Michael Staab

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7609727/publications.pdf

Version: 2024-02-01

304701 330122 53 1,628 22 37 h-index citations g-index papers 56 56 56 2394 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nature Communications, 2018, 9, 2989.	12.8	169
2	Tree species richness increases ecosystem carbon storage in subtropical forests. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181240.	2.6	169
3	Multiple plant diversity components drive consumer communities across ecosystems. Nature Communications, 2019, 10, 1460.	12.8	139
4	Synthesis and future research directions linking tree diversity to growth, survival, and damage in a global network of tree diversity experiments. Environmental and Experimental Botany, 2018, 152, 68-89.	4.2	113
5	Trap nests for bees and wasps to analyse trophic interactions in changing environments—A systematic overview and user guide. Methods in Ecology and Evolution, 2018, 9, 2226-2239.	5.2	64
6	Evaluating the effectiveness of retention forestry to enhance biodiversity in production forests of Central Europe using an interdisciplinary, multiâ€scale approach. Ecology and Evolution, 2020, 10, 1489-1509.	1.9	56
7	Exotic garden plants partly substitute for native plants as resources for pollinators when native plants become seasonally scarce. Oecologia, 2020, 194, 465-480.	2.0	51
8	Tree diversity alters the structure of a triâ€trophic network in a biodiversity experiment. Oikos, 2015, 124, 827-834.	2.7	50
9	The Influence of Tree Diversity on Natural Enemies—a Review of the "Enemies―Hypothesis in Forests. Current Forestry Reports, 2020, 6, 243-259.	7.4	47
10	Tree phylogenetic diversity promotes host–parasitoid interactions. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160275.	2.6	41
11	Toward a methodical framework for comprehensively assessing forest multifunctionality. Ecology and Evolution, 2017, 7, 10652-10674.	1.9	41
12	Belowground top-down and aboveground bottom-up effects structure multitrophic community relationships in a biodiverse forest. Scientific Reports, 2017, 7, 4222.	3.3	38
13	Multitrophic diversity in a biodiverse forest is highly nonlinear across spatial scales. Nature Communications, 2015, 6, 10169.	12.8	37
14	Tree diversity promotes predator but not omnivore ants in a subtropical <scp>C</scp> hinese forest. Ecological Entomology, 2014, 39, 637-647.	2.2	34
15	Insect abundance in managed forests benefits from multi-layered vegetation. Basic and Applied Ecology, 2020, 48, 124-135.	2.7	34
16	Tree Species Richness Promotes Invertebrate Herbivory on Congeneric Native and Exotic Tree Saplings in a Young Diversity Experiment. PLoS ONE, 2016, 11, e0168751.	2.5	34
17	Optimizing sampling of flying insects using a modified window trap. Methods in Ecology and Evolution, 2019, 10, 1820-1825.	5.2	33
18	Phylogenetic analysis of cuckoo wasps (Hymenoptera: Chrysididae) reveals a partially artificial classification at the genus level and a speciesâ€rich clade of bee parasitoids. Systematic Entomology, 2019, 44, 322-335.	3.9	30

