, 4206-4212.	2.1	18

#	Article	IF	CITATIONS
19	Temperature Unmasks Allosteric Propensity in a Thermophilic Malate Dehydrogenase via Dewetting and Collapse. Journal of Physical Chemistry B, 2020, 124, 1001-1008.	1.2	9
20	Using Computer Simulations and Virtual Reality to Understand, Design and Optimize Artificial Water Channels. Lecture Notes in Bioengineering, 2020, , 78-99.	0.3	2
21	Tribute to Peter J. Rossky. Journal of Physical Chemistry B, 2020, 124, 10591-10593.	1.2	Ο
22	OPEP6: A New Constant-pH Molecular Dynamics Simulation Scheme with OPEP Coarse-Grained Force Field. Journal of Chemical Theory and Computation, 2019, 15, 3875-3888.	2.3	27
23	Multiscale Aggregation of the Amyloid Aβ _{16–22} Peptide: From Disordered Coagulation and Lateral Branching to Amorphous Prefibrils. Journal of Physical Chemistry Letters, 2019, 10, 1594-1599.	2.1	29
24	Stability Effect of Quinary Interactions Reversed by Single Point Mutations. Journal of the American Chemical Society, 2019, 141, 4660-4669.	6.6	61
25	Amyloid-β(29–42) Dimeric Conformations in Membranes Rich in Omega-3 and Omega-6 Polyunsaturated Fatty Acids. Journal of Physical Chemistry B, 2019, 123, 2687-2696.	1.2	14
26	Advancing Multi-Scale Simulation Methods for Biological Membrane Systems. Biophysical Journal, 2019, 116, 373a-374a.	0.2	0
27	Modelling lipid systems in fluid with Lattice Boltzmann Molecular Dynamics simulations and hydrodynamics. Scientific Reports, 2019, 9, 16450.	1.6	22
28	Molecular Mechanism of Protein Unfolding under Shear: A Lattice Boltzmann Molecular Dynamics Study. Journal of Physical Chemistry B, 2018, 122, 1573-1579.	1.2	23
29	Probing the quality control mechanism of the Escherichia coli twin-arginine translocase with folding variants of a de novo–designed heme protein. Journal of Biological Chemistry, 2018, 293, 6672-6681.	1.6	17
30	Multi-scale simulations of biological systems using the OPEP coarse-grained model. Biochemical and Biophysical Research Communications, 2018, 498, 296-304.	1.0	26
31	Three Weaknesses for Three Perturbations: Comparing Protein Unfolding Under Shear, Force, and Thermal Stresses. Journal of Physical Chemistry B, 2018, 122, 11922-11930.	1.2	24
32	Energy landscape of polymorphic amyloid generation of β2-microglobulin revealed by calorimetry. Chemical Communications, 2018, 54, 7995-7998.	2.2	14
33	Water permeation across artificial I-quartet membrane channels: from structure to disorder. Faraday Discussions, 2018, 209, 125-148.	1.6	29
34	Configurational Disorder of Water Hydrogen-Bond Network at the Protein Dynamical Transition. Journal of Physical Chemistry B, 2017, 121, 6792-6798.	1.2	9
35	Why Is Research on Amyloid-β Failing to Give New Drugs for Alzheimer's Disease?. ACS Chemical Neuroscience, 2017, 8, 1435-1437.	1.7	201
36	Thermal activation of â€~allosteric-like' large-scale motions in a eukaryotic Lactate Dehydrogenase. Scientific Reports, 2017, 7, 41092.	1.6	19

#	Article	IF	CITATIONS
37	Critical structural fluctuations of proteins upon thermal unfolding challenge the Lindemann criterion. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9361-9366.	3.3	35
38	Mechanics of Protein Adaptation to High Temperatures. Journal of Physical Chemistry Letters, 2017, 8, 5884-5890.	2.1	28
39	Coarseâ€grained and Allâ€atom Simulations towards the Early and Late Steps of Amyloid Fibril Formation. Israel Journal of Chemistry, 2017, 57, 564-573.	1.0	23
40	Impact of the A2V Mutation on the Heterozygous and Homozygous Aβ1–40 Dimer Structures from Atomistic Simulations. ACS Chemical Neuroscience, 2016, 7, 823-832.	1.7	51