#	Article	IF	CITATIONS
19	Tree diversity increases robustness of multi-trophic interactions. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182399.	2.6	29
20	Unravelling insect declines: can space replace time?. Biology Letters, 2022, 18, 20210666.	2.3	27
21	Diversity and specificity of hostâ€natural enemy interactions in an urbanâ€rural interface. Ecological Entomology, 2016, 41, 241-252.	2.2	26
22	Tree Species Richness Strengthens Relationships between Ants and the Functional Composition of Spider Assemblages in a Highly Diverse Forest. Biotropica, 2015, 47, 339-346.	1.6	24
23	Host functional and phylogenetic composition rather than host diversity structure plant–herbivore networks. Molecular Ecology, 2020, 29, 2747-2762.	3.9	24
24	Simple pond restoration measures increase dragonfly (Insecta: Odonata) diversity. Biodiversity and Conservation, 2018, 27, 2311-2328.	2.6	22
25	Tree phylogenetic diversity structures multitrophic communities. Functional Ecology, 2021, 35, 521-534.	3.6	21
26	A tale of scale: Plot but not neighbourhood tree diversity increases leaf litter ant diversity. Journal of Animal Ecology, 2020, 89, 299-308.	2.8	19
27	Ant community structure during forest succession in a subtropical forest in South-East China. Acta Oecologica, 2014, 61, 32-40.	1.1	18
28	Growth–trait relationships in subtropical forest are stronger at higher diversity. Journal of Ecology, 2020, 108, 256-266.	4.0	18
29	Multiâ€trophic guilds respond differently to changing elevation in a subtropical forest. Ecography, 2018, 41, 1013-1023.	4.5	17
30	Benchmarking nesting aids for cavity-nesting bees and wasps. Biodiversity and Conservation, 2019, 28, 3831-3849.	2.6	16
31	A Unique Nest-Protection Strategy in a New Species of Spider Wasp. PLoS ONE, 2014, 9, e101592.	2.5	15
32	Ants at Plant Wounds: A Little-Known Trophic Interaction with Evolutionary Implications for Ant-Plant Interactions. American Naturalist, 2017, 190, 442-450.	2.1	15
33	Systematics of the ant genus Proceratium Roger (Hymenoptera, Formicidae, Proceratiinae) in China – with descriptions of three new species based on micro-CT enhanced next-generation-morphology. ZooKeys, 2018, 770, 137-192.	1.1	13
34	Multiple forest structural elements are needed to promote beetle biomass, diversity and abundance. Forest Ecosystems, 2022, 9, 100056.	3.1	13
35	Climate affects neighbourâ€induced changes in leaf chemical defences and tree diversity–herbivory relationships. Functional Ecology, 2021, 35, 67-81.	3.6	12
36	Multi-trophic communities re-establish with canopy cover and microclimate in a subtropical forest biodiversity experiment. Oecologia, 2021, 196, 289-301.	2.0	12

3

#	Article	IF	CITATIONS
37	Trophic ecology of parabiotic ants: Do the partners have similar food niches?. Austral Ecology, 2012, 37, 537-546.	1.5	11
38	Tree genetic diversity increases arthropod diversity in willow short rotation coppice. Biomass and Bioenergy, 2018, 108, 338-344.	5.7	11
39	Plant composition, not richness, drives occurrence of specialist herbivores. Ecological Entomology, 2019, 44, 833-843.	2.2	11
40	Tree species richness attenuates the positive relationship between mutualistic ant–hemipteran interactions and leaf chewer herbivory. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171489.	2.6	10
41	Intra- and interspecific tree diversity promotes multitrophic plant–Hemiptera–ant interactions in a forest diversity experiment. Basic and Applied Ecology, 2018, 29, 89-97.	2.7	9
42	Rapid ant community reassembly in a <scp>N</scp> eotropical forest: Recovery dynamics and landâ€use legacy. Ecological Applications, 2022, 32, e2559.	3.8	9
43	Tree diversity promotes predatory wasps and parasitoids but not pollinator bees in a subtropical experimental forest. Basic and Applied Ecology, 2021, 53, 134-142.	2.7	8
44	Tree diversity and nectar composition affect arthropod visitors on extrafloral nectaries in a diversity experiment. Journal of Plant Ecology, 0, , rtw017.	2.3	6
45	Wood species identity alters dominant factors driving fine wood decomposition along a tree diversity gradient in subtropical plantation forests. Biotropica, 2021, 53, 643-657.	1.6	5
46	A new species of the Aenictus wroughtonii group (Hymenoptera, Formicidae) from South-East China. ZooKeys, 2014, 391, 65-73.	1.1	4
47	Observational natural history and morphological taxonomy are indispensable for future challenges in biodiversity and conservation. Communicative and Integrative Biology, 2015, 8, e992745.	1.4	3
48	What shapes ground beetle assemblages in a tree species-rich subtropical forest?. ZooKeys, 2021, 1044, 907-927.	1.1	3
49	Canopy Closure Retards Fine Wood Decomposition in Subtropical Regenerating Forests. Ecosystems, 2021, 24, 1875-1890.	3.4	2
50	Ecology: Mammals, interaction networks and the relevance of scale. Current Biology, 2021, 31, R850-R853.	3.9	2
51	Plagiolepis alluaudi Emery, 1894, a globally spreading exotic ant (Hymenoptera, Formicidae) newly recorded from Tenerife (Canary Islands, Spain). Journal of Hymenoptera Research, 0, 74, 83-91.	0.8	2
52	Aenictus hoelldobleri sp. n., a new species of the Aenictus ceylonicus group (Hymenoptera,) Tj ETQq0 0 0 rgBT /0	Overlock 1	.0 тƒ 50 142 т
53	Reprint of: Tree diversity promotes predatory wasps and parasitoids but not pollinator bees in a subtropical experimental forest. Basic and Applied Ecology, 2021, 55, 124-132.	2.7	O