41	Water Determines the Structure and Dynamics of Proteins. Chemical Reviews, 2016, 116, 7673-7697.	23.0	645
42	Multiscale simulation of molecular processes in cellular environments. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20160225.	1.6	22
43	Dimerization Mechanism of Alzheimer Aβ ₄₀ Peptides: The High Content of Intrapeptide-Stabilized Conformations in A2V and A2T Heterozygous Dimers Retards Amyloid Fibril Formation. Journal of Physical Chemistry B, 2016, 120, 12111-12126.	1.2	38
44	Hydrodynamic effects on <i>β</i> -amyloid (16-22) peptide aggregation. Journal of Chemical Physics, 2016, 145, 035102.	1.2	44
45	Hydrodynamic Effects on Amyloid-β Aggregation. Biophysical Journal, 2016, 110, 219a.	0.2	1
46	Stability and Function at High Temperature. What Makes a Thermophilic GTPase Different from Its Mesophilic Homologue. Journal of Physical Chemistry B, 2016, 120, 2721-2730.	1.2	20
47	Recovering Protein Thermal Stability Using All-Atom Hamiltonian Replica-Exchange Simulations in Explicit Solvent. Journal of Chemical Theory and Computation, 2015, 11, 5573-5577.	2.3	40
48	Structures of the Alzheimer's Wild-Type Aβ1-40 Dimer from Atomistic Simulations. Journal of Physical Chemistry B, 2015, 119, 10478-10487.	1.2	81
49	Protein Simulations in Fluids: Coupling the OPEP Coarse-Grained Force Field with Hydrodynamics. Journal of Chemical Theory and Computation, 2015, 11, 1843-1853.	2.3	61
50	Amyloid β Protein and Alzheimer's Disease: When Computer Simulations Complement Experimental Studies. Chemical Reviews, 2015, 115, 3518-3563.	23.0	530
51	Stay Wet, Stay Stable? How Internal Water Helps the Stability of Thermophilic Proteins. Journal of Physical Chemistry B, 2015, 119, 12760-12770.	1.2	21
52	Are coarse-grained models apt to detect protein thermal stability? The case of OPEP force field. Journal of Non-Crystalline Solids, 2015, 407, 494-501.	1.5	17
53	Role of Internal Water on Protein Thermal Stability: The Case of Homologous G Domains. Journal of Physical Chemistry B, 2015, 119, 8939-8949.	1.2	21
54	The OPEP protein model: from single molecules, amyloid formation, crowding and hydrodynamics to DNA/RNA systems. Chemical Society Reviews, 2014, 43, 4871-4893.	18.7	147

#	Article	IF	CITATIONS
55	Protein Flexibility and Stability: Thermophiles Know Best. Biophysical Journal, 2014, 106, 256a-257a.	0.2	Ο
56	Interface Matters: The Stiffness Route to Stability of a Thermophilic Tetrameric Malate Dehydrogenase. PLoS ONE, 2014, 9, e113895.	1.1	11
57	How Conformational Flexibility Stabilizes the Hyperthermophilic Elongation Factor G-Domain. Journal of Physical Chemistry B, 2013, 117, 13775-13785.	1.2	34
58	Importance of the Ion-Pair Interactions in the OPEP Coarse-Grained Force Field: Parametrization and Validation. Journal of Chemical Theory and Computation, 2013, 9, 4574-4584.	2.3	38
59	Biomolecular hydration dynamics: a jump model perspective. Chemical Society Reviews, 2013, 42, 5672.	18.7	100
60	Water Jump Reorientation: From Theoretical Prediction to Experimental Observation. Accounts of Chemical Research, 2012, 45, 53-62.	7.6	90
61	Structural and Spectroscopic Properties of Water around Small Hydrophobic Solutes. Journal of Physical Chemistry B, 2012, 116, 11695-11700.	1.2	39
62	Early Stage of the Dehydrogenation of NaAlH ₄ by Ab Initio Rare Event Simulations. Journal of Physical Chemistry C, 2012, 116, 19636-19643.	1.5	14
63	Magnitude and Molecular Origin of Water Slowdown Next to a Protein. Journal of the American Chemical Society, 2012, 134, 4116-4119.	6.6	171
64	Thermophilic proteins: insight and perspective from in silico experiments. Chemical Society Reviews, 2012, 41, 1665-1676.	18.7	68
65	Coherent Excitation Transfer Driven by Torsional Dynamics: a Model Hamiltonian for PPV Type Systems. Zeitschrift Fur Physikalische Chemie, 2011, 225, 541-551.	1.4	22
66	Dynamics of Water in Concentrated Solutions of Amphiphiles: Key Roles of Local Structure and Aggregation. Journal of Physical Chemistry B, 2011, 115, 3254-3262.	1.2	70
67	Reorientation and Allied Dynamics in Water and Aqueous Solutions. Annual Review of Physical Chemistry, 2011, 62, 395-416.	4.8	310
68	Water around thermophilic proteins: the role of charged and apolar atoms. Journal of Physics Condensed Matter, 2010, 22, 284113.	0.7	14
69	Nonadiabatic Simulations of Exciton Dissociation in Poly- <i>p</i> -phenylenevinylene Oligomers. Journal of Physical Chemistry A, 2010, 114, 7661-7670.	1.1	43
70	Water Hydrogen-Bond Dynamics around Amino Acids: The Key Role of Hydrophilic Hydrogen-Bond Acceptor Groups. Journal of Physical Chemistry B, 2010, 114, 2083-2089.	1.2	113
71	Nonadiabatic Mixed Quantumâ^'Classical Dynamic Simulation of Ï€-Stacked Oligophenylenevinylenes. Journal of Physical Chemistry A, 2009, 113, 3427-3430.	1.1	21
72	Key Role of Proximal Water in Regulating Thermostable Proteins. Journal of Physical Chemistry B, 2009, 113, 131-137.	1.2	46

#	Article	IF	CITATIONS
73	Sphere versus Cylinder: The Effect of Packing on the Structure of Nonionic C ₁₂ E ₆ Micelles. Langmuir, 2009, 25, 8960-8967.	1.6	25
74	Molecular Modeling and Simulation of Conjugated Polymer Oligomers:  Ground and Excited State Chain Dynamics of PPV in the Gas Phase. Journal of Physical Chemistry B, 2008, 112, 4983-4993.	1.2	39
75	Dissecting the Hydrogen Bond: A Quantum Monte Carlo Approach. Journal of Chemical Theory and Computation, 2008, 4, 1428-1434.	2.3	46
76	Pressure-Induced Core Packing and Interfacial Dehydration in Nonionic C12E6 Micelle in Aqueous Solution. Langmuir, 2008, 24, 6067-6071.	1.6	7
77	How Protein Surfaces Induce Anomalous Dynamics of Hydration Water. Journal of Physical Chemistry B, 2007, 111, 7584-7590.	1.2	221
78	Molecular Modeling and Simulation of Water near Model Micelles:Â Diffusion, Rotational Relaxation and Structure at the Hydration Interface. Journal of Physical Chemistry B, 2006, 110, 11504-11510.	1.2	40
79	Structure and Dynamics of Hydrogen Bonds in the Interface of a C12E6Spherical Micelle in Water Solution:Â A MD Study at Various Temperatures. Journal of Physical Chemistry B, 2006, 110, 18254-18261.	1.2	8
80	Molecular Modeling and Simulations of AOTâ^'Water Reverse Micelles in Isooctane:Â Structural and Dynamic Properties. Journal of Physical Chemistry B, 2004, 108, 19458-19466.	1.2	209
81	Molecular Dynamics Study of Temperature Dehydration of a C12E6Spherical Micelle. Langmuir, 2004, 20, 4311-4314.	1.6	50
82	Linear Response and Electron Transfer in Complex Biomolecular Systems and a Reaction Center Protein. Journal of Physical Chemistry B, 2003, 107, 11208-11215.	1.2	22
83	Water Rotational Relaxation and Diffusion in Hydrated Lysozyme. Journal of the American Chemical Society, 2002, 124, 6787-6791.	6.6	232
84	Dynamics of hydration in hen egg white lysozyme. Journal of Molecular Biology, 2001, 311, 409-419.	2.0	78
85	Molecular Dynamics Study of Spherical Aggregates of Chain Molecules at Different Degrees of Hydrophilicity in Water Solution. Langmuir, 2001, 17, 5103-5110.	1.6	32
86	Three-stage multiscale modelling of the NMDA neuroreceptor. Molecular Physics, 0, , e1928312.	0.8	0